
The Inform Designer's Manual

by Graham Nelson

Second edition

23 October 1995

Detailed contents : 2
Introduction : 7

I Fundamentals : 10
II The Model World :31
III Describing and Parsing : 68
IV Testing and Hacking :99
V Language and Compiler Reference : 111
VI Library Reference : 139

A short Inform lexicon: :157
Answers to all the exercises :164
Index : 206

1

Contents

Introduction : 7

Chapter I: Fundamentals

1 Getting started :10
Beginning to lay `Ruins'; including the library �les; the Initialise routine; some
properties of mushrooms; name, description and initial; edible foodstu�s; in-
troducing before and after rules.

2 An invitation to Inform :14
The Inform approach; what programs contain; brief introduction to the language;
common core of directives and statements.

3 Objects, properties and attributes : 18
The object tree; the nothing non-object; move and remove statements; the func-
tions sibling, parent, child, etc.; attributes; properties; lists as property values;
declaring objects, perhaps Nearby ones; routines as property values; why the name
property is special.

4 Actions and reactions :23
Actions are attempts; generating them with <, <<; self; the `Before', `During'
and `After' stages of processing actions; exact sequence of events; before, after,
react_before, react_after, GamePreRoutine, GamePostRoutine; noun, second,
inp1 and inp2; the parser can make peculiar actions; the Library actions already
de�ned, in three Groups; creating a `Blorple' action and a simple new verb; fake
actions; message-passing; self-destructing before rules.

5 Classes of objects :29
Class de�nitions; `Ruins' artifacts: the pygmy statuette, the honeycomb; inheri-
tance and rules of precedence; additive properties accumulate through class in-
heritance.

Chapter II: The Model World

6 Places, scenery, directions and the map : 31
Giving `Ruins' a small map; n_to, d_to, etc.; when you cant_go; scenery objects;
default rules; rooms have before and after too; a mist object, present in many
rooms, using found_in; the �ve senses and reaction rules; direction objects in the
compass.

7 Containers, supporters and sub-objects : 36
Containers: container, supporter, capacity, open, openable; locks and keys:
locked, lockable, with_key; LetGo and Receive to trap use of a container: a
horrifying chasm; the Search action; transparent objects have visible sub-objects;
a television set with buttons.

8 Doors : 38
How to create a door; door_to, door_dir; when_open, when_closed; a stone door
for `Ruins'; a two-way door, the `Advent' grate; why door_dir is needed and how
to trap every attempt to go through.

2

Contents

9 Switchable objects :40
switchable and on: when_on, when_off; the Gotham City searchlight; a sodium
lamp; describe taking precedence.

10 Things to enter, travel in and push around :42
enterable objects: a slab altar; vehicles: KAR 1; special rule about the Go action
when inside something enterable; the PushDir action: a huge pumice-stone ball;
pushing up and down.

11 Reading matter and consultation : 44
The Consult action, \look up"; consult_from and consult_words: a dictionary
of glyphs, Tyndale's Bible; making \read" and \examine" di�erent.

12 Living creatures and conversation :46
animate objects and the life rule; a mummi�ed priest, Blofeld, a coiled snake;
some people are transparent; orders: actions for other people; talkable objects;
parsing conversation: Zen and Charlotte; untypeable verbs; fake fake actions; sev-
eral voice-activated machines; applications of scope: telepathy and phone calls.

13 The light and the dark : 53
Light and darkness is automatically managed; the de�nition of `when there is
light'; OffersLight and HasLightSource; going from darkness to darkness and the
DarkToDark entry point; modifying the darkness object.

14 Daemons and the passing of time : 55
Daemons and the daemon property; starting and stopping them; background dae-
mons; timers (fuses); time_left and time_out; each_turn events for places and
nearby objects; the time of day; changing it with SetTime; on the status line;
midnight, sunrise, sunset; the exact sequence of events at end-of-turn.

15 Starting, moving, changing and killing the player: :58
What Initialise should do; the location; initial restoration; teleportation and
the PlayerTo routine; what happens when the room changes: NewRoom, initial
for a room, visited; giving the player his own before rule; using ChangePlayer

to transform him into any object; multi-character games; life and deadflag; the
DeathMessage routine; resurrection and the AfterLife routine.

16 Miscellaneous constants and scoring : 62
Story and Headline; MAX_CARRIED; the automatic rucksack SACK_OBJECT; `amus-
ing' rewards for the victorious; two scoring systems: MAX_SCORE, OBJECT_SCORE,
ROOM_SCORE; tasks: TASKS_PROVIDED,NUMBER_TASKS,task_scores, PrintTaskName;
rankings and PrintRank; automatic score noti�cation and notify_mode; \objects"
and \places" verbs, removable with NO_PLACES.

17 Extending and rede�ning the Library : 64
Creating new attributes and properties; alias; changing the default value of a
property; how to PrintOrRun a property; determining the `type' of a property value;
modular extensions; the LibraryMessages system for changing Library messages
like \Dropped."; changing the prompt; the last resort, using Replace directives;
even on `hardware' functions like random.

3

Contents

Chapter III: Describing and Parsing

18 Describing objects and rooms :68
print (The) obj, ... (the) obj and so on; inde�nite and de�nite article;
proper nouns; the short_name of an object; invent strings and routines; exactly
how inventory lines are printed; a matchbook; describe routines; exactly how
rooms are described; Locale.

19 Listing and grouping objects :73
The list-maker WriteListFrom; its style bitmap; examples: tall and wide inven-
tories; grouping similar items together in lists: foodstu�s, Scrabble pieces and
denominations of coin.

20 How nouns are parsed : 76
How name is used; a fried green tomato turning red; the parser breaks text into a
stream of words; wn and NextWord; reading words as numbers or from their raw
text; a parse_name routine is much more exible than name; the ParseNoun entry
point; distinguishing adjectives from nouns.

21 Plural names for duplicated objects :80
Collections of indistinguishable objects; a bag of six coins; the plural property for
printing out plurals; de�nition of `indistinguishable'; writing parse_name routines
to allow plurals to be understood; class of crowns.

22 How verbs are parsed :82
The parser's fundamental method; BeforeParsing entry point; the actor and verb
word; synonyms for verbs; de�nitions of grammar, line and token; action_to_be;
Verb directive: a simpli�ed \take" grammar; meta verbs; grammar creates actions;
creating an \xyzzy" verb; how to Extend grammar for an existing verb: pushing
numbered buttons; priority: replace, first, last; splitting synonymous verbs
apart with Extend only; the UnknownVerb and PrintVerb entry points.

23 Tokens of grammar :87
Full list of grammar tokens; prepositions; noun and held; implicit taking; tokens
allowing multiple objects like \all"; �ltering out nouns by attribute: \use" verb;
and by general routine: \free" verb; parsing numbers: \type" verb, ParseNumber;
general parsing routines; reading from the parser's raw text buffer and parse

table; exercises, including French, telephone and oating-point numbers, times of
day, adding a third parameter to a grammar line.

24 Scope and what you can see : 92
The de�nition of `in scope'; which applies to other people as well; answering ques-
tions: \what is a grue"; scope=... tokens with programmable scope; scope_stage,
ScopeWithin and PlaceInScope; changing the global de�nition of `in scope' using
InScope; scope_reason; looping over and testing scope; making the rules more sen-
sitive to darkness; a long room divided by a glass wall; the add_to_scope property
for component parts of containers.

25 Helping the parser out of trouble : 97
Parser error messages and ParserError; ambiguity-resolution and inuencing it
with ChooseObjects; making \eat" prefer edible objects; rede�ning \all".

4

Contents

Chapter IV: Testing and Hacking

26 Debugging verbs and tracing : 99
Suite of debugging verbs: \purloin", \abstract", \tree", \scope", \goto", \gon-
ear", \actions", \routines", \timers", \trace", \recording", \replay", \random";
transcriptions; the random-number generator; In�x-format debugging �les; how to
crash the game interpreter at run-time; the levels of parser tracing; compiling with
debugging code.

27 Limitations on the run-time format : 102
Formats of the Z-machine; restrictions: memory, vocabulary, dictionary resolution,
attributes, properties, names, special e�ects, objects, memory management, global
variables, \undo" verb, function arguments; using Abbreviate to save run-time
memory.

28 Boxes, menus and drawings :104
Asking yes/no questions with YesOrNo; the status line; character graphics, escape
characters; proportional- and �xed-pitch fonts, font; epigrams in boxes and box;
menus of text options, DoMenu, pretty_flag, menu_item; an example menu; sub-
menus are allowed; changing the text style to bold-face, underlining, reverse video.

29 Descending into assembly language : 106
Assembly language @; reliability of interpreters; table of opcodes which do some-
thing higher-level code can't; upper and lower windows: splitting, setting the win-
dow, moving the cursor, clearing the screen, word-breaking; the colour scheme;
a bell sound; keyboard reading in real-time; function and cursor keys; tokenis-
ing with dictionaries; encoding dictionary entries; input/output streams; the stack
frame: throw and catch; examples: a title page, drawing status lines, formatting
and centering text.

Chapter V: Language and Compiler Reference

30 Language speci�cation : 111
1: Source �le format; 2: The logical machine; 3: Constants; 4: Directives; 5: Prop-
erty and attribute de�nitions; 6: Object and class de�nitions; 7: Global variables
and arrays; 8: Grammar and verbs; 9: Routines; 10: Arithmetic expressions; 11:
Built-in functions; 12: Conditions; 13: Assignments; 14: Printing commands; 15:
Manipulating objects; 16: Returning from routines; 17: Blocks of code; 18: Control
constructs; 19: Actions.

31 A summary of grammar : 126

32 Compiler options and memory settings : 128
Switches; memory sizes; typical memory usage; raising memory settings.

33 All the Inform error messages : 131
Fatal errors; errors; internal and assembler errors; warnings; obsolete usages.

Chapter VI: Library Reference

34 The attributes : 139

35 The properties : 141

36 Library-de�ned objects and routines : 147

5

Contents

37 Entry points and meaningful constants : 149

38 The actions and fakes : 151

39 The library message numbers :152

What order the program should be in : 156

A short Inform lexicon : 157

Answers to all the exercises :164

Index :206

6

Introduction

I will build myself a copper tower
With four ways out and no way in
But mine the glory, mine the power: : :

{ Louis MacNeice (1907{1963), Flight of the Heart

Inform is an adventure-game compiler, and this is the book to read about it.
Infocom format `story �les' (adventure games, that is) can be played on almost any

computer, ancient or modern, and interpreters which run them are widely available, from
personal organisers to mainframes. They represent probably the most portable form in
which games can ever be written, as no alteration whatever is required to move a game
from one model of computer to another.

Inform is a suite of software as well as a compiler. Its library (a standard core of
game routines) allows designers to begin coding at once. An Inform source �le need not
contain any of the parser code, or the running of the `game universe', only descriptions and
exceptions to the usual rules. This world is quite rich already, having over 80 verbs and an
extensive grammar: the library understands rooms, objects, duplicates, containers, doors,
things on top of other things, light, scoring, switching things on and o�, opening, closing
and locking things, looking up information in books, entering things, travelling about in
them and so forth. The parser it uses (which can be entirely invisible to the designer, but
is programmable and very exible) is sophisticated enough to handle ambiguities, to clarify
its input by asking questions and to cope properly with plurals, vagueness, conversation,
pronouns and the player becoming someone else in mid-game.

The text of this book has evolved from six earlier editions. In Inform's early years,
the manual was in places rather technical, with a makeshift and sometimes defensive tone
(\Inform is an easel, not a painting"). There were speci�cations of the run-time code
format and literary critiques of games gone by: like an oven manual padded out with
both a cookery book and a detailed plan of the gas mains. This book contains just the
instructions for the oven.

So there are three `companion volumes'. The Craft of Adventure is an essay on
the design of adventure games; The Speci�cation of the Z-Machine covers the run-time
format and Inform assembly language, its lowest level; and The Inform Technical Manual

documents chiey internals, for compiler maintenance and porting.
In trying to be both a tutorial and reference work, this book aims itself in style

halfway between the two extremes of manual, Tedium and Gnaw�nger's Elements of Batch

Processing in COBOL-66, third edition, and Mr Blobby's Blobby Book of Computer Fun.
(This makes some sections both leaden and patronising.) I have tried to make every passage
tell the truth, so that even early sections are reliable for reference purposes. Passages which
divert the main story, usually to tell an unexpurgated truth which may just confuse the
newcomer, are marked with a warning triangle 4 or two, and set in smaller type.

Many lengthy or involved examples are left as exercises, with full answers given at
the back of the book. Harder exercises, marked with triangles, sometimes need knowledge

7

Introduction

of material later in the book, but most of the easier exercises can be attempted by a �rst-
time reader. For a list of exercises with page references to question and answer, see under
\exercises" in the Index.

Most sections end with a `References' paragraph referring to yet more examples
which can be found in the demonstration games which come with Inform. All of these have
publically available source code (see the Inform home page): those most frequently referred
to are `Advent' (a full version of the original mainframe `Adventure', which contains a
good deal of \everyday Inform"), `Adventureland' (a version of Scott Adams's primitive
classic), `Alice Through The Looking-Glass' (a heavily annotated game, developed in the
course of Gareth Rees's WWW tutorial for Inform), `Balances' (a short story consisting of
puzzles which stretch the parser's abilities) and `Toyshop' (hardly a game at all: more an
incoherent collection of unusual objects to play with). In addition, the little game `Ruins'
is developed in the course of Chapters I and II of this manual. There is also a `Shell' game
consisting of the minimum code to get going, but it's only 14 lines long and it's essentially
given in x1 anyway.

The copyright on Inform, the program and its source code, its example games and
documentation (including this book) is retained by Graham Nelson, who asserts the moral
right to be identi�ed as its author. Having said this, I am happy for it to be freely
distributed to anybody who wants a copy, provided that: (a) distributed copies are not
substantially di�erent from those archived by the author, (b) this and other copyright
messages are always retained in full, and (c) no pro�t is involved. However, a story �le
produced with the Inform compiler (and libraries) then belongs to its author, and may be
sold for pro�t if desired, provided that its game banner contains the information that it
was compiled by Inform, and the Inform version number.

At present, the best source for Inform material (executables of the compiler for
di�erent machines, source code, the library �les and example games) is the anonymous ftp
site ftp.gmd.de, and its home directory is:

/if-archive/infocom/compilers/inform

Another useful resource is the Inform home page on the `World Wide Web', currently
maintained by Gareth Rees at:

http://www.cl.cam.ac.uk/users/gdr11/inform

This manual describes Inform 5.5 (or later), using library release 5/12 (or later).

Some of the ideas of Inform came from an incremental multi-player game called
Tera, on the Cambridge University mainframe, written by Dilip Sequeira and the author
in 1990 (whose compiler was called Teraform); in turn, this stole a little from David Seal
and Jonathan Thackray's game assembler; which dates back to the late 1970s and was
written for `Acheton', perhaps the �rst worthwhile game written outside America. Still,
much of the Inform kernel derives ultimately from the IEEE Computer article `Zork: A
Computerized Fantasy Simulation Game' by P. David Lebling, Marc S. Blank and Timothy
A. Anderson; and more was suggested by Richard Tucker and Gareth Rees, among others.

8

Introduction

The list of those who have helped the project along is legion: I should like to thank
them all, porters, users and critics alike, but especially Volker Blasius, Paul David Do-
herty, Mark Howell, Bob Newell, Robert Pelak, Gareth Rees, J�rund Rian, Dilip Sequeira,
Richard Tucker and Christopher Wichura. Gareth Rees in particular acted as proof-reader
and editor for this second edition, greatly improving the text.

One �nal word. I should like to dedicate this book, impertinently perhaps, to our
illustrious predecessors: Willie Crowther, Don Woods and the authors of Infocom, Inc.

Graham Nelson

St Anne's College, Oxford

October 1995

And if no piece of chronicle we prove,
We'll build in sonnets pretty rooms;
As well a well wrought urn becomes
The greatest ashes, as half-acre tombs.

{ John Donne (1571?{1631), The Canonization

9

Chapter I: Fundamentals

1 Getting started

The examples in Chapters I and II of this manual will put together a small game called
`Ruins'. As every game does, this will start looking very like the minimal `Shell' game
supplied with Inform:

Constant Story "RUINS";

Constant Headline "^An Interactive Worked Example^\

Copyright (c) 1995 by Graham Nelson.^";

Include "Parser";

Include "VerbLib";

Object Forest "Dark Forest"

with description

"In this tiny clearing, the pine-needle carpet is broken by \

stone-cut steps leading down into darkness. Dark olive \

trees crowd in on all sides, the air steams with warm recent \

rain, midges hang in the air.",

has light;

[Initialise;

location = Forest;

"^^^^^Days of searching, days of thirsty hacking through the briars of \

the forest, but at last your patience was rewarded. A discovery!^";

];

Include "Grammar";

end;

If you can compile this successfully, Inform is probably set up and working properly on
your computer. Compilation may take a few seconds, because the game `includes' three
library �les which contain a great deal more code. These �les are themselves written in
Inform and contain the core of ordinary rules common to all games:

Parser the game's main loop, and a full parser;
VerbLib routines for many game verbs, like \take";
Grammar a grammar table for decoding the player's input.

The library is certainly modi�able by designers, but great e�ort has gone into making sure
the need seldom arises. Apart from the inclusions, `Ruins' contains:

(a) strings giving the name of the game and a copyright message, to be printed out at
the appropriate moments;

10

1 Getting started

(b) a routine, called Initialise, which is run when the game begins, and simply sets
where the player starts (in the obvious place!) and prints a `welcome' message;

(c) an object, to be the only room of the game.

`Ruins' is at this stage a very boring game:

Days of searching, days of thirsty hacking through the briars of the forest,

but at last your patience was rewarded. A discovery!

RUINS

An Interactive Worked Example

Copyright (c) 1995 by Graham Nelson.

Release 1 / Serial number 951006 / Inform v1502 Library 5/12

Dark Forest

In this tiny clearing, the pine-needle carpet is broken by stone-cut steps

leading down into darkness. Dark olive trees crowd in on all sides, the air

steams with warm recent rain, midges hang in the air.

>i

You are carrying nothing.

>north

You can't go that way.

>wait

Time passes.

>quit

Are you sure you want to quit? yes

(The \Release" number is 1 unless you set it otherwise, putting a directive like Release

2; into the source code. The \Serial number" is set by Inform to the date of compilation.)

In Inform, everything is an object: rooms and items to be picked up, scenery, intangible
things like mist and even some abstract ideas (like the direction `north'). Our second object
is added by writing the following just after the Forest ends and just before Initialise

begins:

Nearby mushroom "speckled mushroom"

with name "speckled" "mushroom" "fungus" "toadstool";

(Nearby just means that the mushroom is inside the last thing declared as an Object,
in this case the Forest.) The mushroom now appears in the game; the player can call
it \speckled mushroom", \mushroom", \toadstool" or even \speckled". It can be taken,
dropped, looked at, looked under and so on. However, the description of the Forest says
only \There is a speckled mushroom here.", which is still rather plain. So we might extend
the de�nition by:

Nearby mushroom "speckled mushroom"

with name "speckled" "mushroom" "fungus" "toadstool",

initial

"A speckled mushroom grows out of the sodden earth, on a long stalk.";

11

1 Getting started

The initial message is used to tell the player about the mushroom when the Forest is
described. (Once the mushroom has been picked or moved, the message is no longer used:
hence the name `initial'.) The mushroom is, however, still \nothing special" when the
player asks to \look at" or \examine" it. To provide a more interesting close-up view, we
must give the mushroom its own description:

Nearby mushroom "speckled mushroom"

with name "speckled" "mushroom" "fungus" "toadstool",

initial

"A speckled mushroom grows out of the sodden earth, on a long stalk.",

description

"The mushroom is capped with blotches, and you aren't at all sure \

it's not a toadstool.",

has edible;

Notice that the mushroom's description is split across two lines of source code. If there
were no \ character, then the description would come out with a curious gap of 12 spaces
between \sure" and \it's". In a string, the \ character \folds" lines together by telling
Inform to ignore the line break and carry on reading from the �rst non-space character
on the next line. (So the gap is just one space after all.) If we want to print a genuine
new-line, we can include the special ^ character.

Now if we examine the mushroom, as is always wise before eating, we get a cau-
tionary hint; and, thanks to the edible clause, we're now able to eat it.

4 name, description and initial are examples of `properties', while edible and light are
`attributes': the di�erence is that the former have values, whereas the latter are just on or o�.
They can be de�ned in any order, and their values can change during play; the original de�nition
only sets up the initial state.

We can go much further with form-�lling like this, but for the sake of example we'll
begin some honest programming by adding the following property to the mushroom:

after

[; Take: "You pick the mushroom, neatly cleaving its thin stalk.";

Drop: "The mushroom drops to the ground, battered slightly.";

],

The property after doesn't just have a string for a value: it has a routine of its own. Now
after something happens to the mushroom, the after routine is called to apply any special
rules to it. In this case, Take and Drop are the only actions tampered with, and the only
e�ect is that the usual messages (\Taken." \You eat the speckled mushroom. Not bad.")
are replaced. The game can now manage a brief but plausible dialogue:

Dark Forest

In this tiny clearing, the pine-needle carpet is broken by stone-cut steps

leading down into darkness. Dark olive trees crowd in on all sides, the air

steams with warm recent rain, midges hang in the air.

A speckled mushroom grows out of the sodden earth, on a long stalk.

>get mushroom

You pick the mushroom, neatly cleaving its thin stalk.

12

1 Getting started

>look at it

The mushroom is capped with blotches, and you aren't at all sure it's not a

toadstool.

>drop it

The mushroom drops to the ground, battered slightly.

The mushroom is a little more convincing now, but it doesn't do anything yet. We
can give it a somewhat sad new rule by adding yet another property, this time with a more
substantial routine:

before

[; Eat: if (random(100) <= 30)

{ deadflag = 1;

"The tiniest nibble is enough. It was a toadstool, \

and a poisoned one at that!";

}

"You nibble at one corner, but the curious taste repels you.";

],

The before routine is called before the player's intended action takes place. So when the
player tries typing, say, \eat the mushroom", what happens is: in 30% of cases, she dies of
toadstool poisoning; and in the other 70%, she simply nibbles a corner of fungus (without
consuming it completely).

4 Like many programming languages, Inform braces together blocks of code so that several
statements can come under the if condition. deadflag is a global variable, whose value does not
belong to any particular object (or routine). It is de�ned somewhere in the depths of the library:
it's usually 0; setting it to 1 causes the game to be lost, and setting it to 2 causes a win.

In either case, the usual rule for the Eat action is never applied. This is because,
although it isn't obvious from the code, the routine actually returns a value. (In Inform,
every routine returns a value.) The command

"The tiniest nibble... ...at that!";

is actually a shorthand form of

print_ret "The tiniest nibble... ...at that!";

What it does is to print the message (together with a carriage return), and then return
from (i.e. �nish running) the before routine, returning the value `true'. (This is a very
convenient shorthand in practice, but if often confuses newcomers: in particular, a routine
reading "Hello."; return 2; won't return 2 as �rst appears: it will print \Hello." and
a new-line, then return true (actually the number 1). The code coming after "Hello.";
will simply not be reached.) To return to this example, the library knows that something
has interrupted the usual rules of play because the before routine didn't return `false' the
way it normally would have.

13

1 Getting started

�EXERCISE 1

The present after routine for the mushroom is misleading, because it says the mushroom has
been picked every time it's taken (which will be odd if it's taken, dropped then taken again).
Correct this to complete the de�nition of the `Ruins' mushroom.

2 An invitation to Inform

Nothing so di�cult as a beginning
In poesy, unless perhaps the end.

{ Lord Byron (1788{1824), Don Juan, IV iv

All adventure games work in roughly the same way:

1. ask the player to type something;
2. parse this (i.e., decide what it means) and generate any actions it calls for;
3. work out the consequences of these actions and tell the player;
4. worry about time passing, and other things happening.

This process repeats until it ends in either victory or death. The time between one keyboard
input and the next is called a `turn', and many di�erent things may happen during it. Most
events taking place in the game are called `actions' and are discussed in detail in x5.

Probably the most complicated programming in any adventure game goes into the
parser. Inform's parser is as good as any, and is designed with the intention of being
highly programmable at all levels to suit your game. This book will return to features of
the parser again and again. At any rate, the parser can easily be taught to understand
commands like:

throw three of the coins into the fountain

write funny on the lit cube

take the sword and all the crowns

what is a grue

dwarf, give me the battleaxe

It also asks questions when it needs to, makes inferences from partial requests and tries to
make good guesses when faced with ambiguous requests. You can teach it `grammar' for
new verbs and new forms of old ones. The library starts with about 85 verbs, not counting
synonyms.

Inform has a fairly rich model of the world, which understands ideas such as places,
map directions, portable objects, containers, objects on top of each other, food, doors,
locks and keys, vehicles, things which can pushed around, people, speech and so on. All of
this model is maintained automatically. Just as you don't need to write your own parser,

14

2 An invitation to Inform

you don't need to tell Inform what to do when the player tries to pick up an ordinary
object. Inform is a concise language to write adventure games for, because you only
specify exceptions to the usual rules. (E.g., by saying in e�ect \this football is unusual
because if you try to kick it, the following happens".)

Because Inform programs are (hopefully) well-organised lists of exceptions, they
don't look like programs written in computer languages like `BASIC': they aren't exe-
cuted top-to-bottom. The basic ingredients of an Inform program are objects (an axe,
the Bedquilt Room, etc.), routines (e.g. the Initialise routine of code which runs when
the game starts up) and grammar (instructions on how to make sense of what the player
means by typing, e.g., \shoot the photographer").

We have already used the name `Inform' rather ambiguously. It tends to be used to
mean three di�erent things: the compiler itself, the programming language (i.e. the lan-
guage all Inform games are written in) and the whole `Library' system of doors, containers
and so on. Chapters II to IV (and VI) of this book are about features of the Library and
take the underlying language for granted, though hard-to-guess usages are usually glossed
the �rst time they turn up in examples. A concise speci�cation is given in Chapter V.

The rest of this section gives a brief overview of the language, which beginners may wish
to skip.

Inform `source code' (which compiles to the actual game, also called the `story
�le') consists of a sequence of `directives', which are instructions to the compiler to do
something and are divided up by semi-colons. Carriage-returns (i.e. new-lines), extra
spaces between words and tab characters are of no signi�cance (except in quoted strings),
so they can be used to lay out the program to the programmer's own taste. Strings of text
are written between double-quotes: the ^ character means `put a carriage return here' and
the \ character `folds' text together across lines of program.

Inform provides 26 directives to the public (and keeps another 16 to itself for testing
and maintenance). So far `Ruins' only uses 6 of these, and the core of commonly-used
directives isn't much larger:

Array harraynamei... Creates an array with the given name, size and initial values: see
x30.7.
Class hclassnamei... De�nes a new `class'. This does not appear in the game, but is
instead a template, making it easier to de�ne groups of similar objects: see x5.
Constant hconstant-namei hvaluei De�nes a new constant with this name and value.
End Marks the end of the program (though this isn't needed if it occurs at the end of the
�le anyway).
Extend "hwordi"... Extends the grammar understood by the game when the player's �rst
typed word is hwordi: see x22 and x31.
Global hvarnamei Creates a new variable with the given name, which is initially zero,
unless you add = hsome-valuei.
Nearby hobjectnamei "ha short descriptioni"... Creates an object and puts it initially
inside the last object declared with an Object directive: see x3.
Object hobjectnamei "ha short descriptioni"... Creates an object: see x3 and x30.6.

15

2 An invitation to Inform

Verb "hwordi"... Creates a new verb and adds it to the game's table of grammar: see
x22 and x31.
[hroutinenamei hlocal variables...i Tells Inform that a routine of code begins here and
has this list of local variables (possibly none at all).

Actual code (that is, instruction telling the computer what to do at run-time) is always
held inside routines (or `functions': the words are used interchangeably). All routines
return a value. They can be called (i.e. set running) with up to 7 arguments: e.g., the
statement MoveTheFrog(pond,5); will call MoveTheFrog with the two values pond and 5

as arguments (but will throw away the return value as unwanted). If a routine expects,
say, 4 arguments it is legal to supply it with fewer, or none at all. Any arguments not
supplied will be set to zero.

There are two kinds of variable: local and global. Global variables need to be
explicitly created, but they are then available to every piece of code in the program. Local
ones are accessible to one routine only and only while it is running. Routines may be called
recursively.

The local variables (if any) for a routine are given the names listed at the end of
the [directive. When a routine is called, the arguments it was called with are written into
its �rst local variables. For example, if MoveTheFrog begins as follows:

[MoveTheFrog domain hops x y z;

then MoveTheFrog(pond,5); will start the routine running with domain set to pond, hops
set to 5 and x, y and z all zero.

There are four kinds of array: most common is a `word array', de�ned by a directive like

Array pizza_toppings --> 20;

which makes an array of 20 global variables, called

pizza_toppings-->0 to pizza_toppings-->19.

This is called a `word' array because each entry is stored in a (16-bit) word of memory,
large enough to hold any Inform value. Next there is a `byte array', written with -> instead
of -->, whose entries are stored in single (8-bit) bytes. This is more economical of memory
but the entries can only hold ASCII characters or numbers from 0 to 255. The other two
kinds of array, table and string, are similar but have entry 0 set to the array's length.
There are elaborate ways to de�ne arrays already stocked with values: see x30.7.

Inside a routine is a sequence of statements, each followed by a semicolon. The core of
commonly used statements is small:

hvariablei = hvaluei Set the variable to be equal to the given value from now on.

hvariablei++ Adds one to the variable. (++ can only be applied to an actual named
variable, not to an array entry or object property.)

16

2 An invitation to Inform

hvariablei-- Subtracts one from the variable. (-- can only be applied to an actual named
variable, not to an array entry or object property.)

hroutinei(hargumentsi...) Call the routine with the given arguments (possibly none), and
throw away the return value.

return hvaluei Finish the current routine, returning the value given. If no value is given,
that value is `true', or 1.

rfalse Return with `false', or 0.

rtrue Return with `true', or 1.

<hActioni...> Cause an action. See x4.

<<hActioni...>> Cause an action and then return with `true', or 1. See x4.

print hlist-of-itemsi Print out the given list of items (which are separated by commas).
Strings in double-quotes are printed out; numerical values are printed in decimal. For the
full speci�cation see x30.14, but the most useful features are for describing objects, for
which the beginning of x18 is more explanatory.

print_ret hlist-of-itemsi Print out the given list, print a new-line and then return `true'.

"Something" A statement consisting only of a single string in double quotes is an abbre-
viation for print_ret hthe-stringi: thus, it prints the string, prints a new-line and returns
`true'.

if (hconditioni) hstatement(s)i Execute the statement, or group of statements contained
inside braces { and }, only if the condition holds.

for (hinitialisei:hconditioni:hiteratei) hstatement(s)i First, execute hinitialisei. Then
repeatedly carry out the hstatementi while the hconditioni is true. After each iteration,
execute hiteratei. For instance, for (i=1:i<=10:i++) print i, " "; prints the numbers
from 1 to 10, separated by spaces. See x30.18 for this and other loop constructs including
objectloop and while.

Conditions include value1 == value2 (testing for numerical equality; note that = is not
a legal condition); value1 ~= value2 (inequality); <, >, <= and >= as usual; and object1

in object2 to test if one is contained directly in the other. (Similarly for notin.) See
x30.12.

In any Inform statement, a value can be any expression which can be worked out at run-
time. This can be a single number or variable, or a combination of these: see x30.10. For
instance, 4+5*x and 100-lamp.time_left are both expressions. However, in a directive
(such as Object) values must be constants which can be worked out at compile-time, and
moreover compound values cannot be given. For instance, 45 and lamp (the object number
of a lamp) would be legal constants but 2*5 would not. See x30.3.

4 Inform can produce several kinds of game: \Standard", \Advanced" and a new, much
larger form. (Code is in almost every case portable between these formats, so that you can often

17

2 An invitation to Inform

make a version each way from the same program.) Left to itself Inform produces an \Advanced"
game and it's inadvisable to produce a \Standard" one unless you really need to (for a small
computer such as a personal organiser, or a very bad run-time interpreter): since the \Standard"
format imposes several annoying restrictions. See x27.

�REFERENCES
For details of the imaginary machine, sometimes called the Z-machine (Z is for `Zork') which In-
form compiles games for, see x30.2 and (if you must) the Speci�cation of the Z-machine document.

3 Objects, properties and attributes

Objects make up the substance of the world. That is why they
cannot be composite.

{ Ludwig Wittgenstein (1889{1951), Tractatus

: : :making philosophical sense of change runs up against what seem
to be impossible philosophical di�culties. Aristotle: : : focuses on the
central case of an object coming to have a property that it formerly
lacked.

{ Julia Annas, Classical Greek Philosophy

The objects of the game form what is sometimes called a `tree', though a better analogy
would be a forest, and anyway one usually draws the whole thing upside down and uses
the language of `families' { calling them `children' and `parents' of each other. Anyway,
here's an example:

Meadow

#
Mailbox ! Player

#
Note Sceptre ! Cucumber ! Torch ! MagicRod

#
Battery

The Mailbox and Player are both children of the Meadow, which is their parent, but only
the Mailbox is \the" child of the Meadow. The Magic Rod is the sibling of the Torch,
which is the sibling of the Cucumber, and so on. Inform provides special functions for
reading o� positions in the tree: parent, sibling and child all do the obvious things,

18

3 Objects, properties and attributes

and in addition there's a function called children which counts up how many children an
object has (only children: grandchildren aren't counted). For instance,

parent (Mailbox) == Meadow

children (Player) == 4

child (Sceptre) == nothing

sibling (Torch) == Magic Rod

4 nothing isn't really an object: it's just a convenient name for the number 0, which is the
object number meaning `no such object'. It isn't a good idea to meddle with nothing, or to apply
functions like parent to it, but then there's never any need.

As the game goes on, objects move around: when an object moves, all its possessions
(that is, children) go with it. The Inform statement to move an object is move. For instance,
move Cucumber to Mailbox; results in the tree

Meadow

#
Mailbox ! ! ! Player

#
Cucumber ! Note Sceptre ! Torch ! MagicRod

#
Battery

but it must be emphasized that move prints nothing on the screen, and indeed does nothing
except to rearrange the tree. Using remove, an object can be detached from the tree
altogether (so that its parent is nothing) though this does not delete it from the game,
and it may return.

When an object is added to the possessions held by another, it appears at the front
of the list, becoming \eldest" in the family-tree sense. Inform also provides the following
functions, with names along the same lines:

youngest end of list of possessions;
eldest same as child;
younger same as sibling, i.e., one step right in the picture;
elder reverse of sibling, i.e., one step left in the picture.

Objects contain more than just a position in the tree; they also have collections of variables
attached. Firstly, there are `attributes' (in more usual computer parlance, `ags'), which
can be either on or o�. These might be such conditions as \giving light", \currently worn"
or \is one of the featureless white cubes". Attributes all have one-word names: like light,
for instance, which indicates that something is giving o� light. An attribute can be checked
with the has or hasnt condition:

if (obj has locked) "But it's locked!";

if (TreasureRoom hasnt light) "All these rooms are the same in the dark.";

Attributes are set with the give command:

give brass_lantern light;

give iron_door locked;

19

3 Objects, properties and attributes

and are similarly taken away:

give brass_lantern ~light;

give fake_coin ~scored;

the ~ sign (or tilde) standing for negation. You can give or take many at one go, as for
example

give wooden_door open openable ~locked;

Secondly, there are `properties'. These are far more elaborate, and not every object has
every property. For instance, not every object has the door_to property (it holds the place
a door leads to, so things other than doors don't usually have it). The current value of a
property is got at by constructions like:

crystal_bridge.door_to

mushroom.before

diamond.initial

You can read the value of door_to for something like the diamond, and you'll just get a dull
value like nothing, but you can't write to it: that is, you can't change diamond.door_to
unless you declared the diamond with a door_to property.

As will be seen from examples, a property value can be many things: a string like
"frog", a number such as $ffff (this is the Inform way of writing numbers in hexadecimal,
so it means 65535), an object or a routine. You can change the current value by something
like

location.door_to = hall_of_mists;

brass_lantern.short_name = "dimly lit brass lantern";

grenade.time_left = 45;

�WARNING
The game may crash at run-time if you attempt to write to a property �eld which an object
hasn't got. So although you can read an undeclared property (you just get the default
value), you can't write to one. (Also, you can't extend a property beyond its length: see
below.)

4 The Inform language does not have types as such, and strings and routines are stored as
numbers: as their addresses inside the virtual machine, in fact. This means that Inform thinks
"Hello there" + 45 + 'a' is a perfectly sensible calculation. It's up to you to be careful.

44 Actually one can partially work out the type of a property value: see x17.

A property can hold more than just one number (be it interpreted as a string, a rou-
tine or whatever): it can hold a small array. For instance, the de�nition of the object
broken_shells might contain

found_in Marble_Hall Arched_Passage Stone_Stairs,

which stores a sequence of three values in the found_in property.

20

3 Objects, properties and attributes

4 The .& operator produces the property as an array:

print (name) (broken_shells.&found_in)-->2;

might print \Stone Stairs". One usually needs to know how long this array is, and for that the
.# operator is needed:

print broken_shells.#found_in;

would print 6, because the array is 6 bytes long, which makes 3 --> entries. (When a list is given
in an object de�nition like this, the values are put into a --> array, where each entry takes up
two bytes. However, you can if you wish read and write to it as a -> byte array.)

44 Normally the array can be up to 64 bytes long, so you can either treat it as a -> array of
length up to 64 or a --> array of length up to 32. But Standard games restrict this to 8 bytes'
worth. If you give a property more than 8 bytes of data in a Standard game, Inform warns you
and takes only the �rst 8.

�4 EXERCISE 2

Use the object.&property construction to �nd out whether the object in variable obj has the
door_to property de�ned or not.

Time to make some object de�nitions. A typical object de�nition looks something like:

Object steps "stone-cut steps" Forest

with name "steps" "stone" "stairs" "stone-cut",

description

"The cracked and worn steps descend into a dim chamber. Yours \

might be the first feet to tread them for five hundred years.",

door_to Square_Chamber,

door_dir d_to

has scenery door open;

This is the conventional way to lay out an Object declaration: with the header �rst,
then with a list of properties and their starting values, �nishing up with the attributes it
initially has. (Though with and has can be given the other way round.)

4 For the full Object syntax, see x30.6.

steps is the name given to the object in the program, and it becomes a constant (whose
value is the number of the object). The Forest is the object which the steps start out
belonging to. Some objects begin with no parent: rooms, for example, or a priest who
will magically appear half-way through the game. You could declare these as belonging to
nothing, but it's simpler just to miss this out altogether:

Object magician "Zadok the Priest"

with ...

21

3 Objects, properties and attributes

If you do declare an object already belonging to another, as above, then the other object
must have been de�ned earlier on the source. This restriction is useful because it prevents
you from setting up a `loop' { one object in another in a third in the �rst, for instance.

Objects can also be declared, in an identical way, by the Nearby directive. The only
di�erence is that no initial-owner object can be given; it starts out belonging to the last
thing declared as an Object. For example, in

Object hillside "Panoramic Hillside"

with ...

Nearby the_hills "rolling hills"

with ...

the hillside is a room to which the_hills will belong. Otherwise, Nearby is the same as
Object, and this is just a convenience to make it easier to move things around in Inform
code by cutting de�nitions out and pasting them in elsewhere.

For the sake of exibility, most properties of objects can be given as routines to
work out a value (instead of giving just the value). For instance, you can give a routine
for description instead of a string, and it will be called instead of being printed. This
routine can then print something suitable, perhaps changing with the circumstances. The
stone-cut steps in `Ruins' use just such a routine:

description

[; print "The cracked and worn steps descend into a dim chamber. \

Yours might ";

if (Square_Chamber has visited)

print "be the first feet to tread";

else print "have been the first feet to have trodden";

" them for five hundred years. On the top step is inscribed \

the glyph Q1.";

],

(The glyphs will be explained to the player in x11.) Note that the routine is `anonymous':
there is no name after the [. Since there are no local variables either, a semi-colon follows
immediately. It would be legal to write the routine elsewhere in the program, with a name,
and give just the name here as the property value: but less tidy.

The routine must end with either], or];. If], the object de�nition can resume
where it left o�. If];, then the object de�nition ends where the routine �nishes.

4 The rules for embedded routines are not quite the same as those for ordinary routines.
By default, embedded routines return \false", or 0 (instead of \true", or 1, which other routines
return by default). Also, the handy shorthand:

hAction1i, hAction2i...: ...hsome codei...

is provided, which executes the code only if the action currently being considered is one of those
named. There can also be a default clause which executes if and only if none of the others do.

22

3 Objects, properties and attributes

4 One property is treated di�erently from all others, and this is the special property name.
Its data must be a list of English words in double-quotes, as in all the above examples. (Probably
the most annoying restriction of Standard games is that this means only 4 names at most can be
accommodated in that format: normally you get up to 32.) The parser may not be able to do
much with name-words like "my", "the", "all", "except" or "this", but English numbers like
"four" or direction names like "south" can safely be used.

44 This is actually the only circumstance in which Inform syntax puts dictionary words in
double, rather than single, quotes.

�REFERENCES
To see the object tree in action, compile one of the shorter games (say `Alice Through The
Looking-Glass') with the line Constant DEBUG; inserted at the top: when played in this form,
special debugging verbs (see x26) become available. Amongst others, \tree" displays the current
tree and \routines" makes the game print a trace message each time it executes a routine which
is the property value of some object.

4 Actions and reactions

Only the actions of the just
Smell sweet and blossom in their dust.

{ James Shirley (1594{1666), The Contention of Ajax and Ulysses

...a language obsessed with action, and with the joy of seeing action multiply from
action, action marching relentlessly ahead and with yet more actions �ling in from
either side to fall into neat step at the rear, in a long straight rank of cause and
e�ect, to what will be inevitable, the only possible end.

{ Donna Tartt, The Secret History

Inform is a language obsessed with . An `action' is an attempt to perform one simple task:
for instance,

Inv Take sword Insert gold_coin cloth_bag

are all examples. Here the actual actions are Inv, Take and Insert. An action has 0,
1 or 2 objects supplied with it (or, in a few special cases, some numerical information
rather than objects): internally, actions are stored as three numbers. Most actions are
triggered o� by the parser, whose job can be summed up as reducing the player's keyboard
commands to actions. Some actions cause others to happen, and a really complicated
keyboard command (\empty the sack into the umbrella stand") can cause a long sequence

23

4 Actions and reactions

of actions to begin. A good way to get a feel for this is to compile one of Inform's example
games with the DEBUG constant de�ned (see x26) so that you can use the special \actions"
verb to watch them happen.

It must be stressed that an action is only an attempt to do something, which may or
may not succeed. Firstly, a before rule might interfere, as we have seen already. Secondly,
the action might not even be very sensible. The parser is interested almost exclusively in
syntax and will happily generate the action Eat iron_girder if that's what the player
has asked to do.

Actions can also be generated in the program, which perfectly simulates the e�ect
of a player typing something. As an example of why this is so useful, suppose the air in
the Pepper Room causes the player to sneeze each turn and drop something at random. If
the code to do this simply moves an object to the oor, then it might accidentally provide
a solution to a problem like \the to�ee apple sticks to your hands so you can't drop it".
If, however, it generates a Drop action instead, then the result might read:

You sneeze convulsively, and lose your grip on the to�ee apple...
The to�ee apple sticks to your hand!

which is at least coherent and consistent. Besides this, actions are useful because some
e�ects (e.g., looking around) are inconveniently hard to code by hand.

As an example of causing actions, an odorous low_mist will soon settle over `Ruins'
(see x6). It will have the description \The mist carries a rich aroma of broth." An alert
player who reads this will immediately ask to smell the mist. This won't do him any good,
as we're only going to repeat the same description. A neat way to accomplish this is to
make the action Smell low_mist turn into the action Examine low_mist instead. We
need only add a before rule for the mist as follows:

Smell: <Examine self>; rtrue;

The statement <Examine self> causes the action Examine low_mist to be triggered
o� immediately, after which whatever was going on at the time resumes. In this case,
the action Smell low_mist resumes, but since we immediately return `true' the action
is stopped dead. Note that self is a variable: inside the mist object it has the value
low_mist, and in general its value is the object whose property is currently being run.

Causing an action and then returning `true' (e�ectively converting the present action
to a di�erent one) is needed so often that there is a shorthand form, putting the action in
double angle-brackets. For example,

<Look>; <<ThrowAt smooth_stone spider>>;

will behave as if the player has asked to look around and to throw the stone at the spider,
and will then return true.

Actions are processed in a simple way, but one which involves many little stages. There
are three main stages:

24

4 Actions and reactions

(a) `Before'. An opportunity for your code to interfere with or block altogether what
is happening. Unless you provide such code, this stage is always passed over.

(b) `During'. The `Verblib' part of the library takes control and looks at the action
to see if it is possible according to Inform's model of the world (for instance, only
an edible object may be eaten; only an object in the player's possession can be
thrown at somebody, and so on). If the action is impossible, it prints a complaint
and stops. Otherwise the action is carried out.

(c) `After'. An opportunity for your code to react to what has happened, after it has
happened but before any text announcing it has been printed. If it chooses, your
code can print and cause an entirely di�erent outcome. If your code doesn't inter-
fere, the library reports back to the player (with such choice words as \Dropped.").

The `Before' stage consults your code in �ve ways, and occasionally it's useful to know in
what order:

i. The GamePreRoutine is called, if you have written one. If it returns `true', nothing
else happens and the action is stopped.

ii. The orders property of the player is called on the same terms. For more details,
see x15.

iii. And the react_before of every object in scope (which roughly means `in the vicin-
ity').

iv. And the before of the current room.
v. If the action has a �rst noun, its before is called on the same terms.

The `After' stage is similar, but runs in the sequence: react_after rules for every object
in scope (including the player object); the room's after; the �rst noun's after and �nally
GamePostRoutine.

During action processing, the variables action, noun and second contain the numbers
which encode the action. For example, if Take white_flag is being processed, then
action is set to the constant ##Take (every action has a constant value corresponding to
it, written in Inform as ## followed by its name); noun is white_flag and second is zero.

4 Certain `meta-verbs' cause actions which bypass the Before and After stages: these are for
commands to control the game program, like Save or Verify.

44 To some extent you can also meddle with the `During' stage (and with the �nal messages
produced) by cunning use of the LibraryMessages system. See x17.

44 For some actions, the `noun' (or the `second noun') is actually a number (for instance,
\set timer to 20" would probably be parsed with noun being timer and second being 20). The
variables inp1 and inp2 hold object numbers only, or 1 to indicate `some number'. (For instance,
here inp1 would be timer but inp2 would be 1.)

As mentioned above, the parser can generate very peculiar actions, which are only realised
to be impossible after before rules have taken place. For example, in `Ruins' the parser
would accept \put the mushroom in the crate" even if the mushroom were nearby but, say,
sealed inside a glass jar. A before rule to cover this action may therefore want to check
that the mushroom is in the player before acting.

25

4 Actions and reactions

�4 EXERCISE 3

This kind of snag could be avoided altogether if Inform had a `validation stage' in action processing,
to check whether an action is sensible before allowing it to get as far as before rules. How could
this be added to Inform?

The library supports about 120 di�erent actions and any game of serious proportion will
add some more of its own. A full list of standard actions is given in x38. This list is
initially daunting but you actually don't need to remember much of it, partly because
complicated actions are usually reduced to simple ones. Thus, for instance, the action
<Empty rucksack table>, meaning \empty the contents of the rucksack onto the table",
is broken down into a stream of actions such as <Remove fish rucksack> then <PutOn

fish table>. The library arranges things so that, in particular, the only way an object
can enter the player's possession is via a Take or Remove action.

Earlier editions of this book divided up the actions into three groups, and the names
`Group 2', etc., stuck. Group 1 contains the `meta' actions, which are not worth listing
here (see x38). Group 2 contains the most important actions, which normally change the
state of the game:

Inv, Take, Drop, Remove, PutOn, Insert, Enter, Exit, Go, Look, Examine,

Unlock, Lock, SwitchOn, SwitchOff, Open, Close, Disrobe, Wear, Eat, Search.

Most actions ordinarily do nothing and these form Group 3: for instance in response to
Listen the library always responds \You hear nothing unexpected." (unless a before rule
has dealt with the action �rst). Because the library never actually does anything at the
`During' stage, there is never an `After' stage for a Group 3 action, and no after routines
are called. In rough order of usefulness, the list is:

Pull, Push, PushDir [push object in direction], Turn, ThrowAt,

Consult, LookUnder [look underneath something], Search,

Listen, Taste, Drink, Touch, Smell,

Wait, Sing, Jump [jump on the spot], JumpOver, Attack,

Swing [something], Blow, Rub, Set, SetTo, Wave [something],

Burn, Dig, Cut, Tie, Fill, Swim, Climb, Buy, Squeeze,

Pray, Think, Sleep, Wake, WaveHands [i.e., just "wave"],

WakeOther [person], Kiss, Answer, Ask, ThrowAt,

Yes, No, Sorry, Strong [swear word], Mild [swear word]

4 Actions involving other people, like Kiss, need not be handled by a before rule: it's more
convenient to use the life rule (see x12).

4 A very few actions (e.g., Transfer, Empty, GetOff) are omitted from the list above because
they're always translated into more familiar ones. For instance, InvWide (asking for a \wide{
format" inventory listing) always ends up in an Inv.

4 Note that some actions only ever print text and yet are in Group 2, not Group 3, because
this is so useful. The most interesting example is Search (the searching or looking-inside-something
action), whose `During' stage is spent only on deciding whether it would be sensible to look inside
the object (e.g., if it's a see-through container and there is light). Only if it's sensible is `After'
allowed to happen, and only after that is the list of contents printed out. Thus, a before rule
applied to Search traps the searching of random scenery, while an after can be used to alter the
contents-listing rules.

26

4 Actions and reactions

44 Most of the group 2 actions { speci�cally,

Take, Drop, Insert, PutOn, Remove, Enter, Exit, Go, Unlock, Lock,

SwitchOn, SwitchOff, Open, Close, Wear, Disrobe, Eat

can happen \silently". If the variable keep_silent is set to 1, then these actions print nothing in
the event of success. (E.g., if the door was unlocked as requested.) They print up objections as
usual if anything goes wrong (e.g., if the suggested key doesn't �t). This is useful to implement
implicit actions: for instance, to code a door which will be automatically unlocked by a player
asking to go through it, who is holding the right key.

The library's actions are easily added to. Two things are necessary to add a new action:
�rst one must provide a routine to run it, e.g.,

[BlorpleSub;

"You speak the magic word ~Blorple~. Nothing happens.";

];

somewhere after the Initialise routine, say, to be tidy. Every action must have such
a routine, the name of which is always the name of the action with Sub appended. The
`During' stage of processing an action consists only of calling this routine.

Secondly, one must write a new action into the game's grammar table. Far more
about grammar will come later: in this case one need only add the simplest of all grammar
lines

Verb "blorple" * -> Blorple;

after the inclusion of the Grammar �le. (The spacing around the * is just a matter of
convention.) The word \blorple" can now be used as a verb but it can't take any nouns.

The action Blorple is now a typical Inform action, which joins Group 3 above
(since it doesn't do anything very interesting). One can use the command <Blorple>; to
make it happen, and can write before routines to trap it, just like any Group 3 action.

44 You can make a Group 1 action by de�ning the verb as meta (see x22); and a Group 2 one
by putting the line

if (AfterRoutines()==1) rtrue;

into the action routine after carrying out the action, and before printing a description of what has
been done. (Calling AfterRoutines sets o� the `After' stage, which otherwise won't happen.)

4 Finally, Inform supports `fake actions'. These are fake in two senses. Firstly they aren't
mentioned in any grammar (so they can never be generated by the parser, only by a <, > command).
Secondly, they have no -Sub routine and if they aren't trapped at the `Before' stage then nothing
further happens. Fake actions are provided to enable you to pass `messages' to an object, which
the recipient can pick up in its before routine. A fake action has to be explicitly declared before
use, by the directive Fake_action hAction-namei.

27

4 Actions and reactions

�44 EXERCISE 4

How can you make a medicine bottle, which can be opened in a variety of ways in the game, so
that the opening{code only occurs in the bottle de�nition?

The Library actually makes a few fake actions itself (two of which will appear in the next section).
A simple example is ThrownAt, useful for greenhouse windows, coconut shies and the like. If a
ThrowAt action (to throw object X at object Y) survives the before rules (for X), then the fake
action ThrownAt is generated and sent to Y , allowing Y to react. E.g., a dartboard might have:

before

[; ThrownAt: if (noun==dart)

{ move dart to self; "Triple 20!"; }

move noun to location;

print_ret (The) noun, " bounces back off the board.";

],

No after rule applies, as the default behaviour of ThrowAt has by then simply rebuked the player.

�4 EXERCISE 5

ThrownAt would be unnecessary if Inform had an idea of before and after routines which an
object could provide if it were the second noun of an action. How might this be implemented?

44 Some before or after rules are intended to apply only once in the course of a game. For
instance, examining the tapestry reveals a key, only once. A sneaky way to do this is to make the
appropriate rule destroy itself, so for example

tapestry.before = NULL;

removes the entire before rule for the tapestry. NULL is a special value, actually equal to -1, which
routine-valued properties like before, after, life and describe hold to indicate \no routine is
given".

�REFERENCES
In a game compiled with Constant DEBUG; present, the \actions" verb will result in trace infor-
mation being printed each time any action is generated. Try putting many things into a rucksack
and asking to \empty" it for an extravagant list. � Diverted actions (using << and >>) are
commonplace. They're used in about 20 places in `Advent': a good example is the way \take
water" is translated into a Fill bottle action. � `Balances' uses a fake action called Baptise

which tells one of the white cube objects that a name has been written on it. (It also sends a
special `memory' object the actions Insert and Remove to pass \learn this spell" and \forget this
spell" messages.) � Sometimes you want `fake fake actions' which are fully{edged actions
(with action routines and so on) but which aren't ever generated by the parser: see the exercises
at the end of x12.

28

5 Classes of objects

On a round ball
A workman that hath copies by, can lay
An Europe, Afrique and an Asia,
And quickly make that, which was nothing, All.

{ John Donne (1571?{1631), Valediction: Of Weeping

In most games there are groups of objects with certain rules in common. Inform allows you
to de�ne classes in almost exactly the same way as objects. The only di�erence between
the layout of a class and object de�nition is that a class has no short name or initial
location, since it does not correspond to any single real item. For example, the scoring
system in `Ruins' works as follows: the player, an archaeologist of the old school, gets a
certain number of points for each `treasure' (i.e., cultural artifact) he can �lch and put
away into his packing case. This is implemented with a class:

Class Treasure

with number 10,

after

[; Insert:

if (second==packing_case) score=score+self.number;

"Safely packed away.";

],

before

[; Take, Remove:

if (self in packing_case)

"Unpacking such a priceless artifact had best wait \

until the Metropolitan Museum can do it.";

];

An object of this class inherits the properties and attributes it de�nes: in this case, an
object of class Treasure picks up the given score and rules automatically. So

Nearby statuette "pygmy statuette"

class Treasure

with description

"A menacing, almost cartoon-like statuette of a pygmy spirit \

with a snake around its neck.",

initial "A precious Mayan statuette rests here!",

name "snake" "mayan" "pygmy" "spirit" "statue" "statuette";

inherits the number value of 10 and the rules about taking and dropping. If the statuette
had itself set number to 15, say, then the value would be 15: i.e., the class would be
over-ridden.

4 number is a general-purpose property, left free for designers to use as they please. One
might instead de�ne a new property called, say, depositpoints and use that, for clarity: see x17
for how to do this.

29

5 Classes of objects

A more unusual artifact in the `Ruins' is:

Nearby honeycomb "ancient honeycomb"

class Treasure

with article "an",

name "ancient" "old" "honey" "honeycomb",

description "Perhaps some kind of funerary votive offering.",

initial "An exquisitely preserved, ancient honeycomb rests here!",

after

[; Eat: "Perhaps the most expensive meal of your life. The honey \

tastes odd, perhaps because it was used to store the entrails \

of the king buried here, but still like honey.";

],

has edible;

Now the honeycomb has two after rules: a private one of its own, and the one all treasures
have. Both apply, but its own private one takes precedence, i.e., happens �rst.

4 An object can inherit from several classes at once. Moreover, a class can itself inherit from
other classes, so it's easy to make a class for \like Treasure but with number = 8".

4 The class �eld of an object de�nition contains a list of classes,

class C1 ... Cn

in which case the object inherits �rst from C1, then from C2 and so on. C2 over-rides C1 and so
on along the line. These classes may well disagree with each other, so the order matters. If C1

says number is 5, C3 says it is 10 but the object de�nition itself says 15 then the answer is 15.

4 With some properties, the value is not replaced but added to: this is what happened with
after above. These properties are those which were declared as additive, e.g. by

Property additive before NULL;

For instance, the standard Inform properties name and before are both additive. So we could add
name "treasure", to the properties in the class de�nition for Treasure, and then all objects of
that class would respond to the word \treasure", as well as their own particular names.

44 An additive property can contain a list in which some items are strings and others routines.
Should this occur, then on a PrintOrRun (what usually happens when a property is being looked
up) the entries are executed in sequence { run if routines, printed if strings. A printed string
in such a list always has a new-line printed after it; and it never stops the process of execution.
In other words, the string "Hello" is equivalent to the routine [; print "Hello^";], (which
returns false), not to the routine [; "Hello";], (which would return true and stop execution).
This will seldom be useful but protects the Z-machine stack against certain misfortunes.

�REFERENCES
`Advent' has a similar treasure-class, and uses class de�nitions for the many similar maze and
dead-end rooms (and the sides of the �ssure). � That class de�nitions can be worthwhile for
just two instances can be seen from the kittens-class in `Alice Through The Looking-Glass'. �
`Balances' de�nes many complicated classes: see especially the white cube, spell and scroll classes.
� `Toyshop' contains one easy one (the wax candles) and one unusually hard one (the building
blocks). � See x35 for which of the library's properties are additive.

30

Chapter II: The Model World

A Model must be built which will get everything in without a clash;
and it can do this only by becoming intricate, by mediating its unity
through a great, and �nely ordered, multiplicity.

{ C. S. Lewis (1898{1963), The Discarded Image

6 Places, scenery, directions and the map

It was a long cylinder of parchment, which he unrolled and spread
out on the oor, putting a stone on one end and holding the other.
I saw a drawing on it, but it made no sense.

{ John Christopher (1922{), The White Mountains

Back to `Ruins': what lies at the foot of the stone steps? We'll now add four rooms,
connected together:

Square Chamber $ Web

l

Corridor

l

Shrine

with the Square Chamber lying underneath the original Forest location. For instance,
here's the Square Chamber's de�nition:

Object Square_Chamber "Square Chamber"

with name "lintelled" "lintel" "lintels" "east" "south" "doorways",

description

"A sunken, gloomy stone chamber, ten yards across. A shaft \

of sunlight cuts in from the steps above, giving the chamber \

a diffuse light, but in the shadows low lintelled doorways to \

east and south lead into the deeper darkness of the Temple.",

u_to Forest, e_to Web, s_to Corridor,

has light;

31

6 Places, scenery, directions and the map

Like the Forest, this place has light, however dim. (If it didn't, the player would never
see it, since it would be dark, and the player hasn't yet been given a lamp or torch of some
kind.) Now although this is a room, and can't be referred to by the player in the way that
a manipulable object can, it still can have a name property. These name words are those
which Inform knows \you don't need to refer to", and it's a convention of the genre that
the designer should signpost o� the game in this way. Note that they'll only be looked at
if what the player types is unrecognised, so the word \east" is understood quite normally;
but a reference to \east lintel" will get the \don't need to refer to" treatment. This room
is unfurnished, so:

Nearby inscriptions "carved inscriptions"

with name "carved" "inscriptions" "carvings" "marks" "markings" "symbols"

"moving" "scuttling" "crowd" "of",

initial

"Carved inscriptions crowd the walls, floor and ceiling.",

description "Each time you look at the carvings closely, they seem \

to be still. But you have the uneasy feeling when you look \

away that they're scuttling, moving about. Their meaning \

is lost on you.",

has static;

This is part of the �ttings, hence the static attribute, which means it can't be taken or
moved. As we went out of our way to describe a shaft of sunlight, we'll include that as
well:

Nearby sunlight "shaft of sunlight"

with name "shaft" "of" "sunlight" "sun" "light" "beam" "sunbeam" "ray"

"rays" "sun^s",

description "The shaft of sunlight glimmers motes of dust in the \

air, making it seem almost solid."

has scenery;

Being scenery makes the object not only static but also not described by the game unless
actually examined by the player. A true perfectionist might add a before rule:

before

[; Examine, Search: ;

default: "It's only an insubstantial shaft of sunlight.";

],

so that the player can look at or through the sunlight, but any other request involving
them will be turned down. Note that a default rule, if given, means \any action except
those already mentioned".

We can't actually get into the Square Chamber yet, though. Just because there is a
map connection up from here to the Forest, it doesn't follow that there's a corresponding
connection down. So we must add a d_to to the Forest, and while we're at it:

d_to Square_Chamber,

u_to "The trees are spiny and you'd cut your hands to ribbons \

trying to climb them.",

32

6 Places, scenery, directions and the map

cant_go "The rainforest-jungle is dense, and you haven't hacked \

through it for days to abandon your discovery now. Really, \

you need a good few artifacts to take back to civilization \

before you can justify giving up the expedition.",

The property cant_go contains what is printed when the player tries to go in a nonexistent
direction, and replaces \You can't go that way". As is often the case with properties,
instead of giving an actual message you can instead give a routine to print one out, to
vary what's printed with the circumstances. The Forest needs a cant_go because in real
life one could go in every direction from there: what we're doing is explaining the game
rules to the player: go underground, �nd some ancient treasure, then get out to win. The
Forest's u_to property is a string, not a room; this means that attempts to go up result
only in that string being printed.

Rooms also have rules of their own. We might add the following before rule to the Square
Chamber:

before

[; Insert:

if (noun==mushroom && second==sunlight)

{ remove mushroom;

"You drop the mushroom on the floor, in the glare of \

the shaft of sunlight. It bubbles obscenely, \

distends and then bursts into a hundred tiny insects \

which run for the darkness in every direction. Only \

tiny crumbs of fungus remain.";

}

],

The variables noun and second hold the �rst and second nouns supplied with an action.
Rooms have before and after routines just as objects do, and they apply to anything
which happens in the given room. This particular could easily enough have been part of
the de�nition of the mushroom or the sunlight, and in general a room's rules are best used
only for geographical �xtures.

44 Sometimes the room may be a di�erent one after the action has taken place. The Go

action, for instance, is o�ered to the before routine of the room which is being left, and the after
routine of the room being arrived in. For example:

after

[; Go: if (noun==d_obj)

print "You feel on the verge of a great discovery...^";

],

will print the message when the room is entered via the \down" direction. Note that the
message is printed with the print command. This means that it does not automatically
return true: in fact, it returns false, so the game knows that the usual rules still apply.
Also, no new-line is printed automatically: but the ^ symbol means \print a new-line", so
one is actually printed.

33

6 Places, scenery, directions and the map

Some objects are present in many rooms at once. The `Ruins', for instance, are misty:

Object low_mist "low mist"

with name "low" "swirling" "mist",

initial "A low mist swirls about your feet.",

description "The mist carries a rich aroma of broth.",

found_in Square_Chamber Forest,

before

[; Examine, Search: ;

Smell: <<Examine self>>;

default: "The mist is too insubstantial.";

],

has static;

The found_in property gives a list of places in which the mist is found (so far just the
Square Room and the Forest).

4 If the rainforest contained many misty rooms, it would be tedious to give the full list and
even worse to have to alter it as the mist drifted about in the course of the game. Fortunately
found_in can contain a routine instead of a list. This can look at the current location and say
whether or not the object should be put in it when the room is entered, e.g.,

Object Sun "Sun",

with ...

found_in

[; if (location has light) rtrue;

],

has scenery;

44 found_in is only consulted when the player's location changes, so if the mist has to dra-
matically lift or move then it needs to be moved or removed `by hand'. A good way to lift the mist
forever is to remove it, and then give it the absent attribute, which prevents it from manifesting
itself whatever found_in says.

Some pieces of scenery a�ict the other four senses and need more than a visual description.
For instance, the player ought to be able to smell broth anywhere near the mist. A
react_before rule is ideal for this:

react_before

[; Smell: if (noun==0) <<Smell low_mist>>;

],

This rule (when added to the mist) applies to any vague Smell action (that is, caused by
the player typing just \smell", rather than \smell orange") which happens when the mist
is in the vicinity of the player: and it converts the action into Smell low_mist. In this
way the mist is able to `steal' the action.

The �ve senses all have actions in Inform: Look we have already seen, and there are
also Listen, Smell, Taste and Touch. Of these, Look never has a noun attached, Smell
and Listen can have and Taste and Touch always have.

34

6 Places, scenery, directions and the map

�EXERCISE 6

(Cf. `Spellbreaker'.) Make an orange cloud descend on the player, which can't be seen through
or walked out of.

�4 EXERCISE 7

In the �rst millenium A.D., the Mayan peoples of the Yucat�an Peninsula had `world colours' white
(sac), red (chac), yellow (kan) and black (chikin) for what we call the compass bearings north,
east, south, west (for instance west is associated with `sunset', hence black, the colour of night).
Implement this.

�4 EXERCISE 8

(Cf. `Trinity'.) How can the entire game map be suddenly east-west reected?

�44 EXERCISE 9

Even when the map is reected, there may be many room descriptions referring to \east" and
\west" by name. Reect these too.

4 The ordinary Inform directions all have the number property de�ned (initially set to zero):
this is to provide a set of scratch variables useful, for instance, when coding mazes.

44 If the constant WITHOUT_DIRECTIONS is de�ned before inclusion of the library �les, then 10
of the default direction objects are not de�ned by the library. The designer is expected to de�ne
alternative ones (and put them in the compass object); otherwise the game will be rather static.
(The \in" and \out" directions are still created, because they're needed for getting into and out
of enterable objects.)

�REFERENCES
`Advent' has a very tangled-up map in places (see the mazes) and a well-constructed exterior of
forest and valley giving an impression of space with remarkably few rooms. The mist object uses
found_in to the full, and see also the stream (a single object representing every watercourse in
the game). Bedquilt and the Swiss Cheese room o�er classic confused-exit puzzles. � For
a simple movement rule using e_to, see the O�ce in `Toyshop'. � The library extension
\smartcantgo.h" by David Wagner provides a system for automatically printing out \You can only
go east and north."-style messages. � `A Scenic View', by Richard Barnett, demonstrates a
system for providing examinable scenery much more concisely (without de�ning so many objects).

35

7 Containers, supporters and sub-objects

The concept of a surface is implemented as a special kind of contain-
ment. Objects which have surfaces on which other objects may sit
are actually containers with an additional property of \surfaceness".

{ P. David Lebling, Zork and the Future

The year has been a good one for the Society (hear, hear). This year our members
have put more things on top of other things than ever before. But, I should warn
you, this is no time for complacency. No, there are still many things, and I cannot
emphasize this too strongly, not on top of other things.

{ `The Royal Society For Putting Things On Top Of Other Things'

Monty Python's Flying Circus, programme 18 (1970)

Objects can be inside or on top of one another. An object which has the container

attribute can contain things, like a box: one which has supporter can hold them up, like
a table. (An object can't have both at once.) It can hold up to 100 items, by default:
this is set by the capacity property. However, one can only put things inside a container
when it has open. If it has openable, the player can open and close it at will, unless it
also has locked. A locked object (whether it be a door or a container) cannot be opened.
But if it has lockable then it can be locked or unlocked with the key object given in the
with_key property. If it is undeclared, then no key will �t, but this will not be told to the
player, who can try as many as he likes.

Containers (and supporters) are able to react to things being put inside them, or
removed from them, by acting on the signal to Receive or LetGo. For example, deep under
the `Ruins' is a chasm which, perhaps surprisingly, is implemented as a container:

Nearby chasm "horrifying chasm"

with name "blackness" "chasm" "pit" "depths" "horrifying" "bottomless",

react_before

[; Jump: <<Enter self>>;

Go: if (noun==d_obj) <<Enter self>>;

],

before

[; Enter: deadflag=1;

"You plummet through the silent void of darkness!";

],

after

[; Receive: remove noun;

print_ret (The) noun, " tumbles silently into the \

darkness of the chasm.";

Search: "The chasm is deep and murky.";

],

has scenery open container;

36

7 Containers, supporters and sub-objects

(Actually the de�nition is a little longer, so that the chasm reacts to a huge pumice-stone
ball being rolled into it; see `Ruins'.) Note the use of an after rule for the Search action:
this is because an attempt to \examine" or \look inside" the chasm will cause this action.
Search means, in e�ect, \tell me what is inside the container" and the after rule prevents
a message like \There is nothing inside the chasm." from misleading the player. Note also
that the chasm `steals' any stray Jump action and converts it into an early death.

�EXERCISE 10

Make the following, rather acquisitive bag:

>put fish in bag

The bag wriggles hideously as it swallows the fish.

>get fish

The bag defiantly bites itself shut on your hand until you desist.

4 LetGo and Receive are actually two of the fake actions: they are the actions Insert and
Remove looked at from the container's point of view.

4 Receive is sent to an object O both when a player tries to put something in O, and put
something on O. In the rare event that O needs to react di�erently to these, it may consult the
variable receive_action to �nd out whether ##PutOn or ##Insert is the cause.

The `Ruins' packing case makes a fairly typical container:

Nearby packing_case "packing case"

with name "packing" "case" "box" "strongbox",

initial

"Your packing case rests here, ready to hold any important \

cultural finds you might make, for shipping back to civilisation.",

before

[; Take, Remove, PushDir:

"The case is too heavy to bother moving, as long as your \

expedition is still incomplete.";

],

has static container open;

Now suppose you want to make a portable television set which has four di�erent buttons
on it. Obviously when the television moves, its buttons should move with it, and the
sensible way to arrange this is to make the four buttons possessions of the television

object. Since the television isn't a container, though, the player can't normally \get at"
(that is, refer to) its possessions. So how do we bring the buttons \into scope" so that
the player can refer to them, without allowing the player to remove or add to them? The
transparent attribute is provided for this: it simply means \the sub-objects of this object
can be referred to by the player".

�EXERCISE 11

Implement a television set with attached power button and screen.

37

7 Containers, supporters and sub-objects

�EXERCISE 12

Make a glass box and a steel box, which would behave di�erently when a lamp is shut up inside
them.

4 It sometimes happens that an object should have sub-objects (such as lamps and buttons)
quite separately from its possessions, in which case the above solution is unsatisfactory. Fuller
details will be given in the \scope addition" rules in x24, but briey: an object's add_to_scope
property may contain a list of sub-objects to be kept attached to it (and these sub-objects don't
count as possessions).

�EXERCISE 13

Implement a macram�e bag hanging from the ceiling, inside which objects are visible (and audible,
etc.) but cannot be touched or manipulated in any way.

�REFERENCES
Containers and supporters abound in the example games (except `Advent', which is too simple,
though see the water-and-oil carrying bottle). Interesting containers include the lottery-board
and the podium sockets from `Balances' and the `Adventureland' bottle. � For supporters,
the hearth-rug, chessboard, armchair and mantelpiece of `Alice Through The Looking-Glass' are
typical examples; the mantelpiece and spirit level of `Toyshop' makes a simple puzzle, and the
pile of building blocks a complicated one; see also the scales in `Balances'.

8 Doors

Standing in front of you to the north, however, is a door surpassing
anything you could have imagined. For starters, its massive lock is
wrapped in a dozen six-inch thick iron chains. In addition, a certain
�ve-headed monster...

{ Marc Blank and P. David Lebling, `Enchanter'

O for doors to be open and an invite with gilded edges
To dine with Lord Lobcock and Count Asthma.

{ W. H. Auden (1907{1973), Song

A useful kind of object is a door. This need not literally be a door: it might be a rope-
bridge or a ladder, for instance. To set up a door:

(a) give the object the door attribute;
(b) set its door_to property to the destination;
(c) set its door_dir property to the direction which that would be, such as n_to;
(d) make the room's map connection in that direction point to the door itself.

38

8 Doors

For example, here is a closed and locked door, blocking the way into the `Ruins' shrine:

Object Corridor "Stooped Corridor"

with description "A low, square-cut corridor, running north to south, \

stooping you over.",

n_to Square_Chamber,

s_to StoneDoor;

Nearby StoneDoor "stone door"

with description "It's just a big stone door.",

name "door" "massive" "big" "stone" "yellow",

when_closed

"Passage south is barred by a massive door of yellow stone.",

when_open

"The great yellow stone door to the south is open.",

door_to Shrine,

door_dir s_to,

with_key stone_key

has static door openable lockable locked;

Note that the door is static { otherwise the player could pick it up and walk away with
it! The properties when_closed and when_open give descriptions appropriate for the door
in these two states.

Doors are rather one-way: they are only really present on one side. If a door needs
to be accessible (openable and lockable from either side), a neat trick is to make it present
in both locations and to �x the door_to and door_dir to the right way round for whichever
side the player is on. Here, then, is a two-way door:

Nearby StoneDoor "stone door"

with description "It's just a big stone door.",

name "door" "massive" "big" "stone" "yellow",

when_closed

"The passage is barred by a massive door of yellow stone.",

when_open

"The great yellow stone door is open.",

door_to

[; if (location==Corridor) return Shrine; return Corridor;],

door_dir

[; if (location==Shrine) return n_to; return s_to;],

with_key stone_key,

found_in Corridor Shrine,

has static door openable lockable locked;

where Corridor has s_to set to StoneDoor, and Shrine has n_to set to StoneDoor. The
door can now be opened, closed, entered, locked or unlocked from either side. We could
also make when_open and when_closed into routines to print di�erent descriptions of the
door from inside and out.

At �rst sight, it isn't obvious why doors have the door_dir property. Why does a
door need to know which way it faces? The point is that two di�erent actions cause the
player to go through the door. Suppose the door is in the south wall. The player may type

39

8 Doors

\go south", which directly causes the action Go s_obj. Or the player may \enter door"
or \go through door", causing Enter the_door. Provided the door is actually open, the
Enter action then looks at the door's door_dir property, �nds that the door faces south
and generates the action Go s_obj. Thus, however the player tries to go through the door,
it is the Go action that �nally results.

This has an important consequence: if you put before and after routines on the
Enter action for the StoneDoor, they only apply to a player typing \enter door" and not
to one just typing \south". So one safe way is to trap the Go action. A neater method
is to put some code into a door_to routine. If a door_to routine returns 0 instead of
a room, then the player is told that the door \leads nowhere" (like the famous broken
bridge of Avignon). If door_to returns 1, or `true', then the library stops the action on
the assumption that something has happened and the player has been told already.

�EXERCISE 14

Create a plank bridge across a chasm, which collapses if the player walks across it while carrying
anything.

�REFERENCES
`Advent' is especially rich in two-way doors: the steel grate in the streambed, two bridges (one
of crystal, the other of rickety wood) and a door with rusty hinges. See also the iron gate in
`Balances'.

9 Switchable objects

Steven: `Well, what does this do?' Doctor: `That is the dematerialising control.
And that over yonder is the horizontal hold. Up there is the scanner, these are the
doors, that is a chair with a panda on it. Sheer poetry, dear boy. Now please stop
bothering me.'

{ Dennis Spooner, The Time Meddler

Dr Who, serial 17 (1965)

Objects can also be switchable. This means they can be turned o� or on, as if they had
some kind of switch on them. The object has the attribute on if it's on. For example:

Object searchlight "Gotham City searchlight" skyscraper

with name "search" "light" "template", article "the",

description "It has some kind of template on it.",

when_on "The old city searchlight shines out a bat against \

the feather-clouds of the darkening sky.",

when_off "The old city searchlight, neglected but still \

functional, sits here."

has switchable static;

40

9 Switchable objects

Something more portable would come in handy for the explorer of `Ruins', who would
hardly have embarked on his expedition without a decent light source: : :

Object sodium_lamp "sodium lamp"

with name "sodium" "lamp" "heavy",

describe

[; if (self hasnt on)

"^The sodium lamp squats heavily on the ground.";

"^The sodium lamp squats on the ground, burning away.";

],

number 40,

before

[; Examine: print "It is a heavy-duty archaeologist's lamp, ";

if (self hasnt on) "currently off.";

if (self.number < 10) "glowing a dim yellow.";

"blazing with brilliant yellow light.";

Burn: <<SwitchOn self>>;

SwitchOn:

if (self.number <= 0)

"Unfortunately, the battery seems to be dead.";

if (parent(self) hasnt supporter && self notin location)

"The lamp must be securely placed before being lit.";

Take, Remove:

if (self has on)

"The bulb's too delicate and the metal frame's too \

hot to move the lamp while it's switched on.";

],

after

[; SwitchOn: give self light;

SwitchOff: give self ~light;

],

has switchable;

The `Ruins' lamp will eventually be a little more complicated, with a daemon to make the
battery strength, held in the number property, run down and to extinguish the lamp when
it runs out; and it will be pushable from place to place, making it not quite as useless as
the player will hopefully think at �rst.

4 A point to note is that this time the when_on and when_off properties haven't been used
to describe the lamp when it's on the ground: this is because once an object has been held by the
player, it's normally given only a perfunctory mention in room descriptions (\You can also see a
sodium lamp and a grape here."). The describe property has priority over the whole business
of how objects are described in room descriptions. When it returns true, as above, the usual
description process does nothing further. For much more on room descriptions, see x18.

�REFERENCES
The original switchable object was the brass lamp from `Advent' (which also provides verbs \on"
and \o�" to switch it). (The other example games are generally pre-electric in setting.)

41

10 Things to enter, travel in and push around

: : :the need to navigate a newly added river prompted the invention
of vehicles (speci�cally, a boat).

{ P. David Lebling, Marc Blank and Timothy Anderson

Some objects in a game are enterable, which means that a player can get inside or onto
them. The idea of \inside" here is that the player is only half-in, as with a car or a
psychiatrist's couch. (If it's more like a prison cell, then it should be a separate place.) In
practice one often wants to make an enterable thing also a container, or, as in the altar
from `Ruins', a supporter:

Nearby stone_table "slab altar"

with name "stone" "table" "slab" "altar" "great",

initial "A great stone slab of a table, or altar, dominates the Shrine.",

has enterable supporter;

A chair to sit on, or a bed to lie down on, should also be a supporter.

�EXERCISE 15

(Also from `Ruins'.) Implement a cage which can be opened, closed and entered.

All the classic games have vehicles (like boats, or fork lift trucks, or hot air balloons) which
the player can journey in, so Inform makes this easy. Here is a simple case:

Object car "little red car" cave

with name "little" "red" "car",

description "Large enough to sit inside. Among the controls is a \

prominent on/off switch. The numberplate is KAR 1.",

when_on "The red car sits here, its engine still running.",

when_off "A little red car is parked here.",

before

[; Go: if (car has on) "Brmm! Brmm!";

print "(The ignition is off at the moment.)^";

],

has switchable enterable static container open;

Actually, this demonstrates a special rule. If a player is inside an enterable object and
tries to move, say \north", the before routine for the object is called with the action Go,
and n_obj as the noun. It may then return:

0 to disallow the movement, printing a refusal;
1 to allow the movement, moving vehicle and player;
2 to disallow but print and do nothing; or
3 to allow but print and do nothing.

If you want to move the vehicle in your own code, return 3, not 2: otherwise the old
location may be restored by subsequent workings.

42

10 Things to enter, travel in and push around

Because you might want to drive the car \out" of a garage, the \out" verb does not make
the player get out of the car. Usually the player has to type something like \get out" to
make this happen, though of course the rules can be changed.

�EXERCISE 16

Alter the car so that it won't go east.

4 Objects like the car or, say, an antiquated wireless on casters, are obviously too heavy
to pick up but the player should at least be able to push them from place to place. When the
player tries to do this, the PushDir action is generated. Now, if the before routine returns false,
the game will just say that the player can't; and if it returns true, the game will do nothing at
all, guessing that the before routine has already printed something more interesting. So how
does one actually tell Inform that the push should be allowed? The answer is that one has to do
two things: call the AllowPushDir routine (a library routine), and then return true. For example
(`Ruins' again):

Nearby huge_ball "huge pumice-stone ball"

with name "huge" "pumice" "pumice-stone" "stone" "ball",

description "A good eight feet across, though fairly lightweight.",

initial

"A huge pumice-stone ball rests here, eight feet wide.",

before

[; PushDir:

if (location==Junction && second==w_obj)

"The corridor entrance is but seven feet across.";

AllowPushDir(); rtrue;

Pull, Push, Turn: "It wouldn't be so very hard to get rolling.";

Take, Remove: "There's a lot of stone in an eight-foot sphere.";

],

after

[; PushDir:

if (second==s_obj) "The ball is hard to stop once underway.";

if (second==n_obj) "You strain to push the ball uphill.";

],

has static;

�4 EXERCISE 17

The library does not normally allow pushing objects up or down. How can the pumice ball allow
this?

�REFERENCES
For an enterable supporter puzzle, see the magic carpet in `Balances' (and several items in
`Alice Through The Looking-Glass').

43

11 Reading matter and consultation

Even at present: : : we still know very little about how access to printed materials
a�ects human behaviour.

{ Elizabeth Eisenstein, The Printing Revolution in Early Modern Europe

look up �gure 18 in the engineering textbook

is a di�cult line for Inform to understand, because almost anything could appear in the
�rst clause: even its format depends on what the second clause is. This kind of request,
and more generally

look up hany words herei in hthe objecti
read about hany words herei in hthe objecti
consult hthe objecti about hany words herei

cause the Consult object action. Note that second is just zero: formally, there is no
second noun attached to a Consult action. The object has to parse the hany words herei
part itself, in a before rule for Consult. The following variables are set up to make this
possible:

consult_from holds the number of the �rst word in the hany...i clause;
consult_words holds the number of words in the hany...i clause (at least 1).

The words given are parsed using library routines like NextWord(), TryNumber(word-

number) and so on: see x20 for full details. As usual, the before routine should return
true if it has managed to deal with the action; returning false will make the library print
\You discover nothing of interest in: : :".

Little hints are placed here and there in the `Ruins', written in the glyphs of an
ancient dialect of Mayan. Our explorer has, of course, come equipped with the latest and
�nest scholarship on the subject:

Object dictionary "Waldeck's Mayan dictionary"

with name "dictionary" "local" "guide" "book" "mayan"

"waldeck" "waldeck^s",

description "Compiled from the unreliable lithographs of the \

legendary raconteur and explorer ~Count~ Jean Frederic \

Maximilien Waldeck (1766??-1875), this guide contains \

what little is known of the glyphs used in the local \

ancient dialect.",

before

[w1 w2 glyph other; Consult:

if (consult_words>2) jump GlyphHelp;

wn=consult_from;

w1 = NextWord(); ! First word of subject

44

11 Reading matter and consultation

w2 = NextWord(); ! Second word (if any) of subject

if (consult_words==1 && w1=='glyph' or 'glyphs')

jump GlyphHelp;

! We want to recognise both "glyph q1" and "q1 glyph":

glyph=w1; other=w2;

if (w1=='glyph') { glyph=w2; other=w1; }

! So now glyph holds the name, and other the other word

if (consult_words==2 && other~='glyph') jump GlyphHelp;

switch(glyph)

{ 'q1': "(This is one glyph you have memorised!)^^\

Q1: ~sacred site~.";

'circle': "Circle: ~the Sun; also life, lifetime~.";

...

default: "That glyph is so far unrecorded.";

}

! All three of the ways the text can go wrong lead to

! this message being produced:

.GlyphHelp; "Try ~look up <name of glyph> in book~.";

],

has proper;

Note that this understands any of the forms \q1", \glyph q1" or \q1 glyph" but is careful
to reject, for instance, \glyph q1 glyph". (These aren't genuine Mayan glyphs, but some
of the real ones have similar names, dating from when their syllabic equivalents weren't
known: G8, the Lord of the Night, for instance.)

�EXERCISE 18

To mark the 500th anniversary of William Tyndale (the �rst English translator of the New Tes-
tament), prepare an edition of the four Gospels.

44 Ordinarily, a request by the player to \read" something is translated into an Examine

action. But the \read" verb is de�ned independently of the \examine" verb in order to make it
easy to separate the two requests. For instance:

Attribute legible;

...

Object textbook "textbook"

with name "engineering" "textbook" "text" "book",

description "What beautiful covers and spine!",

before

[; Consult, Read:

"The pages are full of senseless equations.";

],

has legible;

...

[ReadSub; <<Examine noun>>;];

Extend "read" first * legible -> Read;

45

11 Reading matter and consultation

Note that \read" causes a Read action only for legible objects, and otherwise causes Examine in

the usual way. ReadSub is coded as a translation to Examine as well, so that if a legible object

doesn't provide a Read rule then an Examine happens after all.

�REFERENCES
If you really need more elaborate topic-parsing (for, e.g., \look up hsomethingi in the catalogue",
where any object name might appear) then extending the grammar for look may be less trouble.
For a good implementation see `Encyclopaedia Frobozzica', by Gareth Rees.

12 Living creatures and conversation

To know how to live is my trade and my art.

{ Michel de Montaigne (1533{1592), Essays

Everything that can be said can be said clearly.

{ Ludwig Wittgenstein (1889{1951), Tractatus

This rummage through special kinds of objects �nishes up with the most sophisticated
kind: living ones. Note that the �ner points of this section, on the arts of conversation,
require some knowledge of Chapter III.

Animate objects, such as sea monsters, mad aunts or nasty little dwarves, have a
property called life. This behaves somewhat like a before or after routine, but only
applies to the following actions:

Attack The player is making hostile advances: : :

Kiss : : :or excessively friendly ones: : :

WakeOther : : :or simply trying to rouse the creature from sleep.

ThrowAt The player asked to throw noun at the creature.

Give The player asked to give noun to the creature: : :

Show : : :or, tantalisingly, just to show it.

Ask The player asked about something. Just as with a \consult" topic (see x11
passim), the variables consult_from and consult_words are set up to indi-
cate which words the object might like to think about. (In addition, second
holds the dictionary value for the �rst word which isn't 'the', but this is
much cruder.)

Tell Likewise, the player is trying to tell the creature about something. The topic
is set up just as for Ask (that is, consult_from and consult_words are set,
and second also holds the �rst interesting word).

46

12 Living creatures and conversation

Answer This can happen in two ways. One is if the player types \answer hsome texti
to troll" or \say hsome texti to troll"; the other is if he gives an order which
the parser can't sort out, such as \troll, og south", and which the orders

property hasn't handled already. Once again, variables are set as if it were a
\consult" topic. (In addition, noun is set to the �rst word, and an attempt
to read the text as a number is stored in the variable special_number: for
instance, \computer, 143" will cause special_number to be set to 143.)

Order This catches any `orders' which aren't handled by the orders property (see
below); action, noun and second are set up as usual.

If the life routine doesn't exist, or returns false, events take their usual course. life

routines tend to be quite lengthy, even for relatively static characters such as the priest
who stands in the `Ruins' Shrine:

Nearby priest "mummified priest"

with name "mummified" "priest",

description

"He is desiccated and hangs together only by will-power. Though \

his first language is presumably local Mayan, you have the curious \

instinct that he will understand your speech.",

initial "Behind the slab, a mummified priest stands waiting, barely \

alive at best, impossibly venerable.",

life

[; Answer: "The priest coughs, and almost falls apart.";

Ask: switch(second)

{ 'dictionary', 'book':

if (dictionary has general)

"~The ~bird~ glyph... very funny.~";

"~A dictionary? Really?";

'glyph', 'glyphs', 'mayan', 'dialect':

"~In our culture, the Priests are ever literate.~";

'king', 'tomb', 'shrine', 'temple', 'altar', 'slab':

"~The King (life! prosperity! happiness!) is buried \

deep under this Shrine, where you will never go.~";

}

"~You must find your own answer.~";

Tell: "The priest has no interest in your sordid life.";

Attack, Kiss: remove self;

"The priest desiccates away into dust until nothing \

remains, not a breeze nor a bone.";

ThrowAt: move noun to location; <<Attack self>>;

Show, Give:

if (noun==dictionary && dictionary hasnt general)

{ give dictionary general;

"The priest reads a little of the book, laughing \

in a hollow, whispering way. Unable to restrain \

his mirth, he scratches in a correction somewhere \

47

12 Living creatures and conversation

before returning the book.";

}

"The priest is not very interested in earthly things.";

],

has animate;

(Some of the Ask topics are omitted for brevity.) Of course an animate object still has
before and after routines like any other, so you can trap many other kinds of behaviour.
Animate creatures can also react_before and react_after, and it's here that these
properties really come into their own:

react_before

[; Drop: if (noun==satellite_gadget)

print "~I wouldn't do that, Mr Bond,~ says Blofeld.^^";

Shoot: remove beretta;

"As you draw, Blofeld snaps his fingers and a giant \

magnet snatches the gun from your hand. It hits the \

ceiling with a clang. Blofeld silkily strokes his cat.";

];

If Blofeld moves from place to place, these rules move with him.

�EXERCISE 19

Arrange for a bearded psychiatrist to place the player under observation, occasionally mumbling
insights such as \Subject puts green cone on table. Interesting."

Another example is the coiled snake from `Balances', which shows that even the tiniest
life routine can be adequate for an animal:

Nearby snake "hissing snake"

with name "hissing" "snake",

initial "Tightly coiled at the edge of the chasm is a hissing snake.",

life [; "The snake hisses angrily!";],

has animate;

4 When writing general code to deal with animate creatures, it's sometimes convenient to
have a system worked out for printing pronouns such as \her" and \He". See x18 for one way to
do this.

Sometimes creatures should be transparent, sometimes not. Consider these two cases of
animate characters, for instance:

� an urchin with something bulging inside his jacket pocket;
� a hacker who has a bunch of keys hanging o� his belt.

The hacker is transparent, the urchin not. That way the parser prevents the player
from referring to whatever the urchin is hiding, even if the player has played the game
before, and knows what is in there and what it's called. But the player can look at and be
tantalised by the hacker's keys.

48

12 Living creatures and conversation

When the player types in something like \pilot, y south", and the parser is able to make
sense of the request, the result is called an `order': this is the corresponding idea to an
`action' (but happens to other people rather than to the player). This order is sent to
the pilot's orders property, which has the chance to comply with the request (if it likes).
Inform itself never carries out any orders: if no rules get in the way, it will simply print
something like \The pilot has better things to do." The above priest is especially unhelpful:

orders

[; Go: "~I must not leave the Shrine.~";

NotUnderstood: "~You speak in riddles.~";

default: "~It is not your orders I serve.~";

];

(The NotUnderstood clause is run when the parser couldn't understand what the player
typed.) Something to bear in mind is that because the library regards the words \yes" and
\no" as being verbs in Inform, it understands \delores, yes" as being a Yes: order. (This
can be a slight nuisance, as \say yes to orc" is treated di�erently: it gets routed through
the life routine as an Answer.)

4 If the orders property returns false (or if there wasn't an orders property in the �rst
place), the order is sent either to the Order: part of the life property (if it's understood) or to
the Answer: part (if it isn't). (This is how all orders used to be processed, and it's retained to
avoid making reams of old Inform code go wrong.) If these also return false, a message like \X
has better things to do" or \There is no reply" is �nally printed.

To clarify the various kinds of conversation:

Command rule action noun second consult
\orc, take axe" order Take axe 0

\orc, yes" order Yes 0 0

\ask orc for the shield" order Give player shield

\orc, troll" order NotU... 'troll' orc 3 1
\say troll to orc" life Answer 'troll' orc 2 1
\answer troll to orc" life Answer 'troll' orc 2 1
\orc, tell me about coins" life Ask orc 'coins' 6 1
\ask orc about the big troll" life Ask orc 'big' 4 3
\ask orc about wyvern" life Ask orc 0 4 1
\tell orc about lost troll" life Tell orc 'lost' 4 2
where \wyvern" is a word not mentioned anywhere in the program, which is why its value
is 0.

�EXERCISE 20

In some ways, Answer and Tell are just too much trouble. How can you make attempts to use
these produce a message saying \To talk to someone, try `someone, something'."?

Some objects are not alive as such, but can be spoken to: microphones, tape recorders,
voice-activated computers and so on. It would be a nuisance to implement these as ani-
mate, since they have none of the other characteristics of life: instead, they can be given
just the attribute talkable and orders and life properties to deal with the resulting
conversation.

49

12 Living creatures and conversation

�EXERCISE 21

(Cf. `Starcross'.) Construct a computer responding to \computer, theta is 180".

4 The rest of this section starts to overlap much more with Chapter III, and assumes a little
familiarity with the parser.

4 The NotUnderstood clause of orders is run when the parser has got stuck parsing an order
like \pilot, y somersaults". The variable etype holds the parser error that would have been
printed out, had it been a command by the player himself. See x25: for instance, CANTSEE_PE
would mean \the pilot can't see any such object".

4 When the player issues requests to an animate or talkable object, they're normally parsed
exactly as if they were commands by the player himself (except that the actor is now the person
being spoken to). But sometimes one would rather they were parsed by an entirely di�erent
grammar. For instance, consider Zen, the ight computer of an alien spacecraft. It's inappropriate
to tell Zen to (say) pick up a teleport bracelet and the crew tend to give commands more like:

\Zen, set course for Centauro"
\Zen, speed standard by six"
\Zen, scan 360 orbital"
\Zen, raise the force wall"
\Zen, clear the neutron blasters for �ring"

This could mostly be implemented by adding verbs like \raise" to the usual game grammar (see
the `Starcross' computer exercise above), or by carefully trapping the Answer rule. But this is a
nuisance, especially if about half the commands you want are recognised as orders in the usual
grammar but the other half aren't.

An animate or talkable object can therefore provide a grammar routine (if it likes). This
is called at a time when the parser has worked out the object that is being addressed and has
set the variables verb_num and verb_word (to the number of the `verb' and its dictionary entry,
respectively: for example, in \orac, operate the teleport" verb_num would be 3 (because the
comma counts as a word on its own) and verb_word would be 'operate'). The grammar routine
can reply by returning:

0. The parser carries on as usual.
1. The grammar routine is saying it has done all the parsing necessary itself, by hand (i.e.,

using NextWord, TryNumber, NounDomain and the like): the variables action, noun and
second must be set up to contain the resulting order.

'verb' The parser ignores the usual grammar and instead works through the grammar lines for
the given verb (see below).

-'verb' Ditto, except that if none of those grammar lines work then the parser goes back and tries
the usual grammar as well.

In addition, the grammar routine is free to do some partial parsing of the early words provided it
moves on verb_num accordingly to show how much it's got through.

�4 EXERCISE 22

Implement Charlotte, a little girl who's playing Simon Says (a game in which she only follows your
instructions if you remember to say \Simon says" in front of them: so she'll disobey \charlotte,
wave" but obey \charlotte, simon says wave").

50

12 Living creatures and conversation

�4 EXERCISE 23

Another of Charlotte's rules is that if you say a number, she has to clap that many times. Can
you play?

�4 EXERCISE 24

Regrettably, Dyslexic Dan has always mixed up the words \take" and \drop". Implement him
anyway.

4 It's useful to know that if the player types a comma or a full stop, then the parser cuts
these out as separate words. Because of this, a dictionary word containing up to 7 letters and then
a comma or a full stop can never be matched by what the player types. This means that a verb
with such a name is hidden from the ordinary grammar - but it can still be used by a grammar

routine. For instance, here's a way to implement the `Starcross' computer which doesn't involve
creating foolish new actions. We create grammar:

[Control;

switch(NextWord())

{ 'theta': parsed_number=1; return 1;

'phi': parsed_number=2; return 1;

'range': parsed_number=3; return 1;

default: return -1;

}

];

Verb "comp," * Control "is" number -> SetTo;

And the computer itself needs properties

grammar [; return 'comp,';],

orders

[; SetTo:

switch(noun)

{ 1: print "~Theta"; 2: print "~Phi"; 3: print "~Range"; }

print_ret " set to ", second, ".~";

default: "~Does not compute!~";

];

This may not look easier, but it's much more exible, as the exercises below will hopefully demon-
strate.

44 Another use for `untypeable verbs' is to create what might be called `fake fake actions'.
Recall that a fake action is one which is never generated by the parser and is used for message-
passing only, so it doesn't have an action routine and can't do anything other than send the
message. Sometimes, though, you want a proper action (with its own action routine) which also
can't be generated by the parser. The following example creates three of these:

Verb "actions." * -> Prepare * -> Simmer * -> Cook;

The parser never uses \actions." in its ordinary grammar, so this de�nition has the sole e�ect of
creating three new actions: Prepare, Simmer and Cook.

�44 EXERCISE 25

How can you make a grammar extension to an ordinary verb that will apply only to Dan?

51

12 Living creatures and conversation

�4 EXERCISE 26

Make an alarm clock responding to \alarm, o�", \alarm, on" and \alarm, half past seven" (the
latter to set its alarm time).

�4 EXERCISE 27

Implement a tricorder (from Star Trek) which analyses nearby objects on a request like \tricorder,
the quartz stratum".

�4 EXERCISE 28

And, for good measure, a replicator responding to commands like \replicator, tea earl grey" and
\replicator, aldebaran brandy".

�44 EXERCISE 29

And a communications badge in contact with the ship's computer, which answers questions like
\computer, where is Admiral Lebling".

�44 EXERCISE 30

Finally, construct the formidable ight computer Zen.

The next two exercises really belong to x24, but are too useful (for the \someone on the other
end of a phone" situation) to bury far away. Note that an alternative to these scope-hacking
tricks, if you just want to implement something like \michael, tell me about the crystals" (when
Michael is at the other end of the line), is to make the phone a talkable object and make the
word 'michael' refer to the phone (using a parse_name routine).

For more on scope hacking, see x24. Note that the variable scope_reason is always set to
the constant value TALKING_REASON when the game is trying to work out who you wish to talk to:
so it's quite easy to make the scope di�erent for conversational purposes.

�4 EXERCISE 31

Via the main screen of the Starship Enterprise, Captain Picard wants to see and talk to Noslen
Maharg, the notorious tyrant, who is down on the planet Mrofni. Make it so.

�44 EXERCISE 32

Put the player in telepathic contact with Martha, who is in a sealed room some distance away,
but who has a talent for telekinesis. Martha should respond well to \martha, look", \ask martha
about...", \say yes to martha", \ask martha for red ball", \martha, give me the red ball" and the
like.

�REFERENCES
A much fuller example of a `non-player character' is given in the example game `The Thief', by
Gareth Rees (though it's really an implementation of the gentleman in `Zork', himself an imitation
of the pirate in `Advent'). The thief is capable of walking around, being followed, stealing things,
picking locks, opening doors and so on. � Other good de�nitions of animate objects to look at
are Christopher in `Toyshop', who will stack up building blocks on request; the kittens in `Alice
Through The Looking-Glass'; the barker in `Balances', and the cast of `Advent': the little bird, the
snake, bear and dragon, the pirate and of course the threatening little dwarves. � Following
people means being able to refer to them after they've left the room: see `Follow my leader', also
by Mr Rees, or the library extension \follower.h" by Andrew Clover. � See the Inform home
page for a way round the Yes awkwardness. � orders and grammar are newly introduced into
Inform, and so are not much seen in existing games. � For parsing topics of conversation in
advanced ways, see the example game `Encyclopaedia Frobozzica' by Gareth Rees. � To see
how much a good set of characters can do for a game, try playing the prologue of `Christminster'.

52

13 The light and the dark

The library maintains light by itself, and copes with events like:

a total eclipse of the sun;
fusing all the lights in the house;
your lamp going out;
a dwarf stealing it and running away;
dropping a lit match which you were seeing by;
putting your lamp into an opaque box and shutting the lid;
black smoke �lling up the glass jar that the lamp is in;
the dwarf with your lamp running back into your now-dark room.

The point of this list is to demonstrate that light versus darkness is tricky to get right,
and that it is best left to the library. Your code needs only to do something like

give lamp light;

remove match;

give glass_jar ~transparent;

move dwarf to Dark_Room;

and can leave the library to sort out the consequences. As the above suggests, the light
attribute means that an object is giving o� light, or that a room is currently lit, e.g. by
being out of doors in day-time. If you simply never want to have darkness, a sneaky way
of doing it is to put the line

give player light;

in Initialise. The game works as if the player herself were glowing enough to provide
light to see by. So there's never darkness near the player.

The de�nition of \when there is light" is complicated, involving recursion both up
and down. Remember that the parent of the player object may not be a room; it may be,
say, a red car whose parent is a room.

De�nition. There is light exactly when the parent of the player `o�ers light'. An object
`o�ers light' if:

it itself has the light attribute set, or
any of its immediate possessions `have light', or
it is see-through and its parent o�ers light, or
it is enterable and its parent o�ers light;

while an object `has light' if:

it currently has the light attribute set, or
it is see-through and one of its immediate possessions has light.

The process of checking this stops as soon as light is discovered. The routines

OffersLight(object) and HasLightSource(object)

return true or false and might occasionally be useful.

53

13 The light and the dark

4 So light is cast up and down the tree of objects. In certain contrived circumstances this
might be troublesome: perhaps an opaque box, whose outside is uorescent but whose interior is
dark, and which contains an actor who needs not to have other contents of the box in scope: : :

The dilemma could be solved by putting an inner box in the outer one.

�EXERCISE 33

How would you code a troll who is afraid of the dark, and needs to be bribed but will only accept
a light source: : : so that the troll will be as happy with a gold�sh bowl containing a uorescent
jelly�sh as he would be with a lamp?

Each turn, light is reconsidered. The presence or absence of light a�ects the Look, Search,
LookUnder and Examine actions, and (since this is a common puzzle) also the Go action:
you can provide a routine called

DarkToDark()

and if you do then it will be called when the player goes from one dark room into another
dark one (just before the room description for the new dark room, probably \Darkness",
is printed). If you want, you can take the opportunity to kill the player o� or extract
some other forfeit. If you provide no such routine, then the player can move about freely
(subject to any rules which apply in the places concerned).

4 When the player is in darkness, the current location becomes thedark, a special ob-
ject which acts like a room and has the short name \Darkness". You can change the initial,
description or short_name properties for this. For example, your Initialise routine might set

thedark.short_name = "Creepy, nasty darkness";

See x14 for how `Ruins' makes darkness menacing.

�4 EXERCISE 34

Implement a pet moth which escapes if it's ever taken into darkness.

�REFERENCES
For a DarkToDark routine which discourages wandering about caves in the dark, see `Advent'.

54

14 Daemons and the passing of time

Some, such as Sleep and Love, were never human. From this class an individual
daemon is allotted to each human being as his `witness and guardian' through life.

{ C. S. Lewis (1898{1963), The Discarded Image

A great Daemon: : : Through him subsist all divination, and the science of sacred
things as it relates to sacri�ces, and expiations, and disenchantments, and prophecy,
and magic: : : he who is wise in the science of this intercourse is supremely happy: : :

{ Plato (c.427{347 BC), The Symposium

{ translated by Percy Bysshe Shelley (1792{1822)

In medieval neo-Platonist philosophy, daemons are the intermediaries of God, hovering
invisibly over the world and interfering with it. They may be guardian spirits of places or
people. So, here, a daemon is a meddling spirit, associated with a particular game object,
which gets a chance to interfere once per turn while it is `active'. The classic example is
of the dwarves of `Advent', who appear in the cave from time to time: a daemon routine
attached to the dwarf object moves it about, throws knives at the player and so on. Each
object can have a daemon routine of its own. This is set going, and stopped again, by
calling the (library) routines

StartDaemon(object);

StopDaemon(object);

Once active, the daemon property of the object is called as a routine each turn. Daemons
are often started by a game's Initialise routine and sometimes remain active throughout.
For instance, a lamp-battery daemon might do something every turn, while others may
hide for many turns before pouncing: such as the daemon in `Advent' which waits until
the player has found all the treasures.

4 In particular, a daemon doesn't stop running just because the player has moved on to
somewhere else. (Indeed, the library never stops a daemon unless told to.) Actually this is very
useful, as it means daemons can be used for `tidying-up operations', or for the consequences of
the player's actions to catch up with him.

�EXERCISE 35

Many games contain `wandering monsters', characters who walk around the map. Use a daemon
to implement one who wanders as freely as the player, like the gentleman thief in `Zork'.

�4 EXERCISE 36

Use a background daemon to implement a system of weights, so that the player can only carry a
certain weight before her strength gives out and she is obliged to drop something. It should allow
for feathers to be lighter than lawn-mowers.

55

14 Daemons and the passing of time

A `timer' (these are traditionally called `fuses' but the author can stand only so much
tradition) can alternatively be attached to an object. Alternatively, because an object
can't have both a timer and a daemon going at the same time. A timer is started with

StartTimer(object, time);

in which case it will `go o�', alarm clock-style, in the given number of turns. This means
that its time_out property will be called, once and once only, when the time comes. The
timer can be deactivated (so that it will never go o�) by calling

StopTimer(object);

A timer is required to provide a time_left property, to hold the amount of time left. (If
it doesn't, an error message is printed at run-time.) You can alter time_left yourself: a
value of 0 means `will go o� at the end of this turn', so setting time_left to 0 triggers
immediate activation.

4 Normally, you can only have 32 timers or daemons active at the same time as each other
(plus any number of inactive ones). But this limit is easily raised: just de�ne the constant
MAX_TIMERS to some larger value, putting the de�nition in your code before the Parser �le is
included.

There is yet a third form of timed event. If a room provides an each_turn routine, then
this will be called at the end of each turn while the player is there; if an object provides
each_turn, this is called while the object is nearby. For instance, a radio might blare
out music whenever it is nearby; a sword might glow whenever monsters are nearby; or a
stream running through several forest locations might occasionally oat objects by.

`Each turn' is entirely separate from daemons and timers. Although an object can't
have both a timer and a daemon at the same time, it can have an each_turn at the same
time, and this is quite useful, especially to run creatures. An ogre with limited patience
can therefore have an each_turn routine which worries the player (\The ogre stamps his
feet angrily!", etc.) while also having a timer set to go o� when his patience runs out.

4 `Nearby' actually means `in scope', a term which will be properly explained later. The
idea is based on line of sight, which works well in most cases.

44 But it does mean that the radio will be inaudible when shut up inside most containers {
which is arguably fair enough { yet audible when shut up inside transparent, say glass, ones. You
can always change the scope rules using an InScope routine to get around this. In case you want
to tell whether scope is being worked out for ordinary parsing reasons or instead for each_turn
processing, look at the scope_reason variable (see x24). Powerful e�ects are available this way {
you could put the radio in scope within all nearby rooms so as to allow sound to travel. Or you
could make a thief audible throughout the maze he is wandering around in, as in `Zork I'.

�EXERCISE 37

(Why the `Ruins' are claustrophobic.) Make \the sound of scuttling claws" approach the player
in darkness and, after 4 consecutive turns in darkness, kill him.

56

14 Daemons and the passing of time

�4 EXERCISE 38

A little harder: implement the scuttling claws in a single object de�nition, with no associated code
anywhere else in the program (not even a line in Initialise) and without running its daemon
all the time.

The library also has the (limited) ability to keep track of time of day as the game goes
on. The current time is held in the variable the_time and runs on a 24-hour clock: this
variable holds minutes since midnight, so it has values between 0 and 1439. The time can
be set by

SetTime(60�hhoursi+hminutesi, hratei);

The rate controls how rapidly time is moving: a rate of 0 means it is standing still (that
is, that the library doesn't change it: your routines still can). A positive rate means that
that many minutes pass between each turn, while a negative rate means that many turns
pass between each minute. (It's usual for a timed game to start o� the clock by calling
SetTime in its Initialise routine.) The time only (usually) appears on the game's status
line if you set

Statusline time;

as a directive somewhere in your code.

�EXERCISE 39

How could you make your game take notice of the time passing midnight, so that the day of the
week could be nudged on?

�4 EXERCISE 40

(Cf. Sam Hulick's vampire game, `Knight of Ages'.) Make the lighting throughout the game
change at sunrise and sunset.

4 Exactly what happens at the end of each turn is:

1. The turns counter is incremented.
2. The 24-clock is moved on.
3. Daemons and timers are run (in no guaranteed order).
4. each_turn takes place for the current room, and then for everything nearby (that is, in

scope).
5. The game's global TimePasses routine is called.
6. Light is re-considered (it may have changed as a result of events since this time last turn).

The sequence is abandoned if at any stage the player dies or wins.

�4 EXERCISE 41

Suppose the player is magically suspended in mid-air, but that anything let go of will fall out of
sight. The natural way to code this is to use a daemon which gets rid of anything it �nds on the
oor (this is better than just trapping Drop actions because objects might end up on the oor in
many di�erent ways). Why is using each_turn better?

57

14 Daemons and the passing of time

�EXERCISE 42

How would a game work if it involved a month-long archaeological dig, where anything from days
to minutes pass between successive game turns?

�REFERENCES
Daemons abound in most games. `Advent' uses them to run down the lamp batteries, make
the bear follow you, animate the dwarves and the pirate and watch for the treasure all being
found. See also the ying tortoise from `Balances' and the chiggers from `Adventureland'. For
more ingenious uses of daemon, see the helium balloon, the matchbook and (particularly cunning)
the pair of white gloves in `Toyshop'. � Classic timers include the burning match and the
hand grenade from `Toyshop', the endgame timer from `Advent' and the `Balances' cyclops (also
employing each_turn). � `Adventureland' makes good use of each_turn: see the golden �sh,
the mud, the dragon and the bees. � The library extension `timewait.h' by Andrew Clover
thoroughly implements time of day, allowing the player to \wait until quarter past three".

15 Starting, moving, changing and killing the player

There are only three events in a man's life; birth, life and death; he
is not conscious of being born, he dies in pain and he forgets to live.

{ Jean de la Bruy�ere (1645{1696)

Life's but a walking shadow, a poor player
That struts and frets his hour upon the stage
And then is heard no more; it is a tale
Told by an idiot, full of sound and fury,
Signifying nothing.

{ William Shakespeare (1564{1616), Macbeth V. v

The only compulsory task for a game's Initialise routine is to set the location variable
to the place where the player should begin. This is usually a room (and is permitted to
be one that's in darkness) but could instead be an object inside a room, such as a chair or
a bed. If you would like to give the player some items to begin with, Initialise should
also move them to player.

Games with a long opening sequence might want to start by o�ering the player a
chance to restore a saved game at once. They can do so by writing the following in their
Initialise routines:

print "Would you like to restore a game? >";

if (YesOrNo()==1) <Restore>;

(If you want to make the status line invisible during an opening sequence, see x29.) Ini-

tialise normally returns 0 or 1 (it doesn't matter which), but if it returns 2 then no

58

15 Starting, moving, changing and killing the player

game banner will be printed at once. (This is for games which, like `Sorcerer', delay their
banners until after the prologue.) `Ruins', however, opens in classical fashion:

[Initialise;

TitlePage();

location = Forest;

move food_ration to player;

move sodium_lamp to player;

move dictionary to player;

thedark.description = "The darkness of ages presses in on you, and you \

feel claustrophobic.";

"^^^^^Days of searching, days of thirsty hacking through the briars of \

the forest, but at last your patience was rewarded. A discovery!^";

];

(The TitlePage routine will be an exercise in x29: `Ruins' is really too small a game
to warrant one, but never mind.) The location variable needs some explanation. It
holds either the current room, if there's light to see by, or the special value thedark (the
\Darkness" object) if there isn't. In the latter case (but only in the latter case) the actual
current room is held in the variable real_location, should you need to know it. Neither
of these is necessarily the same as the parent of the player object. For instance, if the
player sits in a jeep parked in a dark garage, then location is thedark, real_location
is Garage and parent(player) is jeep.

Because of this, one shouldn't simply move the player object by hand. Instead, to
move the player about (for teleportation of some kind), use the routine PlayerTo(place);
(which automatically takes care of printing the new room's description if there's enough
light there to see by).

4 PlayerTo can also be used to move the player to a place inside a room (e.g., a cage, or a
traction engine).

4 Calling PlayerTo(place, 1); moves the player but prints nothing (in particular, prints
no room description).

4 Calling PlayerTo(place, 2); will Look as if the player had arrived in the room by walking
in as usual, so only a short description appears if the room is one that has been seen before.

4 In a process called `scoring arrival', a room which the player has entered for the �rst time
is given the visited attribute. If it was listed as scored, points are awarded. (See x16.)

44 When a Look action takes place, or a call to PlayerTo(place,1), the library `notes arrival'
as well as `scores arrival'. `Noting arrival' consists of checking to see if the room has changed since
last time (darkness counting as a di�erent room for this purpose). If so, the following happens:

1. If the new location has an initial property, this is printed if it's a string, or run if it's a
routine.

2. The entry point NewRoom is called (if it exists).

3. Any `oating objects', such as drifting mist, which are found_inmany places at once, are

moved into the room.

59

15 Starting, moving, changing and killing the player

The player's whole persona can easily be changed, because the player object can itself
have an orders routine, just as the object for any non-player character can. To replace
the orders routine for the standard player object,

player.orders = #r$MyNewRule;

where MyNewRule is a new orders rule. Note that this is applied to every action or order
issued by the player. The variable actor holds the person being told to do something,
which may well be the player himself, and the variables action, noun and second are set
up as usual. For instance, if a cannon goes o� right next to the player, a period of partial
deafness might ensue:

[MyNewRule;

if (actor~=player) rfalse;

Listen: "Your hearing is still weak from all that cannon-fire.";

];

The if statement needs to be there to prevent commands like \helena, listen" from being
ruled out { after all, the player can still speak.

�4 EXERCISE 43

Why not achieve the same e�ect by giving the player a react_before rule instead?

�EXERCISE 44

(Cf. `Curses'.) Write an orders routine for the player so that wearing the gas mask will prevent
him from talking.

4 In fact a much more powerful trick is available: the player can actually become a di�erent
character in the game, allowing the real player at the keyboard to act through someone else.
Calling ChangePlayer(obj) will transform the player to obj. There's no need for obj to have
names like \me" or \myself"; the parser understands these words automatically to refer to the
currently-inhabited player object. However, it must provide a number property (which the library
will use for workspace). The maximum number of items the player can carry as that object will
be its capacity. Finally, since ChangePlayer prints nothing, you may want to conclude with a
<<Look>>;

ChangePlayer has many possible applications. The player who tampers with Dr Franken-
stein's brain transference machine may suddenly become the Monster strapped to the table. A
player who drinks too much wine could become a `drunk player object' to whom many di�erent
rules apply. The \snavig" spell of `Spellbreaker', which transforms the player to an animal like the
one cast upon, could be implemented thus. More ambitiously, a game could have a stock of half
a dozen main characters, and the focus of play can switch between them. A player might have a
team of four adventurers to explore a dungeon, and be able to switch the one being controlled by
typing the name. In this case, an AfterLife routine { see below { may be needed to switch the
focus back to a still-living member of the team after one has met a sticky end.

4 Calling ChangePlayer(object,1); will do the same but make the game print \(as Who-
ever)" during room descriptions.

44 When the person to be changed into has an orders routine, things start to get complicated.
It may be useful to arrange such a routine as follows:

60

15 Starting, moving, changing and killing the player

orders

[; if (player==self)

{ ! I am the player object...

if (actor==self)

{ ! ...giving myself an order, i.e., trying an action.

}

else

{ ! ...giving someone else, the "actor", an order.

}

}

else

{ ! The player is the "actor" and is giving me an order.

}

],

�4 EXERCISE 45

In Central American legend, a sorceror can transform himself into a nagual, a familiar such as a
spider-monkey; indeed, each individual has an animal self or wayhel, living in a volcanic land over
which the king, as a jaguar, rules. Turn the player into his wayhel.

�44 EXERCISE 46

Write an orders routine for a Giant with a conscience, who will refuse to attack a mouse, but so
that a player who becomes the Giant can be as cruel as he likes.

The player is still alive for as long as the variable deadflag is zero. When set to 1, the
player dies; when set to 2, the player wins; and all higher values are taken as more exotic
forms of death. Now Inform does not know what to call these exotica: so if they should
arise, it calls the DeathMessage routine, which is expected to look at deadflag and can
then print something like \You have changed".

Many games allow reincarnation (or, as David M. Baggett points out, in fact resur-
rection). You too can allow this, by providing an AfterLife. This routine gets the chance
to do as it pleases before any \You are dead" type message appears, including resetting
deadflag back to 0 { which causes the game to proceed in the normal way, rather than
end. AfterLife routines can be tricky to write, though, because the game has to be set
to a state which convincingly reects what has happened.

�REFERENCES
The magic words \xyzzy" and \plugh" in `Advent' make use of PlayerTo. � `Advent' has an
amusing AfterLife routine: for instance, try collapsing the bridge by leading the bear across,
then returning to the scene after resurrection. `Balances' has one which only slightly penalises
death.

61

16 Miscellaneous constants and scoring

For when the One Great Scorer comes
To write against your name,
He marks { not that you won or lost {
But how you played the game.

{ Grantland Rice (1880{1954), Alumnus Football

Some game rules can be altered by de�ning `constants' at the start of the program. Two
constants you must provide (and before including any of the library �les) are the strings
Story and Headline:

Constant Story "ZORK II";

Constant Headline "^An Interactive Plagiarism^\

Copyright (c) 1995 by Ivan O. Ideas.^";

All the rest are optional, but should be de�ned before Verblib is included if they're to
take e�ect.

The library won't allow the player to carry an inde�nite number of objects: the limit
allowed is the constant MAX_CARRIED, which you may de�ne if you wish. If you don't
de�ne it, it's 100, which nearly removes the rule. In fact you can change this during
play, since it is actually the capacity of the player which is consulted; the only use of
MAX_CARRIED is to set this up to an initial value.

If you de�ne SACK_OBJECT to be some container, then the player will automatically
put old, least-used objects away in it as the game progresses, provided it is being carried.
This is a feature which endears the designer greatly to players. For instance, the following
code appears (in between inclusion of Parser and Verblib) in `Toyshop':

Object satchel "satchel"

with description "Big and with a smile painted on it.",

name "satchel", article "your",

when_closed "Your satchel lies on the floor.",

when_open "Your satchel lies open on the floor.",

has container open openable;

Constant SACK_OBJECT satchel;

`Ruins' isn't going to provide this feature, because there are few portable objects and those
there are would be incongruous if described as being in a rucksack.

Another constant is AMUSING_PROVIDED. If you de�ne this, the library knows to put an
\amusing" option on the menu after the game is won. It will then call Amusing from your
code when needed. You can use this to roll closing credits, or tell the player various strange
things about the game, now that there's no surprise left to spoil.

The other constants you are allowed to de�ne help the score routines along. There
are two scoring systems provided by the library, side by side: you can use both or neither.

62

16 Miscellaneous constants and scoring

You can always do what you like to the score variable in any case, though the \fullscore"
verb might then not fully account for what's happened. One scores points for getting
certain items or reaching certain places; the other for completing certain actions. These
constants are:

MAX_SCORE the maximum game score (by default 0);
NUMBER_TASKS number of individual \tasks" to perform (1);
OBJECT_SCORE bonus for �rst picking up a scored object (4);
ROOM_SCORE bonus for �rst entering a scored room (5)

and then the individual tasks have scores, as follows:

Array task_scores -> t1 t2 ... tn;

As this is a byte array, the task scores must be between 0 and 255. Within your code, when
a player achieves something, call Achieved(task) to mark that the task has been com-
pleted. It will only award points if this task has not been completed before. There do not
have to be any \tasks": there's no need to use the scoring system provided. Tasks (and the
verb \full" for full score) will only work at all if you de�ne the constant TASKS_PROVIDED.
The entry point PrintTaskName prints the name of a game task (but, of course, is only
ever called in a game with TASKS_PROVIDED de�ned). For instance, (`Toyshop' again)

[PrintTaskName ach;

if (ach==0) "eating a sweet";

if (ach==1) "driving the car";

if (ach==2) "shutting out the draught";

if (ach==3) "building a tower of four";

if (ach==4) "seeing which way the mantelpiece leans";

];

Another entry point, called PrintRank, gets the chance to print something additional to
the score (traditionally, though not necessarily, rankings). For instance, we bid farewell to
the `Ruins' with the following:

[PrintRank;

print ", earning you the rank of ";

if (score >= 50) "Master Archaeologist.";

if (score >= 30) "Archaeologist.";

if (score >= 20) "Acquisitor.";

if (score >= 10) "Investigator.";

"humble rainforest Tourist.";

];

Normally, an Inform game will print messages like

[Your score has gone up by three points.]

63

16 Miscellaneous constants and scoring

when the score changes (by whatever means). The player can turn this on and o� with the
\notify" verb; by default it is on. (You can alter the ag notify_mode yourself to control
this.)

The verbs \objects" and \places" are usually provided, so the player can get a list of all
handled objects (and where they now are), and all places visited. If you don't want these
to be present, de�ne the constant NO_PLACES before inclusion of the library.

�4 EXERCISE 47

Suppose one single room object is used internally for the 64 squares of a gigantic chessboard,
each of which is a di�erent location to the player. Then \places" is likely to result in only the
last-visited square being listed. Fix this.

�REFERENCES
`Advent' contains ranks and an Amusing reward (but doesn't use either of these scoring systems,
instead working by hand). � `Balances' uses scored objects (for its cubes). � `Toyshop'
has tasks, as above. � `Adventureland' uses its TimePasses entry point to recalculate the score
every turn (and watch for victory).

17 Extending and rede�ning the Library

A circulating library in a town is as an ever-green tree of diabolical
knowledge! It blossoms through the year!

{ R. B. Sheridan (1751{1816), The Rivals

Most large games will need to enrich the `model world': for instance, by creating a new
concept such as \magic amulets". The game might contain a dozen of these, each with
the power to cast a di�erent spell. So it will need routines which can tell whether or not
a given object is an amulet, and what to do when the spell is cast.

The former needs a new attribute. You can create this with the directive

Attribute is_amulet;

at the start of the program.

44 In Standard games few spare attributes are available because the library takes most of
them. To get around this limit there's a convenient dodge. It sometimes happens that an attribute
is only meaningful for a particular kind of object: for instance, \spell has been read" might only
be meaningful for a \scroll". With care, therefore, one may re-use the same attribute to have
di�erent meanings for di�erent kinds of object. The syntax to declare that an attribute is being
reused is

Attribute <new> alias <old>;

64

17 Extending and rede�ning the Library

Thereafter Inform will treat the new and old attribute names as referring to the same attribute:
it's up to the programmer to make sure this does not lead to inconsistencies. (The library already
indulges in a certain amount of this chicanery.)

You can also de�ne your own properties.
Property door_to;

Property article "a";

Property amulet_spell NULL;

are all examples of the Property directive, the �rst two from the library �les. In the case
of article, we are saying that the value "a" should be the default value for any object
which doesn't declare an article.

4 You can also change the default value during play. For instance, objects with no explicit
cant_go property of their own normally have the value \You can't go that way." You might
change this with

ChangeDefault(cant_go, "You're a Master Adventurer now, and still \

you walk into walls!");

later on in the game. Explicitly given values of cant_go are una�ected by this.

44 Properties can also alias and can moreover be declared as long or additive. For additive
see x5 on classes; properties which might start as small numbers (less than 256) and be changed
into large ones in play, ought to be declared as long in Standard games (for Advanced games
there's no need).

It's easy enough to write a class de�nition for amulets, with a before rule for Rub so that
when an amulet is rubbed, its spell is cast. Suppose we want the amulet_spell property
to be able to hold either a string (which is to be printed out) or a routine (which is to be
run). The following does just that:

PrintOrRun(object, property, flag);

(The library makes extensive use of this function.) If the (optional) ag is given and non-
zero, a new-line is printed after a string (but only if it was a string). For example, given
amulet_spell values such as:

amulet_spell "The spell fizzles out with a dull phut! sound.",

amulet_spell

[; if (location~=thedark) "Nothing happens.";

give real_location light; "There is a burst of magical light!";

],

then PrintOrRun(object,amulet_spell,1) is the right way to cast the spell.

44 Since internally routines and strings are stored as numbers (as their packed addresses, in
fact) it can be useful to �nd out what a property value represents. For this purpose:

ZRegion(addr) =

8<
:

1 if addr is a valid object number
2 if a routine address
3 if a string address
0 otherwise.

Inform guarantees that object numbers, routine addresses and string addresses are all di�erent
(i.e., that no number can represent two of these at once): but dictionary or array addresses may
coincide with packed addresses of strings or routines.

65

17 Extending and rede�ning the Library

An elaborate library extension will end up de�ning several new properties and attributes,
some grammar, actions and verb de�nitions. These may neatly be packaged up into an
Include �le and placed with the other library �les.

44 If the �le contains the directive System_file; then it will even be possible for games to
Replace routines from it (see below).

More often, one would like a smaller-scale change to the Library: to alter one of its habitual
messages, such as \Nothing is on sale." printed in response to requests to buy something
(unless such requests have been trapped at the before stage). The message-changing
feature is provided in an unusual way. To make use of it, you must provide a special object
called LibraryMessages, which must be de�ned between the inclusion of \Parser" and of
\VerbLib". Here is an example, changing two standard messages:

Object LibraryMessages "lm"

with before

[; Jump: "You jump and float uselessly for a while in \

the zero gravity here on Space Station Alpha.";

SwitchOn:

if (lm_n==3)

{ print "You power up ", (the) lm_o, "."; }

];

The object never appears in the game, of course (so it doesn't matter what its short name
is), and it exists solely to have a before routine. As usual, returning false (0) causes the
library to carry on as normal, while returning true (1) indicates that you've printed the
message.

The Jump action only ever prints one message, but more elaborate actions such as
SwitchOn have several (the extreme case is Take, with 13). lm_n holds the message number,
which counts upwards from 1 essentially in order of use. The messages and numbers are
given in x39. New message numbers may possibly be added in future, but old ones will
not be renumbered.

An especially useful library message to change is the prompt, usually set to "^>"

(new-line followed by >). This is printed under the fake action Prompt (which exists only
for use by LibraryMessages). Thus you can make the game's prompt context-sensitive,
or remove the \skipped line on screen each turn" convention.

4 This prompt is only used in ordinary game play, and not at such keyboard inputs as yes/no
questions or the RESTART/RESTORE/QUIT game over choice.

�EXERCISE 48

Infocom's game `The Witness' has the prompt \What should you, the detective, do next?" on
turn one and \What next?" subsequently. Implement this.

An amusing way to see the system in action is to put

Object LibraryMessages "lm"

with before

[; print "[", sw__var, ", ", lm_n, "] ";

];

66

17 Extending and rede�ning the Library

into your game (arcane note: sw__var, the \switch variable", in this case holds the action
number). Another amusing e�ect is to simply write rtrue; for the before routine, which
results in an alarmingly silent game { blindfold Adventure, perhaps.

44 Note that LibraryMessages can be used as a sneaky way to add extra rules onto the back
of actions, since there's nothing to stop you doing real processing in a call to it; or, more happily,
to make messages more sensistive to game context, so that \Nothing is on sale" might become
\That's not one of the goods on sale" inside a shopping mall.

�44 EXERCISE 49

Write an Inform game in Occitan (a dialect of medieval French spoken in Provence).

The Library is itself written in high-level Inform (with a few input-output routines dipping
into assembly language) which is compiled at the same time as the rest of the game. The
source �les are perfectly accessible and could easily be modi�ed. But this would make it
necessary to keep a copy of the library for every game, and to make the changes afresh
whenever the library is updated; and it means your modi�cations are not gathered together
in any convenient form.

A somewhat crude method, something of a last resort (though most large games
contain two or three uses of this), is to work out which routine is giving trouble and
\replace" it. For example, if the directive

Replace BurnSub;

is placed in your �le before the library �les are included, Inform ignores the de�nition of
BurnSub in the library �les. You then have to de�ne a routine called BurnSub yourself, or
Inform will complain that the program refers to a routine which isn't there. It would be
normal to copy the de�nition of BurnSub to your own code, and make such alterations as
you need.

The favourite routine to replace is DrawStatusLine: see x29 for several examples.

44 Inform even allows you to Replace \hardware" functions like random, which would normally
be translated directly to machine opcodes. Obviously, replacing something like sibling with a
software routine will impose an appreciable speed penalty and slightly increase object code size.
Replacing random may however be useful when �xing the random number generator for game-
testing purposes.

�REFERENCES
`Balances' contains a section of code (easily extractable to other games) implementing the `En-
chanter' trilogy's magic system by methods like the above. � There are several formal library
extension �les in existence, mostly small: see the Inform home page on the WWW. � \plu-
ralobj.h" by Andrew Clover makes large-scale use of LibraryMessages to ensure that the library
always uses words like \those" instead of \that" when talking about objects with names like \a
heap of magazines".

67

Chapter III: Describing and Parsing

Language disguises thought: : : The tacit conventions on which the
understanding of everyday language depends are enormously com-
plicated.

{ Ludwig Wittgenstein (1889{1951), Tractatus

18 Describing objects and rooms

And we were angry and poor and happy,
And proud of seeing our names in print.

{ G. K. Chesterton (1874{1936), A Song of Defeat

Talking to the player about the state of the world is much easier than listening to his
intentions for it, and Inform's rules for describing places and items are considerably simpler
than its rules for understanding what the player types. Despite this, the business of
description takes up a fair part of Chapter III since the designer eventually needs to know
almost every rule involved, whereas nobody would want to know everything about the
parser.

To begin, the simplest description happens when a single object is named by the
game, for instance when the statement

print (a) brass_lamp;

results in \an old brass lamp" being printed. There are four such forms of print:

print (the) obj Print the object with its de�nite article
print (The) obj The same, but capitalised
print (a) obj Print the object with inde�nite article
print (name) obj Print the object's short name alone

and these can be freely mixed into lists of things to print or print_ret, as for example:

print_ret "The ogre declines to eat ", (the) noun, ".";

�EXERCISE 50

(By Gareth Rees.) When referring to animate objects, one usually needs to use pronouns such as
\his". De�ne new printing routines so that, say, print "You throw the book at ", (PronounAcc)

obj, "!"; will insert the right accusative pronoun.

68

18 Describing objects and rooms

4 There is also a special syntax print object for printing object names, but do not use it

without good reason: it doesn't understand some of the features below and is not protected against
crashing if you mistakenly try to print the name for an out of range object number.

The inde�nite article for an object is held in the property article and is assumed to be
`a' if none is declared. That means that if the short name starts with a vowel, you need
to set it to `an'. But article o�ers much more amusement:

a / platinum bar, an / orange balloon, your / Aunt Jemima,
some bundles of / reeds, far too many / marbles, The / London Planetarium

If the object is given the attribute proper then its name is treated as a proper noun with
no inde�nite article, so the value of article is ignored.

4 The article property can also hold a routine to print one, in case \a pregnant mouse"
has to change to \some mice".

De�nite articles are always \the" (except for proper nouns). Thus

the platinum bar, Aunt Jemima, Elbereth

are all printed by print (the) ...; the latter two objects being proper.

4 There's usually no need to worry about de�nite and inde�nite articles for room objects,
as Inform never has cause to print them.

The short name of an object is normally the text given in double-quotes at the head of
its de�nition. This is very inconvenient to change during play when, for example, \blue
liquid" becomes \purple liquid" as a result of a chemical reaction. A more exible way to
specify an object's short name is with the short_name property. To print the name of such
an object, Inform does the following:

1. If the short_name is a string, it's printed and that's all.
2. If it is a routine, then it is called. If it returns true, that's all.

3. The text given in the header of the object de�nition is printed.

For example, the dye might be given:

short_name

[; switch(self.number)

{ 1: print "blue ";

2: print "purple ";

3: print "horrid sludge"; rtrue;

}

],

with "liquid" as the short name in its header. According to whether its number property
is 1, 2 or 3, the printed result is \blue liquid", \purple liquid" or \horrid sludge".

4 Alternatively, de�ne the dye with short_name "blue liquid" and then simply execute
dye.short_name = "purple liquid"; when the time comes.

69

18 Describing objects and rooms

4 Note that rooms can also be given a short_name routine, which might be useful to code,
say, a grid of four hundred similar locations called \Area 1" up to \Area 400".

For many objects the inde�nite article and short name will most often be seen in inventory
lists, such as

>i

You are carrying:

a leaf of mint

a peculiar book

your satchel (which is open)

a green cube

Some objects, though, ought to have fuller entries in an inventory: a wine bottle should
say how much wine is left, for instance. The invent property is designed for this. The
simplest way to use invent is as a string. For instance, declaring a peculiar book with

invent "that harmless old book of Geoffrey's",

will make this the inventory line for the book. In the light of events, it could later be
changed to

geoffreys_book.invent = "that lethal old book of Geoffrey's";

4 Note that this string becomes the whole inventory entry: if the object were an open
container, its contents wouldn't be listed, which might be unfortunate. In such circumstances it's
better to write an invent routine, and that's also the way to append text like \(half-empty)".

4 Each line of an inventory is produced in two stages. First, the basic line:

1a. The global variable inventory_stage is set to 1.
1b. The invent routine is called (if there is one). If it returns true, stop here.

1c. The object's inde�nite article and short-name are printed.

Second, little informative messages like \(which is open)" are printed, and inventories are given
for the contents of open containers:

2a. The global variable inventory_stage is set to 2.
2b. The invent routine is called (if there is one). If it returns true, stop here.
2c. A message such as \(closed, empty and providing light)" is printed, as appropriate.

2d. If it is an open container, its contents are inventoried.

After each line is printed, linking text such as a new-line or a comma is printed, according to the
current style. For example, here is the invent routine used by the matchbook in `Toyshop':

invent

[i; if (inventory_stage==2)

{ i=self.number;

if (i==0) print " (empty)";

if (i==1) print " (1 match left)";

if (i>1) print " (",i," matches left)";

}

],

70

18 Describing objects and rooms

�44 EXERCISE 51

Suppose you want to change the whole inventory line for an ornate box but you can't use an
invent string, or return true from stage 1, because you still want stage 2d to happen properly (so
that its contents will be listed). How can you achieve this?

The largest and most complicated messages Inform ever prints on its own initiative are
room descriptions, printed when the Look action is carried out (so that the statement
<Look>; triggers a room description). This is basically simple: the room's short name is
printed (usually in bold-face) on a line of its own, then its description followed by a list
of the objects lying about in it which aren't concealed or scenery.

Chapter II mentions many di�erent properties { initial, when_on, when_off and
so on { which contain descriptions of an object inside a room; some apply to doors, others
to switchable objects and so on. All of them can be routines to print something, instead
of strings to print. The full rules are given below.

This whole system can be bypassed using the describe property. If an object gives
a describe routine then this is called �rst: if it returns true, then Inform assumes that
the object has already been described, so it doesn't describe it later on. For example,

describe

[; "^The platinum pyramid catches the light beautifully.";

];

means that even when the pyramid has been moved (i.e. held by the player at some stage)
it will always have its own line of room description.

4 Note the initial ^ (new-line) character. Inform doesn't print a skipped line itself before
calling describe because it doesn't know yet whether the routine will want to say anything. A
describe routine which prints nothing and returns true makes an object invisible, as if it were
concealed.

44 The Look action does three things: it `notes arrival', prints the room description then
`scores arrival'. Only the printing rules are given here (see x15 for the others), but they're given
in full. In what follows, the word `location' means the room object if there's light to see by, and
the special \Darkness" object otherwise. First the top line:

1a. A new-line is printed. The location's short name is printed (in bold-face, if the host
machine can do so).

1b. If the player is on a supporter, then \ (on hsomethingi)" is printed; if inside anything
else, then \ (in hsomethingi)".

1c. \ (as hsomethingi)" is printed if this was requested by the game's most recent call to
ChangePlayer, if any.

1d. A new-line is printed.

Now the `long description'. This step is skipped if the player has just moved of his own will into
a location already visited, unless the game is in \verbose" mode.

2. If the location has a describe property, then run it. If not, look at the location's de-

scription property: if it's a string, print it; if it's a routine, run it.

71

18 Describing objects and rooms

All rooms must provide either a describe property or a description of themselves. Now for
items nearby:

3a. List any objects on the oor.

3b. If the player is in or on something, list the other objects in that.

Inform has now �nished, but your game gets a chance to add a postscript:

4. Call the entry point LookRoutine.

4 The visited attribute is only given to a room after its description has been printed for the
�rst time (this happens during `scoring arrival'). This is convenient for making the description
di�erent after the �rst time.

4 `Listing objects' (as in 3a and 3b) is a complicated business. Some objects are given a line
or paragraph to themselves; some are lumped together in a list at the end. The following objects
are not mentioned at all: the player, what the player is in or on (if anything) and anything which
is scenery or concealed. The remaining objects are looked through (eldest �rst) as follows:

1. If the object has a describe routine, run it. If it returns true, stop here and don't mention
the object at all.

2. Work out the \description property" for the object:
a. For a container, this is when_open or when_closed;
b. Otherwise, for a switchable object this is when_on or when_off;
c. Otherwise, for a door this is when_open or when_closed;
d. Otherwise, it's initial.

3. If either the object doesn't have this property or the object has been held by the player
before (i.e., has moved) and the property isn't when_off or when_closed then then the
object will be listed at the end.

4. Otherwise a new-line is printed and the property is printed (if it's a string) or run (if it's

a routine).

4 A supporter which is scenery won't be mentioned, but anything on top of it which is not
concealed will be.

4 Objects which have just been pushed into a new room are not listed in that room's de-
scription on the turn in question. This is not because of any rule about room descriptions, but
because the pushed object is moved into the new room only after the room description is made.
This means that when a wheelbarrow is pushed for a long distance, the player does not have to
keep reading \You can see a wheelbarrow here." every move, as though that were a surprise.

4 You can use a library routine called Locale to perform `object listing'. See x36 for details:
su�ce to say here that the process above is equivalent to executing

if (Locale(location, "You can see", "You can also see")~=0)

" here.";

Locale is useful for describing areas of a room which are sub-divided o�, such as the stage of a

theatre.

�EXERCISE 52

The library implements \superbrief" and \verbose" modes for room description (one always omits
long room descriptions, the other never does). How can verbose mode automatically print room
descriptions every turn? (Some of the later Infocom games did this.)

72

18 Describing objects and rooms

�REFERENCES
`Balances' often uses short_name, especially for the white cubes (whose names change) and lottery
tickets (whose numbers are chosen by the player). `Adventureland' uses short_name in simpler
ways: see the bear and the bottle, for instance. � The scroll class of `Balances' uses invent. �
The library extension \pluralobj.h" by Andrew Clover makes large-scale use of LibraryMessages
to ensure that the library always uses words like \those" instead of \that" when talking about
objects with names like \a heap of magazines". � See the ScottRoom class of `Adventureland'
for a radically di�erent way to describe rooms (in pidgin English, like telegraphese).

19 Listing and grouping objects

As some day it may happen that a victim must be found
I've got a little list { I've got a little list
Of society o�enders who might well be underground,
And who never would be missed
Who never would be missed!

{ W. S. Gilbert (1836{1911), The Mikado

The library often needs to reel o� a list of objects: when an Inv (inventory) action takes
place, for instance, or when describing the contents of a container or the duller items in a
room. Lists are di�cult to print out correctly `by hand', because there are many cases to
get right, especially when taking plurals into account. Fortunately, the library's list-maker
is open to the public. The routine to call is:

WriteListFrom(object, style);

where the list will start from the given object and go along its siblings. Thus, to list all the
objects inside X, list from child(X). What the list looks like depends on the style, which
is a bitmap you can make by adding some of the following constants:

NEWLINE_BIT New-line after each entry
INDENT_BIT Indent each entry according to depth
FULLINV_BIT Full inventory information after entry
ENGLISH_BIT English sentence style, with commas and `and'
RECURSE_BIT Recurse downwards with usual rules
ALWAYS_BIT Always recurse downwards
TERSE_BIT More terse English style
PARTINV_BIT Only brief inventory information after entry
DEFART_BIT Use the de�nite article in list
WORKFLAG_BIT At top level (only), only list objects

which have the workflag attribute

73

19 Listing and grouping objects

ISARE_BIT Prints \ is " or \ are " before list
CONCEAL_BIT Misses out concealed or scenery objects

The best way to use this is to experiment. For example, a `tall' inventory is produced by:

WriteListFrom(child(player),

FULLINV_BIT + INDENT_BIT + NEWLINE_BIT + RECURSE_BIT);

and a `wide' one by:

WriteListFrom(child(player),

FULLINV_BIT + ENGLISH_BIT + RECURSE_BIT);

which produce e�ects like:

>inventory tall

You are carrying:

a bag (which is open)

three gold coins

two silver coins

a bronze coin

four featureless white cubes

a magic burin

a spell book

>inventory wide

You are carrying a bag (which is open), inside which are three gold

coins, two silver coins and a bronze coin, four featureless white

cubes, a magic burin and a spell book.

except that the `You are carrying' part is not done by the list-maker, and nor is the �nal
full stop in the second example. The workflag is an attribute which the library scribbles
over from time to time as temporary storage, but you can use it with care. In this case it
makes it possible to specify any reasonable list.

44 WORKFLAG_BIT and CONCEAL_BIT specify conicting rules. If they're both given, then what
happens is: at the top level, but not below, everything with workflag is included; on lower levels,
but not at the top, everything without concealed or scenery is included.

�EXERCISE 53

Write a DoubleInvSub action routine to produce an inventory like so:

You are carrying four featureless white cubes, a magic burin and a

spell book. In addition, you are wearing a purple cloak and a miner's

helmet.

4 Finally, there is a neat way to customise the grouping together of non-identical items in
lists, considerably enhancing the presentation of the game. If a collection of game objects { say,
all the edible items in the game { have a common non-zero value of the property list_together,
say 1, they will always appear adjacently in inventories, room descriptions and the like.

74

19 Listing and grouping objects

Alternatively, instead of being a small number the common value can be a string such as
"foodstuffs". If so then lists will cite, e.g.,

three foodstu�s (a scarlet �sh, some lemmas and an onion)

in running text, or

three foodstu�s:
a scarlet �sh
some lemmas
an onion

in indented lists. This only happens when two or more are gathered together.
Finally, the common value can be a routine, such as:

list_together

[; if (inventory_stage==1) print "heaps of food, notably ";

else print ", which would do you no good";

],

Typically this might be part of a class de�nition from which all the objects in question inherit. A
list_together routine will be called twice: once, with inventory_stage set to 1, as a preamble
to the list of items, and once (with 2) to print any postscript required. It is allowed to change
c_style (the current list style) without needing to restore the old value and may, by returning 1
from stage 1, signal the list-maker not to print a list at all. The simple example above results in

heaps of food, notably a scarlet �sh, some lemmas
and an onion, which would do you no good

Such a routine may want to make use of the variables parser_one and parser_two, which re-
spectively hold the �rst object in the group and the depth of recursion in the list (this might be
needed to keep indentation going properly). Applying x=NextEntry(x,parser_two);moves x on
from parser_one to the next item in the group. Another helpful variable is listing_together,
set up to the �rst object of a group being listed or to 0 whenever no group is being listed. The
following list of 24 items shows some possible e�ects (see the example game `List Property'):

You can see a plastic fork, knife and spoon, three hats (a fez, a Panama
and a sombrero), the letters X, Y, Z, P, Q and R from a Scrabble set, a
defrosting Black Forest gateau, Punch magazine, a recent issue of the
Spectator, a die and eight coins (four silver, one bronze and three gold)
here.

�4 EXERCISE 54

Implement the Scrabble pieces.

�44 EXERCISE 55

Implement the three denominations of coin.

�44 EXERCISE 56

Implement the I Ching in the form of six coins, three gold (goat, deer and chicken), three silver
(robin, snake and bison) which can be thrown to reveal gold and silver trigrams.

75

19 Listing and grouping objects

�REFERENCES
A good example of WriteListFrom in action is the de�nition of CarryingClass from the example
game `The Thief', by Gareth Rees. This alters the examine description of a character by appending
a list of what that person is carrying and wearing. � Denominations of coin are also in evidence
in `Balances' and in x21.

20 How nouns are parsed

The Naming of Cats is a di�cult matter,
It isn't just one of your holiday games;
You may think at �rst I'm as mad as a hatter
When I tell you, a cat must have THREE DIFFERENT NAMES.

{ T. S. Eliot (1888{1965), The Naming of Cats

Bulldust, coolamon, dashiki, �zgig, grungy, jirble, pachinko, poodle-
faker, sharny, taghairm

{ Catachrestic words from Chambers English Dictionary

Suppose we have a tomato de�ned with

name "fried" "green" "tomato",

but which is going to redden later and need to be referred to as \red tomato". It's perfectly
straightforward to alter the name property of an object, which is a word array of dictionary
words. For example,

[Names obj i;

for (i=0:2*i<obj.#name:i++) print (address) (obj.&name)-->i, "^";

];

prints out the list of dictionary words held in name for a given object. We can write to
this, so we could just set

(tomato.&name)-->1 = 'red';

but this is not a exible or elegant solution, and it's time to begin delving into the parser.

4 Note that we can't change the size of the name array. To simulate this, we could de�ne
the object with name set to, say, 30 copies of an `untypeable word' (see below) such as 'blank.'.

76

20 How nouns are parsed

The Inform parser is designed to be as \open-access" as possible, because a parser cannot
ever be general enough for every game without being extremely modi�able. The �rst thing
it does is to read in text from the keyboard and break it up into a stream of words: so the
text \wizened man, eat the grey bread" becomes

wizened / man / , / eat / the / grey / bread

and these words are numbered from 1. At all times the parser keeps a \word number"
marker to keep its place along this line, and this is held in the variable wn. The routine
NextWord() returns the word at the current position of the marker, and moves it forward,
i.e. adds 1 to wn. For instance, the parser may �nd itself at word 6 and trying to match
\grey bread" as the name of an object. Calling NextWord() gives the value 'grey' and
calling it again gives 'bread'.

Note that if the player had mistyped \grye bread", \grye" being a word which isn't
mentioned anywhere in the program or created by the library, NextWord() returns 0 for
`misunderstood word'. Writing something like if (w=='grye') ... somewhere in the
program makes Inform put \grye" into the dictionary automatically.

4 Remember that the game's dictionary only has 9-character resolution. Thus the values of
'polyunsaturate' and 'polyunsaturated' are equal. Also, upper case and lower case letters are
considered the same; and although a word can contain numerals or symbols, such as 'mn8@home',
it must begin with a letter.

44 A dictionary word can even contain spaces, full stops or commas, but if so it is `untypeable'.
For instance, 'in,out' is an untypeable word because if the player does type it then the parser
cuts it into three, never checking the dictionary for the entire word. Thus the constant 'in,out'
can never be anything that NextWord returns. This can be useful (as it was in x12).

4 It can also be useful to check for numbers. The library routine TryNumber(wordnum) tries
to parse the word at wordnum as a number (recognising decimal numbers and English ones from
\one" to \twenty"), returning -1000 if it fails altogether, or else the number. Values exceeding
10000 are rounded down to 10000.

44 Sometimes there is no alternative but to actually look at the player's text one character
at a time (for instance, to check a 20-digit phone number). The routine WordAddress(wordnum)

returns a byte array of the characters in the word, and WordLength(wordnum) tells you how many
characters there are in it. Thus in the above example,

thetext = WordAddress(4);

print WordLength(4), " ", (char) thetext->0, (char) thetext->2;

prints the text \3 et".

An object can a�ect how its name is parsed by giving a parse_name routine. This is
expected to try to match as many words as possible starting from the current position of
wn, reading them in one at a time using the NextWord() routine. Thus it must not stop
just because the �rst word makes sense, but must keep reading and �nd out how many
words in a row make sense. It should return:

0 if the text didn't make any sense at all,

77

20 How nouns are parsed

k if k words in a row of the text seem to refer to the object, or
�1 to tell the parser it doesn't want to decide after all.

The word marker wn can be left anywhere afterwards. For example:

Nearby thing "weird thing"

with parse_name

[i; while (NextWord()=='weird' or 'thing') i++;

return i;

];

This de�nition duplicates (very nearly) the e�ect of having de�ned:

Nearby thing "weird thing"

with name "weird" "thing";

Which isn't very useful. But the tomato can now be coded up with

parse_name

[i j; if (self has general) j='red'; else j='green';

while (NextWord()=='tomato' or 'fried' or j) i++;

return i;

],

so that \green" only applies until its general attribute has been set, whereupon \red"
does.

�EXERCISE 57

Rewrite this to insist that the adjectives must come before the noun, which must be present.

�EXERCISE 58

Create a musician called Princess who, when kissed, is transformed into \/?%?/ (the artiste
formerly known as Princess)".

�EXERCISE 59

(Cf. `Caf�e Inform'.) Construct a drinks machine capable of serving cola, co�ee or tea, using only
one object for the buttons and one for the possible drinks.

4 parse_name is also used to spot plurals: see x21.

Suppose that an object doesn't have a parse_name routine, or that it has but it returned
�1. The parser then looks at the name words. It recognises any arrangement of some or
all of these words as a match (the more words, the better). Thus \fried green tomato" is
understood, as are \fried tomato" and \green tomato". On the other hand, so are \fried
green" and \green green tomato green fried green". This method is quick and good at
understanding a wide variety of sensible inputs, though bad at throwing out foolish ones.

However, you can a�ect this by using the ParseNoun entry point. This is called with
one argument, the object in question, and should work exactly as if it were a parse_name

routine: i.e., returning �1, 0 or the number of words matched as above. Remember that it

78

20 How nouns are parsed

is called very often and should not be horribly slow. For example, the following duplicates
what the parser usually does:

[ParseNoun obj n;

while (IsAWordIn(NextWord(),obj,name) == 1) n++; return n;

];

[IsAWordIn w obj prop k l m;

k=obj.∝ l=(obj.#prop)/2;

for (m=0:m<l:m++)

if (w==k-->m) rtrue;

rfalse;

];

In this example IsAWordIn just checks to see if w is one of the entries in the word array
obj.&prop.

�4 EXERCISE 60

Many adventure-game parsers split object names into `adjectives' and `nouns', so that only the
pattern h0 or more adjectivesi h1 or more nounsi is recognised. Implement this.

�4 EXERCISE 61

During debugging it sometimes helps to be able to refer to objects by their internal numbers, so
that \put object 31 on object 5" would work. Implement this.

�4 EXERCISE 62

How could the word \#" be made a wild-card, meaning \match any single object"?

�44 EXERCISE 63

And how could *" be a wild-card for \match any collection of objects"?

�44 EXERCISE 64

There is no problem with a calling a container \hole in wall", because the parser will understand
\put apple in hole in wall" as \put (apple) in (hole in wall)". But create a y in amber, so that
\put y in amber in hole in wall" works properly and isn't misinterpreted as \put (y) in (amber
in hole in wall)". (Warning: you may need to know about the BeforeParsing entry point (see
x22) and the format of the parse bu�er (see x23).)

�REFERENCES
Straightforward parse_name examples are the chess-pieces object and the kittens class of `Alice
Through The Looking-Glass'. Lengthier ones are found in `Balances', especially in the white cubes
class.

79

21 Plural names for duplicated objects

Abiit ad plures.

{ Petronius (?{c. 66), Cena Trimalchionis

A notorious problem for adventure game parsers is to handle a collection of, say, ten gold
coins, allowing the player to use them independently of each other, while gathering them
together into groups in descriptions and inventories. This is relatively easy in Inform,
and only in really hard cases do you have to provide code. There are two problems to be
overcome: �rstly, the game has to be able to talk to the player in plurals, and secondly
vice versa. First, then, game to player:

Class gold_coin_class

with name "gold" "coin",

plural "gold coins";

(and similar silver and bronze coin classes here)

Object bag "bag"

with name "bag"

has container open openable;

Nearby co1 "gold coin" class gold_coin_class;

Nearby co2 "gold coin" class gold_coin_class;

Nearby co3 "gold coin" class gold_coin_class;

Nearby co4 "silver coin" class silver_coin_class;

Nearby co5 "silver coin" class silver_coin_class;

Nearby co6 "bronze coin" class bronze_coin_class;

Now we have a bag of six coins. The player looking inside the bag will get

>look inside bag

In the bag are three gold coins, two silver coins and a bronze coin.

How does the library know that the three gold coins are the same as each other, but the
others di�erent? It doesn't look at the classes but the names. It will only group together
things which:

(a) have a plural set,
(b) are `indistinguishable' from each other.

Indistinguishable means they have the same name words as each other, possibly in a dif-
ferent order, so that nothing the player can type will separate the two.

4 Actually, the library is cleverer than this. What it groups together depends slightly on
the context of the list it's writing out. When it's writing a list which prints out details of which
objects are providing light, for instance (like an inventory), it won't group together two objects if
one is lit and the other isn't. Similarly for objects with visible possessions or which can be worn.

80

21 Plural names for duplicated objects

44 This all gets even more complicated when the objects have a parse_name routine supplied,
because then the library can't use the name �elds to tell them apart. If they have di�erent
parse_name routines, it decides that they're di�erent. But if they have the same parse_name

routine, there is no alternative but to ask them. What happens is that

1. A variable called parser_action is set to ##TheSame;
2. Two variables, called parser_one and parser_two are set to

the two objects in question;
3. Their parse_name routine is called. If it returns:

�1 the objects are declared \indistinguishable",
�2 they are declared di�erent.

4. Otherwise, the usual rules apply and the library looks at
the ordinary name �elds of the objects.

##TheSame is a fake action. The implementation of the `Spellbreaker cubes' in the `Balances'
game is an example of such a routine, so that if the player writes the same name on several of the
cubes, they become grouped together. Note that this whole set-up is such that if the author of
the parse_name routine has never read this paragraph, it doesn't matter and the usual rules take
their course.

44 You may even want to provide a parse_name routine just to speed up the process of telling
two objects apart { if there were 30 gold coins the parser would be doing a lot of work comparing
all their names, but you can make the decision much faster.

Secondly, the player talking to the computer. This goes a little further than just copies
of the same object: many games involve collecting a number of similar items, say a set of
nine crowns in di�erent colours. Then you'd want the parser to recognise things like:

> drop all of the crowns except green

> drop the three other crowns

even though the crowns are not identical. The simple way to do this is just to put "crowns"
in their name lists, and this works perfectly well most of the time.

44 But it isn't ideal, because then the parser will think \take crowns" refers to a single
object, and won't realise that the player wants to pick up all the sensibly available crowns. So the
complicated (but better) way is to make the parse_name routine tell the parser that yes, there was
a match, but that it was a plural. The way to do this is to set parser_action to ##PluralFound,
another fake action. So, for example:

Class crown_class

with parse_name

[i j;

for (::)

{ j=NextWord();

if (j=='crown' or self.name) i++;

else

{ if (j=='crowns')

{ parser_action=##PluralFound; i++; }

else return i;

}

}

];

81

21 Plural names for duplicated objects

This code assumes that the crown objects have just one name each, their colours.

�EXERCISE 65

Write a `cherub' class so that if the player tries to call them \cherubs", a message like \I'll let
this go by for now, but the plural of cherub is cherubim" appears.

�REFERENCES
See the coinage of `Balances'.

22 How verbs are parsed

Grammar, which can govern even kings.

{ Moli�ere (1622{1673), Les Femmes savantes

The parser's fundamental method is simple. Given a stream of text like

saint / peter / , / take / the / keys / from / paul

it �rst calls the entry point BeforeParsing (in case you want to meddle with the text
stream before it gets underway). It then works out who is being addressed, if anyone, by
looking for a comma, and trying out the text up to there as a noun (anyone animate or
anything talkable will do): in this case St Peter. This person is called the \actor", since
he is going to perform the action, and is usually the player himself (thus, typing \myself,
go north" is equivalent to typing \go north"). The next word, in this case 'take', is the
\verb word". An Inform verb usually has several English verb words attached, which are
called synonyms of each other: for instance, the library is set up with

\take" = \get" = \carry" = \hold"

all referring to the same Inform verb.

4 The parser sets up global variables actor and verb_word while working. (In the example
above, their values would be the St Peter object and 'take', respectively.)

44 It isn't quite that simple: names of direction objects are treated as implicit \go" commands,
so that \n" is acceptable as an alternative to \go north". There are also \again", \oops" and
\undo" to grapple with.

4 Also, a major feature (the grammar property for the person being addressed) has been
missed out of this description: see the latter half of x12 for details.

82

22 How verbs are parsed

Teaching the parser a new synonym is easy. Like all of the directives in this section, the
following must appear after the inclusion of the library �le Grammar:

Verb "steal" "acquire" "grab" = "take";

This creates another three synonyms for \take".

4 One can also prise synonyms apart, as will appear later.

The parser is now up to word 5; i.e., it has \the keys from paul" left to understand. Apart
from a list of English verb-words which refer to it, an Inform verb also has a \grammar".
This is a list of 1 or more \lines", each a pattern which the rest of the text might match.
The parser tries the �rst, then the second and so on, and accepts the earliest one that
matches, without ever considering later ones.

A line is itself a row of \tokens". Typical tokens might mean `the name of a nearby
object', `the word from' or `somebody's name'. To match a line, the parser must match
against each token in sequence. For instance, the line of 3 tokens

ha nouni hthe word fromi ha nouni

matches the text. Each line has an action attached, which in this case is Remove: so the
parser has ground up the original text into just four numbers, ending up with

actor = st_peter

action = Remove noun = gold_keys second = st_paul

What happens then is that the St Peter's orders routine (if any) is sent the action, and
may if it wishes cooperate. If the actor had been the player, then the action would have
been processed in the usual way.

4 The action for the line which is currently being worked through is stored in the variable
action_to_be; or, at earlier stages when the verb hasn't been deciphered yet, it holds the value
NULL.

The Verb directive creates Inform verbs, giving them some English verb words and a
grammar. The library's Grammar �le consists almost exclusively of Verb directives: here is
an example simpli�ed from one of them.

Verb "take" "get" "carry" "hold"

* "out" -> Exit

* multi -> Take

* multiinside "from" noun -> Remove

* "in" noun -> Enter

* multiinside "off" noun -> Remove

* "off" held -> Disrobe

* "inventory" -> Inv;

83

22 How verbs are parsed

Each line of grammar begins with a *, gives a list of tokens as far as -> and then the action
which the line produces. The �rst line can only be matched by something like \get out",
the second might be matched by

take the banana
get all the fruit except the apple

and so on. A full list of tokens will be given later: briey, "out" means the literal
word \out", multi means one or more objects nearby, noun means just one and
multiinside means one or more objects inside the second noun. In this book, grammar
tokens are written in the style noun to prevent confusion (as there is also a variable called
noun).

44 As mentioned above, the parser thinks \take" and \get" are exactly the same. Sometimes
this has odd results: \get in bed" is correctly understood as a request to enter the bed, \take
in washing" is misunderstood as a request to enter the washing. You might avoid this by using
Extend only to separate them into di�erent grammars, or you could �x the Enter action to see
if the variable verb_word=='take' or 'get'.

4 Some verbs are meta - they are not really part of the game: for example, \save", \score"
and \quit". These are declared using Verb meta, as in

Verb meta "score"

* -> Score;

and any debugging verbs you create would probably work better this way, since meta-verbs are

protected from interference by the game and take up no game time.

After the -> in each line is the name of an action. Giving a name in this way is what
creates an action, and if you give the name of one which doesn't already exist then you
must also write a routine to execute the action, even if it's one which doesn't do very
much. The name of the routine is always the name of the action with Sub appended. For
instance:

[XyzzySub; "Nothing happens.";];

Verb "xyzzy" * -> Xyzzy;

will make a new magic-word verb \xyzzy", which always says \Nothing happens" { always,
that is, unless some before rule gets there �rst, as it might do in certain magic places.
Xyzzy is now an action just as good as all the standard ones: ##Xyzzy gives its action
number, and you can write before and after rules for it in Xyzzy: �elds just as you
would for, say, Take.

The library de�nes grammars for the 100 or so English verbs most often used by adventure
games. However, in practice you very often need to alter these, usually to add extra lines
of grammar but sometimes to remove existing ones. For example, consider an array of 676
labelled buttons, any of which could be pushed: it's hardly convenient to de�ne 676 button
objects. It would be more sensible to create a grammar line which understands things like

\button j16", \d11", \a5 button"

84

22 How verbs are parsed

(it's easy enough to write code for a token to do this), and then to add it to the grammar
for the \press" verb. The Extend directive is provided for exactly this purpose:

Extend "push" * Button -> PushButton;

The point of Extend is that it is against the spirit of the Library to alter the standard
library �les { including the grammar table { unless absolutely necessary.

44 Another method would be to create a single button object with a parse_name routine
which carefully remembers what it was last called, so that the object always knows which button
it represents. See `Balances' for an example.

Normally, extra lines of grammar are added at the bottom of those already there. This
may not be what you want. For instance, \take" has a grammar line

* multi -> Take

quite early on. So if you want to add a grammar line which diverts \take something-edible"
to a di�erent action, like so:

* edible -> Eat

(edible being a token matching anything which has the attribute edible) then it's no
good adding this at the bottom of the Take grammar, because the earlier line will always
be matched �rst. Thus, you really want to insert your line at the top, not the bottom, in
this case. The right command is

Extend "take" first

* edible -> Eat;

You might even want to over-ride the old grammar completely, not just add a line or two.
For this, use

Extend "push" replace

* Button -> PushButton;

and now \push" can be used only in this way. To sum up, Extend can take three keywords:

replace completely replace the old grammar with this one;
first insert the new grammar at the top of the old one;
last insert the new grammar at the bottom of the old one;

with last being the default (which doesn't need to be said explicitly).

4 In library grammar, some verbs have many synonyms: for instance,

"attack" "break" "smash" "hit" "fight" "wreck" "crack"

"destroy" "murder" "kill" "torture" "punch" "thump"

85

22 How verbs are parsed

are all treated as identical. But you might want to distinguish between murder and lesser crimes.
For this, try

Extend only "murder" "kill" replace * animate -> Murder;

The keyword only tells Inform to extract the two verbs \murder" and \kill". These then become
a new verb which is initially an identical copy of the old one, but then replace tells Inform to
throw that away in favour of an entirely new grammar. Similarly,

Extend only "get" * "with" "it" -> Sing;

makes \get" behave exactly like \take" (as usual) except that it also recognises \with it", so that
\get with it" makes the player sing but \take with it" doesn't. Other good pairs to separate might
be \cross" and \enter", \drop" and \throw", \give" and \feed", \swim" and \dive", \kiss" and
\hug", \cut" and \prune".

44 Bear in mind that once a pair has been split apart like this, any subsequent extension
made to one will not be made to the other.

44 There are (a few) times when verb de�nition commands are not enough. For example, in
the original `Advent' (or `Colossal Cave'), the player could type the name of a not-too-distant
place which had previously been visited, and be taken there. There are several ways to code this {
say, with 60 rather similar verb de�nitions, or with a single \travel" verb which has 60 synonyms,
whose action routine looks at the parser's verb_word variable to see which one was typed, or even
by restocking the compass object with new directions in each room { but here's another. The
library will call the UnknownVerb routine (if you provide one) when the parser can't even get past
the �rst word. This has two options: it can return false, in which case the parser just goes on to
complain as it would have done anyway. Otherwise, it can return a verb word which is substituted
for what the player actually typed. Here is a foolish example:

[UnknownVerb w;

if (w=='shazam') { print "Shazam!^"; return 'inventory'; }

rfalse;

];

which responds to the magic word \shazam" by printing Shazam! and then, rather disappointingly,
taking the player's inventory. But in the example above, it could be used to look for the word w

through the locations of the game, store the place away in some global variable, and then return
'go'. The GoSub routine could then be �xed to look at this variable.

�44 EXERCISE 66

Why is it usually a bad idea to print text out in an UnknownVerb routine?

44 If you allow a exible collection of verbs (say, names of spells or places) then you may
want a single `dummy' verb to stand for whichever is being typed. This may make the parser
produce strange questions because it is unable to sensibly print the verb back at the player, but
you can �x this using the PrintVerb entry point.

�44 EXERCISE 67

Implement the Crowther and Woods feature of moving from one room to another by typing its
name, using a dummy verb.

86

22 How verbs are parsed

�4 EXERCISE 68

Implement a lamp which, when rubbed, produces a genie who casts a spell over the player to
make him confuse the words \white" and \black".

�REFERENCES
`Advent' makes a string of simple Verb de�nitions; `Alice Through The Looking-Glass' uses Extend
a little. � `Balances' has a large extra grammar and also uses the UnknownVerb and PrintVerb

entry points.

23 Tokens of grammar

The complete list of grammar tokens is as follows:

"hwordi" that literal word only

noun any object in scope

held object held by the player

multi one or more objects in scope

multiheld one or more held objects

multiexcept one or more in scope, except the other

multiinside one or more in scope, inside the other

hattributei any object in scope which has the attribute

creature an object in scope which is animate

noun = hRoutinei any object in scope passing the given test

scope = hRoutinei an object in this de�nition of scope

number a number only

hRoutinei any text accepted by the given routine

special any single word or number

These tokens are all described in this section except for scope = hRoutinei , which is
postponed to the next.

"hwordi" This matches only the literal word given, normally a preposition such as
"into". Whereas most tokens produce a \parameter" (an object or group of objects, or
a number), this token doesn't. There can therefore be as many or as few of them on a
grammar line as desired.

87

23 Tokens of grammar

4 Prepositions like this are unfortunately sometimes called `adjectives' inside the parser
source code, and in Infocom hackers' documents: the usage is traditional but has been avoided in
this manual.

noun The de�nition of \in scope" will be given in the next section. Roughly, it means
\visible to the player at the moment".

held Convenient for two reasons. Firstly, many actions only sensibly apply to things
being held (such as Eat or Wear), and using this token in the grammar you can make sure
that the action is never generated by the parser unless the object is being held. That
saves on always having to write \You can't eat what you're not holding" code. Secondly,
suppose we have grammar

Verb "eat"

* held -> Eat;

and the player types \eat the banana" while the banana is, say, in plain view on a shelf. It
would be petty of the game to refuse on the grounds that the banana is not being held. So
the parser will generate a Take action for the banana and then, if the Take action succeeds,
an Eat action. Notice that the parser does not just pick up the object, but issues an action
in the proper way { so if the banana had rules making it too slippery to pick up, it won't
be picked up. This is called \implicit taking".

The multi- tokens indicate that a list of one or more objects can go here. The parser
works out all the things the player has asked for, sorting out plural nouns and words like
\except" by itself, and then generates actions for each one. A single grammar line can
only contain one multi- token: so \hit everything with everything" can't be parsed
(straightforwardly, that is: you can parse anything with a little more e�ort). The reason
not all nouns can be multiple is that too helpful a parser makes too easy a game. You
probably don't want to allow \unlock the mystery door with all the keys" { you want the
player to su�er having to try them one at a time, or else to be thinking.

multiexcept Provided to make commands like \put everything in the rucksack"
parsable: the \everything" is matched by all of the player's possessions except the rucksack.
This stops the parser from generating an action to put the rucksack inside itself.

multiinside Similarly, this matches anything inside the other parameter on the line,
and is good for parsing commands like \remove everything from the cupboard".

hattributei This allows you to sort out objects according to attributes that they have:

Verb "use" "employ" "utilise"

* edible -> Eat

* clothing -> Wear

...and so on...

* enterable -> Enter;

88

23 Tokens of grammar

though the library grammar does not contain such an appallingly convenient verb! Since
you can de�ne your own attributes, it's easy to make a token matching only your own class
of object.

creature Same as animate (a hangover from older editions of Inform).

noun = hRoutinei The last and most powerful of the \a nearby object satisfying some
condition" tokens. When determining whether an object passes this test, the parser sets
the variable noun to the object in question and calls the routine. If it returns true, the
parser accepts the object, and otherwise it rejects it. For example, the following should
only apply to animals kept in a cage:

[CagedCreature;

if (noun in wicker_cage) rtrue; rfalse;

];

Verb "free" "release"

* noun=CagedCreature -> FreeAnimal;

So that only nouns which pass the CagedCreature test are allowed. The CagedCreature
routine can appear anywhere in the code, though it's tidier to keep it nearby.

scope = hRoutinei An even more powerful token, which means \an object in scope"
where scope is rede�ned specially. See the next section.

number Matches any decimal number from 0 upwards (though it rounds o� large
numbers to 10000), and also matches the numbers \one" to \twenty" written in English.
For example:

Verb "type"

* number -> TypeNum;

causes actions like Typenum 504 when the player types \type 504". Note that noun is set
to 504, not to an object.

�EXERCISE 69

(A beautiful feature stolen from David M. Baggett's game `The Legend Lives', which uses it to
great e�ect.) Some games produce footnotes every now and then. Arrange matters so that these
are numbered [1], [2] and so on in order of appearance, to be read by the player when \footnote
1" is typed.

4 The entry point ParseNumber allows you to provide your own number-parsing routine,
which opens up many sneaky possibilities { Roman numerals, coordinates like \J4", very long
telephone numbers and so on. This takes the form

[ParseNumber buffer length;

...returning 0 if no match is made, or the number otherwise...

];

and examines the supposed `number' held at the byte address buffer, a row of characters of the
given length. If you provide a ParseNumber routine but return 0 from it, then the parser falls
back on its usual number-parsing mechanism to see if that does any better.

89

23 Tokens of grammar

44 Note that ParseNumber can't return 0 to mean the number zero. Probably \zero" won't
be needed too often, but if it is you can always return some value like 1000 and code the verb in
question to understand this as 0. (Sorry. This was a bad design decision made too long ago to
change now.)

hRoutinei The most exible token is simply the name of a \general parsing routine".
This looks at the word stream using NextWord and wn (see x20) and should return:

�1 if the text isn't understood,
0 if it's understood but no parameter results,
1 if a number results, or
n if the object n results.

In the case of a number, the actual value should be put into the variable parsed_number.
On an unsuccessful match (returning �1) it doesn't matter what the �nal value of wn is.
On a successful match it should be left pointing to the next thing after what the routine
understood. Since NextWord moves wn on by one each time it is called, this happens
automatically unless the routine has read too far. For example:

[OnAtorIn w;

w=NextWord(); if (w=='on' or 'at' or 'in') return 0;

return -1;

];

makes a token which accepts any of the words \on", \at" or \in" as prepositions (not
translating into objects or numbers). Similarly,

[Anything w; while (w~=-1) w=NextWordStopped(); return 0;];

accepts the entire rest of the line (ignoring it). NextWordStopped is a form of NextWord
which returns �1 once the original word stream has run out.

special Now a rather obsolete feature, but not withdrawn just in case it might still

be useful. It's generally better to write a hRoutinei token.

�EXERCISE 70

Write a token to detect low numbers in French, \un" to \cinq".

�4 EXERCISE 71

Write a token to detect oating-point numbers like \21", \5:4623", \two point oh eight" or \0:01",
rounding o� to two decimal places.

�4 EXERCISE 72

Write a token to match a phone number, of any length from 1 to 30 digits, possibly broken up
with spaces or hyphens (such as \01245 666 737" or \123-4567").

90

23 Tokens of grammar

�44 EXERCISE 73

(Adapted from code in Andrew Clover's `timewait.h' library extension.) Write a token to match
any description of a time of day, such as \quarter past �ve", \12:13 pm", \14:03", \six �fteen" or
\seven o'clock".

�4 EXERCISE 74

Code a spaceship control panel with �ve sliding controls, each set to a numerical value, so that
the game looks like:

>look

Machine Room

There is a control panel here, with five slides, each of which can be

set to a numerical value.

>push slide one to 5

You set slide one to the value 5.

>examine the first slide

Slide one currently stands at 5.

>set four to six

You set slide four to the value 6.

44 General parsing routines sometimes need to get at the raw text originally typed by the
player. Usually WordAddress and WordLength (see x20) are adequate. If not, it's helpful to know
that the parser keeps a string array called buffer holding:

buffer->0 = hmaximum number of characters which can �t in bu�eri
buffer->1 = hthe number n of characters typedi
buffer->2...buffer->(n+ 1) = hthe text typedi

and, in parallel with this, another one called parse holding:

parse->0 = hmaximum number of words which can �t in bu�eri
parse->1 = hthe number m of words typedi
parse->2... = ha four-byte block for each word, as followsi

block-->0 = hthe dictionary entry if word is known, 0 otherwisei
block->2 = hnumber of letters in the wordi
block->3 = hindex to �rst character in the bufferi

(However, for \Standard" games the format is slightly di�erent: in buffer the text begins at byte
1, not at byte 2, and its end is indicated with a zero terminator byte.) Note that the raw text is
reduced to lower case automatically, even if within quotation marks. Using these bu�ers directly
is perfectly safe but not recommended unless there's no other way, as it tends to make code rather
illegible.

�44 EXERCISE 75

Try to implement the parser's routines NextWord, WordAddress and WordLength.

�44 EXERCISE 76

(Di�cult.) Write a general parsing routine accepting any amount of text (including spaces, full
stops and commas) between double-quotes as a single token.

91

23 Tokens of grammar

�EXERCISE 77

How would you code a general parsing routine which never matches anything?

�44 EXERCISE 78

Why would you code a general parsing routine which never matches anything?

�4 EXERCISE 79

An apparent restriction of the parser is that it only allows two parameters (noun and second).
Write a general parsing routine to accept a third. (This �nal exercise with general parsing
routines is easier than it looks: see the speci�cation of the NounDomain library routine in x36.)

24 Scope and what you can see

He cannot see beyond his own nose. Even the �ngers he outstretches
from it to the world are (as I shall suggest) often invisible to him.

{ Max Beerbohm (1872{1956), of George Bernard Shaw

Wherefore are these things hid?

{ William Shakespeare (1564{1616), Twelfth Night

Time to say what \in scope" means. This de�nition is one of the most important rules
of play, because it decides what the player is allowed to refer to. You can investigate this
in practice by compiling any game with the debugging suite of verbs included and typing
\scope" in di�erent places: but here are the rules in full. The following are in scope:

the player's immediate possessions;
the 12 compass directions;
if there is light (see x13), the objects in the same room as the player;
if not, any objects in the thedark object.

In addition, if an object is in scope then its immediate possessions are in scope, if it is
`see-through', which means that:

the object has supporter, or
the object has transparent, or
the object is an open container.

In addition, if an object is in scope then anything which it \adds to scope" is also in scope.

4 The player's possessions are in scope in a dark room { so the player can still turn his lamp
on. On the other hand, a player who puts the lamp on the ground and turns it o� then loses the
ability to turn it back on again, because it is out of scope. This can be changed; see below.

92

24 Scope and what you can see

4 The compass direction objects make sense as objects. The player can always type some-
thing like \attack the south wall" and the before rule for the room could trap the action Attack

s_obj to make something unusual happen, if this is desired.

4 The parser applies scope rules to all actors, not just the player. Thus \dwarf, drop sword"
will be accepted if the dwarf can see it, even if the player can't.

4 The concealed attribute only hides objects from room descriptions, and doesn't remove
them from scope. If you want things to be both concealed and unreferrable-to, put them some-
where else! Or give them an uncooperative parse_name routine.

44 Actually, the above de�nition is not quite right, because the compass directions are not in
scope when the player asks for a plural number of things, like \take all the knives"; this makes
some of the parser's plural algorithms run faster. Also, for a multiexcept token, the other

object is not in scope; and for a multiinside token, only objects in the other object are in
scope. This makes \take everything from the cupboard" work in the natural way.

Two library routines are provided to enable you to see what's in scope and what isn't.
The �rst, TestScope(obj, actor), simply returns true or false according to whether or
not obj is in scope. The second is LoopOverScope(routine, actor) and calls the given
routine for each object in scope. In each case the actor given is optional; if it's omitted,
scope is worked out for the player as usual.

�EXERCISE 80

Implement the debugging suite's \scope" verb, which lists all the objects currently in scope.

�EXERCISE 81

Write a \megalook" verb, which looks around and examines everything nearby.

The rest of this section is about how to change the scope rules. As usual with Inform,
you can change them globally, but it's more e�cient and safer to work locally. To take a
typical example: how do we allow the player to ask questions like the traditional \what
is a grue"? The \grue" part ought to be parsed as if it were a noun, so that we could
distinguish between, say, a \garden grue" and a \wild grue". So it isn't good enough to
look only at a single word. Here is one solution:

Object questions "qs";

[QuerySub; print_ret (string) noun.description;

];

[Topic i;

switch(scope_stage)

{ 1: rfalse;

2: objectloop (i in questions) PlaceInScope(i); rtrue;

3: "At the moment, even the simplest questions confuse you.";

}

];

where the actual questions at any time are the current children of the questions object,
like so:

Object q1 "long count" questions

93

24 Scope and what you can see

with name "long" "count",

description "The Long Count is the great Mayan cycle of time, \

which began in 3114 BC and will finish with the world's end \

in 2012 AD.";

and we also have a grammar line:

Verb "what"

* "is" scope=Topic -> Query

* "was" scope=Topic -> Query;

Note that the questions and q1 objects are out of the game for every other purpose. The
name \qs" doesn't matter, as it will never appear; the individual questions are named so
that the parser might be able to say \Which do you mean, the long count or the short
count?" if the player asked \what is the count".

When the parser reaches scope=Topic , it calls the Topic routine with the variable
scope_stage set to 1. The routine should return 1 (true) if it is prepared to allow multiple
objects to be accepted here, and 0 (false) otherwise: as we don't want \what is everything"
to list all the questions and answers in the game, we return false.

A little later on in its machinations, the parser again calls Topic with scope_stage

now set to 2. Topic is now obliged to tell the parser which objects are to be in scope. It
can call two parser routines to do this.

ScopeWithin(object)

puts everything inside the object into scope, though not the object itself;

PlaceInScope(object)

puts just a single object into scope. It is perfectly legal to declare something in scope
that \would have been in scope anyway": or even something which is in a di�erent room
altogether from the actor concerned, say at the other end of a telephone line. Our scope
routine Topic should then return

0 (false) to carry on with the usual scope rules, so that everything that would usually
be in scope still is, or

1 (true) to tell the parser not to put any more objects into scope.

So at scope_stage 2 it is quite permissible to do nothing but return false, whereupon the
usual rules apply. Topic returns true because it wants only question topics to be in scope,
not question topics together with the usual miscellany near the player.

This is enough to deal with \what is the long count". If on the other hand the
player typed \what is the lgon cnout", the error message which the parser would usually
produce (\You can't see any such thing") would be unsatisfactory. So if parsing failed at
this token, then Topic is called at scope_stage 3 to print out a suitable error message.
It must provide one.

4 Note that ScopeWithin(object) extends the scope down through its possessions according
to the usual rules, i.e., depending on their transparency, whether they're containers and so on.
The de�nition of Topic above shows how to put just the direct possessions into scope.

94

24 Scope and what you can see

�EXERCISE 82

Write a token which puts everything in scope, so that you could have a debugging \purloin" verb
which could take anything, regardless of where it was and the rules applying to it.

Changing the global de�nition of scope should be done cautiously (there may be unantic-
ipated side e�ects); bear in mind that scope decisions need to be taken often { every time
an object token is parsed, so perhaps �ve to ten times in every game turn { and hence
moderately quickly. The global de�nition can be tampered with by providing the entry
point

InScope(actor)

where the actor is usually the player, but not always. If the routine decides that a partic-
ular object should be in scope for the actor, it should execute InScope and ScopeWithin

just as above, and return true or false, as if it were at scope_stage 2. Thus, it is vital to
return false in circumstances when you don't want to intervene.

4 The token scope=hRoutinei takes precedence over InScope, which will only be reached
if the routine returns false to signify `carry on'.

44 There are seven reasons why InScopemight be being called; the scope_reason variable is
set to the current one:

PARSING REASON The usual one. Note that action_to_be holds NULL in the
early stages (before the verb has been decided) and later on
the action which would result from a successful match.

TALKING REASON Working out which objects are in scope for being spoken to
(see the end of x12 for exercises using this).

EACHTURN REASON When running each_turn routines for anything nearby, at
the end of each turn.

REACT BEFORE REASON When running react_before.
REACT AFTER REASON When running react_after.
TESTSCOPE REASON When performing a TestScope.
LOOPOVERSCOPE REASON When performing a LoopOverScope.

Here are some examples. Firstly, as promised, how to change the rule that \things you've just
dropped disappear in the dark":

[InScope person i;

if (person==player && location==thedark)

objectloop (i near player)

if (i has moved)

PlaceInScope(i);

rfalse;

];

With this routine added, the objects in the dark room the player is in are in scope only if they
have moved (that is, have been held by the player in the past); and even then, are in scope only
to the player.

95

24 Scope and what you can see

�44 EXERCISE 83

Construct a long room divided by a glass window. Room descriptions on either side should
describe what's in view on the other; the window should be lookable-through; objects on the far
side should be in scope, but not manipulable; and everything should cope well if one side is in
darkness.

�44 EXERCISE 84

Code the following puzzle. In an initially dark room there is a light switch. Provided you've seen
the switch at some time in the past, you can turn it on and o� { but before you've ever seen it,
you can't. Inside the room is nothing you can see, but you can hear a dwarf breathing. If you tell
the dwarf to turn the light on, he will.

As mentioned in the de�nition above, each object has the ability to drag other objects into scope
whenever it is in scope. This is especially useful for giving objects component parts: e.g., giving a
washing-machine a temperature dial. (The dial can't be a child object because that would throw
it in with the clothes: and it ought to be attached to the machine in case the machine is moved
from place to place.) For this purpose, the property add_to_scope may contain a list of objects
to add.

4 Alternatively, it may contain a routine. This routine can then call AddToScope(x) to put
any object x into scope. It may not, however, call ScopeWithin or any other scoping routines.

44 Scope addition does not occur for an object moved into scope by an explicit call to Pla-

ceInScope, since this must allow complete freedom in scope selections. But it does happen when
objects are moved in scope by calls to ScopeWithin(domain).

�EXERCISE 85

(From the tiny example game `A Nasal Twinge'.) Give the player a nose, which is always in scope
and can be held, reducing the player's carrying capacity.

�EXERCISE 86

(Likewise.) Create a portable sterilising machine, with a \go" button, a top which things can be
put on and an inside to hold objects for sterilisation. (Thus it is a container, a supporter and a
possessor of sub-objects all at once.)

�44 EXERCISE 87

Create a red sticky label which the player can a�x to any object in the game. (Hint: use InScope,
not add_to_scope.)

�REFERENCES
`Balances' uses scope = hroutinei tokens for legible spells and memorised spells. � See also
the exercises at the end of x12 for further scope trickery.

96

25 Helping the parser out of trouble

4 Once you begin programming the parser on a large scale, you soon reach the point where
the parser's ordinary error messages no longer appear sensible. The ParserError entry point can
change the rules even at this last hurdle: it takes one argument, the error type, and should return
true to tell the parser to shut up, because a better error message has already been printed, or
false, to tell the parser to print its usual message. The error types are all de�ned as constants:

STUCK_PE I didn't understand that sentence.
UPTO_PE I only understood you as far as: : :
NUMBER_PE I didn't understand that number.
CANTSEE_PE You can't see any such thing.
TOOLIT_PE You seem to have said too little!
NOTHELD_PE You aren't holding that!
MULTI_PE You can't use multiple objects with that verb.
MMULTI_PE You can only use multiple objects once on a line.
VAGUE_PE I'm not sure what `it' refers to.
EXCEPT_PE You excepted something not included anyway!
ANIMA_PE You can only do that to something animate.
VERB_PE That's not a verb I recognise.
SCENERY_PE That's not something you need to refer to: : :
ITGONE_PE You can't see `it' (the whatever) at the moment.
JUNKAFTER_PE I didn't understand the way that �nished.
TOOFEW_PE Only �ve of those are available.
NOTHING_PE Nothing to do!
ASKSCOPE_PE whatever the scope routine prints

Each unsuccessful grammar line ends in one of these conditions. A verb may have many lines of
grammar; so by the time the parser wants to print an error, all of them must have failed. The
error message it prints is the most `interesting' one: meaning, lowest down this list.

4 The VAGUE_PE and ITGONE_PE apply to all three pronouns (\it", \him" and \her"). The
variable vague_word contains the dictionary address of which is involved ('it', 'him' or 'her').
Note that the variables itobj, himobj and herobj hold the current settings of the pronouns.

4 The Inform parser resolves ambiguous inputs with a complicated algorithm based on prac-
tical experience. However, it can't have any expertise with newly-created verbs: here is how to
provide it. If you de�ne a routine

ChooseObjects(object, code)

then it's called in two circumstances. If code is 0 or 1, the parser is considering including the
given object in an \all": 0 means the parser is intending not to include it, 1 means it intends not
to. The routine should reply

0 (or false) to say \carry on";
1 to force it to be included; or
2 to force it to be excluded.

It may want to decide using verb_word (the variable storing the current verb word, e.g., 'take')
and action_to_be, which is the action which would happen if the current line of grammar were
successfully matched.

97

25 Helping the parser out of trouble

The other circumstance is when code is 2. This means the parser is sorting through a list
of items (those in scope which best matched the input), trying to decide which single one is most
likely to have been intended. If it can't choose a best one, it will give up and ask the player.
ChooseObjects should then return a number from 0 to 9 (0 being the default) to give the object
a score for how appropriate it is.

For instance, some designers would prefer \take all" not to attempt to take scenery objects
(which Inform, and the original Infocom parser, will do). Let us code this, and also teach the
parser that edible things are more likely to be eaten than inedible ones:

[ChooseObjects obj code;

if (code<2) { if (obj has scenery) return 2; rfalse; }

if (action_to_be==##Eat && obj has edible) return 3;

if (obj hasnt scenery) return 2;

return 1;

];

Scenery is now excluded from \all" lists; and is further penalised in that non-scenery objects are
always preferred over scenery, all else being equal. Most objects score 2 but edible things in the
context of eating score 3, so \eat black" will now always choose a Black Forest gateau in preference
to a black rod with a rusty iron star on the end.

�4 EXERCISE 88

Allow \lock" and \unlock" to infer their second objects without being told, if there's an obvi-
ous choice (because the player's only carrying one key), but to issue a disambiguation question
otherwise. (Use Extend, not ChooseObjects.)

�REFERENCES
See `Balances' for a usage of ParserError.

98

Chapter IV: Testing and Hacking

26 Debugging verbs and tracing

If builders built buildings the way programmers write programs, the
�rst woodpecker that came along would destroy civilisation.

{ old computing adage

Infocom claimed to have �xed nearly 2000 bugs in the course of writing `Sorceror', which
is a relatively simply game today. Adventure games are exhausting programs to test and
debug because of the huge number of states they can get into, many of which did not occur
to the author. (For instance, if the player solves the \last" puzzle �rst, do the other puzzles
still work properly? Are they still fair?) The main source of error is simply the designer
not noticing that some states are possible. The Inform library can't help with this, but
it does contain features to help the tester to quickly reproduce states (by moving objects
around freely, for instance) and to see what the current state actually is (by displaying the
tree of objects, for instance).

Inform provides a small suite of debugging verbs to this end, but only if the game
contains the line

Constant DEBUG;

to de�ne the constant DEBUG, before including the library �les. (Just in case you forget
having done this, the letter D appears in the game banner to stop you releasing such a
version by accident.)

You then get the following verbs, which can be used at any time in play:

purloin <anything>

abstract <anything> to <anything>

tree tree <anything>

scope scope <anything>

goto <number> gonear <anything>

actions actions on actions off

routines routines on routines off

timers timers on timers off

trace trace on trace off trace <1 to 5>

recording recording on recording off

replay

random

99

26 Debugging verbs and tracing

You can \purloin" any item or items in your game at any time, wherever you are. This
clears concealed for anything it takes, if necessary. You can likewise \abstract" any item
to any other item (meaning: move it to the other item). To get a listing of the objects
in the game and how they contain each other, use \tree", and to see the possessions of
one of them alone, use \tree hthati". The command \scope" prints a list of all the objects
currently in scope, and can optionally be given the name of someone else you want a list
of the scope for (e.g., \scope pirate"). Finally, you can go anywhere, but since rooms
don't have names understood by the parser, you have to give either the object number,
which you can �nd out from the \tree" listing, or the name of some object in the room
you want to go to (this is what \gonear" does). Turning on \actions" gives a trace of all
the actions which take place in the game (the parser's, the library's or yours); turning on
\routines" traces every object routine (such as before or life) that is ever called, except
for short_name (as this would look chaotic, especially on the status line). Turning on
\timers" shows the state of all active timers and daemons each turn.

The commands you type can be transcribed to a �le with the \recording" verb, and
run back through with the \replay" verb. (This may not work under some implementations
of the ITF interpreter.) If you're going to use such recordings, you will need to �x the
random number generator, and the \random" verb should render this deterministic: i.e.,
after any two uses of \random", the same stream of random numbers results. Random
number generation is poor on some machines: you may want to Replace the random-
number generator in software instead.

A test version of In�x, a source-level debugger for Inform, is now available from its author,
Dilip Sequeira: it is an enhanced form of Mark Howell's Zip interpreter providing for
breakpoints, tracing and so forth. It should ultimately be publically archived with the rest
of the Inform project.

4 For In�x's bene�t, Inform (if compiling with the option set) produces a �le of \debugging
information" (cross-references of the game �le with the source code), and anyone interested in
writing an Inform utility program may want to know the format of this �le: see the short C
program Infact which prints out the debugging information �le in English.

On most interpreters, though, run-time crashes can be mysterious, since the interpreters
were written on the assumption that they would only ever play Infocom game �les (which
are largely error-free). Zip is better here and will usually tell you why and where the
problem is; given a game �le address you can work back to the problem point in the source
either with Mark Howell's txd (disassembler) or by running Inform with the assembler
trace option on.

Here are all the ways I know to crash an interpreter at run-time (with high-level
Inform code, that is; if you insist on using assembly language or the indirect function
you're raising the stakes), arranged in decreasing order of likelihood:

� Writing to a property which an object hasn't got;
� Dividing by zero, possibly by calling random(0);
� Giving a string or numerical value for a property which can only legally hold a
routine, such as before, after or life;

� Applying parent, child or children to the nothing object;

100

26 Debugging verbs and tracing

� Using print object on the nothing object, or for some object which doesn't exist
(use print (name), print (the) etc., instead as these are safeguarded);

� Using print (string) or print (address) to print from an address outside the
memory map of the game �le, or an address at which no string is present (this will
result in random text appearing, possibly including unprintable characters, which
might crash the terminal);

� Running out of stack space in a recursive loop.

4 There are times when it's hard to work out what the parser is up to and why (actually,
most times are like this). The parser is written in levels, the lower levels of which are murky
indeed. Most of the interesting things happen in the middle levels, and these are the ones for
which tracing is available. The levels which can be traced are:

Level 1 Grammar lines
Level 2 Individual tokens
Level 3 Object list parsing
Level 4 Resolving ambiguities and making choices of object(s)
Level 5 Comparing text against an individual object

\trace" or \trace on" give only level 1 tracing. Be warned: \trace �ve" can produce reams of text

when you try anything at all complicated: but you do sometimes want to see it, to get a list of

exactly everything that is in scope and when. There are two levels lower than that but they're

too busy doing dull spade-work to waste time on looking at parser_trace. There's also a level

0, but it consists mostly of making arrangements for level 1, and isn't very interesting.

44 Finally, though this is a drastic measure, you can always compile your game -g (`debugging
code') which gives a listing of every routine ever called and their parameters. This produces an
enormous mel�ee of output. More usefully you can declare a routine with an asterisk * as its �rst
local variable, which produces such tracing only for that one routine. For example,

[ParseNoun * obj n m;

results in the game printing out lines like

[ParseName, obj=26, n=0, m=0]

every time the routine is called.

�REFERENCES
A simple debugging verb called \xdeterm" is de�ned in the DEBUG version of `Advent', to make
the game deterministic (i.e., not dependant on what the random number generator produces).
� See David Wagner's library extension \showobj.h" for a debugging verb which prints out an
object's current state (its property values and attributes) in a neat Inform format. (This is
unfortunately slightly too long to include in the standard library.)

101

27 Limitations on the run-time format

How wide the limits stand
Between a splendid and an happy land.

{ Oliver Goldsmith (1728{1774), The Deserted Village

The Infocom run-time format is well-designed, and has three major advantages: it is
compact, widely portable and can be quickly executed. Nevertheless, like any rigidly
de�ned format it imposes limitations. These are not by any means pressing. Inform
itself has a exible enough memory-management system not to impose arti�cial limits on
numbers of objects and the like.

The format comes in several versions, of which the default is now Advanced (or
version 5). Standard, version 3, games can still be compiled on request but the V3 format
imposes genuine restrictions. Two new formats have recently been created for very large
games: version 7 and version 8. Inform compiles these, but a small enhancement of the
\Zip" interpreter is required to run them. (See the latest edition of the Speci�cation of the

Z-Machine for details.) This modi�cation will hopefully become standard but in the mean
time, very large games can simply be distributed with a suitably modi�ed interpreter.

Memory. This is the only serious restriction. The maximum size of a game (in K) is given
by:

V3 V4 V5 V6 V7 V8

128 256 256 576 320 512

Because games are encoded in a very compressed form, and because the centralised library
of Inform is e�cient in terms of not duplicating code, even 128K allows for a game at
least half as large again as a typical old-style Infocom game. The default format (V5) will
hold a game as large and complex as the �nal edition of `Curses', substantially bigger than
any Infocom game, with room to spare. V6, the late Infocom graphical format, should be
avoided for text games, as it is much more di�cult to interpret. The V8 format allows
quite gargantuan games (one could implement, say, a merging of the `Zork' and `Enchanter'
trilogies in it) and is recommended as the standard size for games too big to �t in V5. V7,
which is implemented in a slightly di�erent way, is provided as an alternative and may be
easier to get working on old interpreters other than Zip.

Grammar. The number of verbs is limited only by memory. Each can have up to 20
grammar lines (one can recompile Inform with MAX_LINES_PER_VERB de�ned to a higher
setting to increase this) and a line contains at most 6 tokens. (Using general parsing
routines will prevent either restriction from biting.)

Vocabulary. There is no theoretical limit. Typical games have vocabularies of between
1000 and 2000 words, but doubling that would pose no problem.

Dictionary resolution. Dictionary words are truncated to their �rst 9 letters (except that
non-alphabetic characters, such as hyphens, count as 2 \letters" for this purpose). They
must begin with an alphabetic character and upper and lower case letters are considered
equal. (In V3, the truncation is to 6 letters.)

102

27 Limitations on the run-time format

Attributes, properties, names. 48 attributes and 63 properties are available, and each
property can hold 64 bytes of data. Hence, for example, an object can have up to 32
names. These restrictions are harmless in practice: except in V3, where the numbers in
question are 32, 31, 8 and 4, which begins to bite.

Special e�ects. V3 games cannot have special e�ects such as bold face and underlining.
(See the next two sections.)

Objects. Limited only by memory: except in V3, where the limit is 255.

Memory management. The Z-machine does not allow dynamic allocation or freeing of
memory: one must statically de�ne an array to a suitable maximum size and live within
it. Likewise, objects cannot dynamically be created or destroyed (though this is easily imi-
tated). These restrictions greatly increase the portability of the format, and the designer's
con�dence that the game's behaviour is genuinely independent of the machine it's running
on: memory allocation at run-time is a fraught process on many machines.

Global variables. There can only be 240 of these, and the Inform compiler uses 5 as
scratch space, while the library uses slightly over 100; but since a typical game uses only
a dozen of its own, code being almost always object-oriented, the restriction is never felt.
An unlimited number of Array statements is permitted and array entries do not, of course,
count towards the 240.

\Undo". No \undo" verb is available in V3.

Function calls. A function can be called with at most 7 arguments. (Or, in V3, at most
3.)

Recursion and stack usage. The limit on this is rather technical (see the Speci�cation of

the Z-Machine). Roughly speaking, recursion is permitted to a depth of 90 routines in
almost all circumstances (and often much deeper). Direct usage of the stack via assembly
language must be modest.

4 If memory does become short, there is a standard mechanism for saving about 8-10% of
the memory. Inform does not usually trouble to, since there's very seldom the need, and it makes
the compiler run about 10% slower. What you need to do is de�ne abbreviations and then run
the compiler in its \economy" mode (using the switch -e). For instance, the directive

Abbreviate " the ";

(placed before any text appears) will cause the string \ the " to be internally stored as a single
`letter', saving memory every time it occurs (about 2500 times in `Curses', for instance). You can
have up to 64 abbreviations. A good list of abbreviations can be found in the Technical Manual:
basically, avoid proper nouns and instead pick on short combinations of a space and common
two- or three-letter blocks. You can even get Inform to work out by itself what a good stock of
abbreviations would be: but be warned, this makes the compiler run about 29000% slower.

103

28 Boxes, menus and drawings

Yes, all right, I won't do the menu: : : I don't think you realise how
long it takes to do the menu, but no, it doesn't matter, I'll hang
the picture now. If the menus are late for lunch it doesn't matter,
the guests can all come and look at the picture till they are ready,
right?

{ John Cleese and Connie Booth, Fawlty Towers

�WARNING

The special e�ects in this section do not work on Standard games (though an approximation
to menus is produced).

One harmless e�ect, though not very special, is to ask the player a yes/no question. To
do this, print up the question and then call the library routine YesOrNo, which returns
true/false accordingly.

The status line is perhaps the most distinctive feature of Infocom games in play.
This is the (usually highlighted) bar across the top of the screen. Usually, the game
automatically prints the current game location, and either the time or the score and number
of turns taken. It has the score/turns format unless the directive

Statusline time;

has been written in the program, in which case the game's 24-hour clock is displayed.

4 If you want to change this, just Replace the parser's private DrawStatusLine routine. This
requires a little assembly language: see the next section for numerous examples.

About character graphic drawings: on some machines, text will by default be displayed in
a proportional font (i.e., one in which the width of a letter depends on what it is, so that
for example an `i' will be narrower than an `m'). If you want to display a diagram made
up of letters, such as a map, the spacing may then be wrong. The statement font off

ensures that any fancy font is switched o� and that a �xed-pitch one is being used: after
this, font on restores the usual state.

�WARNING

Don't turn the font on and o� in the middle of a line; this doesn't look right on some
machines.

4 When trying to produce a character-graphics drawing, you sometimes want to produce
the \ character, one of the four \escape characters" which can't normally be included in text. A
double @ sign followed by a number includes the character with that ASCII code; thus:

@@64 produces the literal character @
@@92 produces \ @@94 produces ^ @@126 produces ~

104

28 Boxes, menus and drawings

44 Some interpreters are capable of much better character graphics (those equipped to run the
Infocom game `Beyond Zork', for instance). There is a way to �nd out if this feature is provided
and to make use of it: see the Speci�cation of the Z-Machine.

44 A single @ sign is also an escape character. It must be followed by a 2-digit decimal number
between 0 and 31 (for instance, @05). What this prints is the n-th `variable string'. This feature is
not as useful as it looks, since the only legal values for such a variable string are strings declared
in advance by a LowString directive. The String statement then sets the n-th variable string.
For details and an example, see the answer to the east-west reversal exercise in x6.

A distinctive feature of later Infocom games was their use of epigrams. The assembly
language required to produce this e�ect is easy but a nuisance, so there is an Inform
statement to do it, box. For example,

box "I might repeat to myself, slowly and soothingly,"

"a list of quotations beautiful from minds profound;"

"if I can remember any of the damn things."

""

"-- Dorothy Parker";

Note that a list of one or more lines is given (without intervening commas) and that a
blank line is given by a null string. Remember that the text cannot be too wide or it will
look awful on a small screen. Inform will automatically insert the boxed text into the game
transcript, if one is being made. The author takes the view that this device is amusing for
irrelevant quotations but irritating when it conveys vital information (such as \Beware of
the Dog"). Also, some people might be running your game on a laptop with a vertically
challenged screen, so it is polite to provide a \quotes o�" verb.

A snag with printing boxes is that if you do it in the middle of a turn then it will
probably scroll half-o� the screen by the time the game �nishes printing for the turn.
The right time to do so is just after the prompt (usually >) is printed, when the screen
will de�nitely scroll no more. You could use the Prompt: slot in LibraryMessages to
achieve this, but a more convenient way is to put your box-printing into the entry point
AfterPrompt (called at this time each turn).

�EXERCISE 89

Implement a routine Quote(n) which will arrange for the n-th quotation (where 0 � n � 49) to
be displayed at the end of this turn, provided it hasn't been quoted before.

Sometimes one would like to provide a menu of text options (for instance, when pro-
ducing instructions which have several topics, or when giving clues). This can be done
with the DoMenu routine, which imitates the traditional \Invisiclues" style. By setting
pretty_flag=0 you can make a simple text version instead; a good idea for machines with
very small screens. Here is a typical call to DoMenu:

DoMenu("There is information provided on the following:^\

^ Instructions for playing\

^ The history of this game\

^ Credits^",

#r$HelpMenu, #r$HelpInfo);

105

28 Boxes, menus and drawings

Note the layout, and especially the carriage returns. The second and third arguments are
themselves routines: the notation #r$, seldom seen in high-level Inform, allows routine
names to become ordinary numerical values. (Actually the �rst argument can also be a
routine to print a string instead of the string itself, which might be useful for adaptive
hints.) The HelpMenu routine is supposed to look at the variable menu_item. In the case
when this is zero, it should return the number of entries in the menu (3 in the example).
In any case it should set item_name to the title for the page of information for that item;
and item_width to half its length in characters (this is used to centre titles on the screen).
In the case of item 0, the title should be that for the whole menu.

The second routine, HelpInfo above, should simply look at menu_item (1 to 3
above) and print the text for that selection. After this returns, normally the game prints
\Press [Space] to return to menu" but if the value 2 is returned it doesn't wait, and if the
value 3 is returned it automatically quits the menu as if Q had been pressed. This is useful
for juggling submenus about.

Menu items can safely launch whole new menus, and it is easy to make a tree of
these (which will be needed when it comes to providing hints across any size of game).

�EXERCISE 90

Code an \Invisiclues"-style sequence of hints for a puzzle, revealed one at a time, as a menu item.

Finally, you can change the text style. The statement for this is style and its e�ects are
loosely modelled on the VT100 (design of terminal). The style can be style roman, style
bold, style reverse or style underline. Again, poor terminals may not be able to
display these, so you shouldn't hide crucial information in them.

�REFERENCES

`Advent' contains a menu much like that above. � The \Infoclues" utility program translates
UHS format hints (a standard, easy to read and write layout) into an Inform �le of calls to DoMenu
which can simply be included into a game; this saves a good deal of trouble.

29 Descending into assembly language

44 Some dirty tricks require bypassing all of Inform's higher levels to program the Z-machine
directly with assembly language. There is an element of danger in this, in that some combinations
of unusual opcodes can look ugly on some incomplete or wrongly-written interpreters: so if you're
doing anything complicated, test it as widely as possible.

�WARNING

Most of this section does not apply to Standard games.

106

29 Descending into assembly language

The best-researched and most reliable interpreter available by far is Mark Howell's Zip; as it's
also the fastest, it will hopefully `take over' entirely. Next comes the InfoTaskForce, which is
thorough and should give no serious trouble, but was written when the format was a little less
well understood, and so (in some ports) gets some (rare) screen e�ects wrong. It also lacks an
\undo" feature, so the parser's \undo" verb won't work under ITF. The other two publically-
available interpreters are pinfocom and zterp, but these are unable to run Advanced games. In
the last resort, sometimes it's possible to use one of Infocom's own supplied interpreters with
a di�erent game from that it came with; but only sometimes, as they may have inconvenient
�lenames `wired into them'. The author recommends that anyone using exotic assembly-language
features get hold of both ITF and Zip, and test on both.

Both the common interpreters are, in fact, pretty reliable. But remember that one source
of unportability is inevitable. Your game may be running on a screen which is anything from a
64 by 9 pocket organiser up to a 132 by 48 X-window.

Anyone wanting to really push the outer limits (say, by implementing Space Invaders or
NetHack) will need to refer to The Speci�cation of the Z-Machine, the second edition of which
has been rewritten as a comprehensive \standards" document. This is much more detailed (the
de�nition of aread alone runs for two pages) and covers the whole range of assembly language.
However, this section does document all those features which can't be better obtained with higher-
level code.

Lines of assembly language must begin with an @ character and then the name of the \opcode"
(i.e., assembly language statement). A number of arguments, or \operands" follow (how many
depends on the opcode): these may be any Inform constants, local or global variables or the stack
pointer sp, but may not be compound expressions. sp does not behave like a variable: writing a
value to it pushes that value onto the stack, whereas reading the value of it (for instance, by giving
it as an operand) pulls the top value o� the stack. Don't use sp unless you have to. After the
operands, some opcodes require a variable (or sp) to write a result into. The opcodes documented
in this section are as follows:

@split_window lines

@set_window window

@set_cursor line column

@buffer_mode flag

@erase_window window

@set_colour foreground background

@aread text parse time function <result>

@read_char 1 time function <result>

@tokenise text parse dictionary

@encode_text ascii-text length from coded-text

@output_stream number table

@input_stream number

@catch <result>

@throw value stack-frame

@save buffer length filename <result>

@restore buffer length filename <result>

107

29 Descending into assembly language

@split_window lines

Splits o� an upper-level window of the given number of lines in height from the main screen.
This upper window usually holds the status line and can be resized at any time: nothing visible
happens until the window is printed to. Warning: make the upper window tall enough to include
all the lines you want to write to it, as it should not be allowed to scroll.

@set_window window

The text part of the screen (the lower window) is \window 0", the status line (the upper one) is
window 1; this opcode selects which one text is to be printed into. Each window has a \cursor
position" at which text is being printed, though it can only be set for the upper window. Printing
on the upper window overlies printing on the lower, is always done in a �xed-pitch font and does
not appear in a printed transcript of the game. Note that before printing to the upper window,
it is wise to use @buffer_mode to turn o� word-breaking.

@set_cursor line column

Places the cursor inside the upper window, where (1; 1) is the top left character.

@buffer_mode flag

This turns on (flag=1) or o� (flag=1) word-breaking for the current window (that is, the practice
of printing new-lines only at the ends of words, so that text is neatly formatted). It is wise to
turn o� word-breaking while printing to the upper window.

@erase_window window

This opcode is unfortunately incorrectly implemented on some interpreters and so it can't safely
be used to erase individual windows. However, it can be used with window=-1, and then clears
the entire screen. Don't do this in reverse video mode, as a bad interpreter may (incorrectly) wipe
the entire screen in reversed colours.

@set_colour foreground background

If coloured text is available, set text to be foreground-against-background. The colour numbers
are borrowed from the IBM PC:

2 = black, 3 = red, 4 = green, 5 = yellow,

6 = blue, 7 = magenta, 8 = cyan, 9 = white

0 = the current setting, 1 = the default.

On many machines coloured text is not available: the opcode will then do nothing.

@aread text parse time function <result>

The keyboard can be read in remarkably exible ways. This opcode reads a line of text from the
keyboard, writing it into the text string array and `tokenising' it into a word stream, with details
stored in the parse string array (unless this is zero, in which case no tokenisation happens). (See
the end of x23 for the format of text and parse.) While it is doing this, it calls function(time)
every time tenths of a second while the user is thinking: the process ends if ever this function
returns true. <result> is to be a variable, but the value written in it is only meaningful if you're
using a \terminating characters table". Thus (by Replaceing the Keyboard routine in the library
�les) you could, say, move around all the characters every ten seconds of real time. Warning:
not every interpreter supports this real-time feature, and most of those that do count in seconds
instead of tenths of seconds.

108

29 Descending into assembly language

@read_char 1 time function <result>

results in the ASCII value of a single keypress. Once again, the function is called every time

tenths of a second and may stop this process early. Function keys return special values from 129
onwards, in the order: cursor up, down, left, right, function key f1, ..., f12, keypad digit 0, ..., 9.
The �rst operand must be 1 (used by Infocom as a device number to identify the keyboard).

@tokenise text parse dictionary

This takes the text in the text bu�er (in the format produced by aread) and tokenises it (i.e.
breaks it up into words, �nds their addresses in the dictionary) into the parse bu�er in the usual
way but using the given dictionary instead of the game's usual one. (See the Speci�cation of the

Z-machine for the dictionary format.)

@encode_text ascii-text length from coded-text

Translates an ASCII word to the internal (Z-encoded) text format suitable for use in a @tokenise
dictionary. The text begins at from in the ascii-text and is length characters long, which
should contain the right length value (though in fact the interpreter translates the word as far as
a 0 terminator). The result is 6 bytes long and usually represents between 1 and 9 letters.

@output_stream number table

Text can be output to a variety of di�erent `streams', possibly simultaneously. If number is 0
this does nothing. +n switches stream n on, �n switches it o�. The output streams are: 1 (the
screen), 2 (the game transcript), 3 (memory) and 4 (script of player's commands). The table can
be omitted except for stream 3, when it's a table array holding the text printed; printing to this
stream is never word-broken, whatever the state of @buffer_mode.

@input_stream number

Switches the `input stream' (the source of the player's commands). 0 is the keyboard, and 1 a
command �le (the idea is that a list of commands produced by output_stream 4 can be fed back
in again).

@catch <result>

The opposite of throw, catch preserves the \stack frame" of the current routine: meaning, roughly,
the current position of which routine is being run and which ones have called it so far.

@throw value stack-frame

This causes the program to execute a return with value, but as if it were returning from the
routine which was running when the stack-frame was caught (see catch). Any routines which
were called in the mean time and haven't returned yet (because each one called the next) are
forgotten about. This is useful to get the program out of large recursive tangles in a hurry.

@save buffer length filename <result>

Saves the byte array buffer (of size length) to a �le, whose (default) name is given in the
filename (a string array). Afterwards, result holds 1 on success, 0 on failure.

109

29 Descending into assembly language

@restore buffer length filename <result>

Loads in the byte array buffer (of size length) from a �le, whose (default) name is given in the
filename (a string array). Afterwards, result holds the number of bytes successfully read.

�WARNING

On some interpreters, a few of these features may not work well: the extended save and restore,
and catch / throw in particular. (You can always distribute your game with an interpreter that
does work well.) The tokenise and encode_text opcodes work well enough, but the same e�ects
can be achieved much better with higher-level parser programming.

�EXERCISE 91

In a role-playing game campaign, you might want several scenarios, each implemented as a separate
Inform game. How could the character from one be saved and loaded into another?

�4 EXERCISE 92

Design a title page for `Ruins', displaying a more or less apposite quotation and waiting for a key
to be pressed.

�4 EXERCISE 93

Change the status line so that it has the usual score/moves appearance except when a variable
invisible_status is set, when it's invisible.

�4 EXERCISE 94

Alter the `Advent' example game to display the number of treasures found instead of the score
and turns on the status line.

�4 EXERCISE 95

(From code by Joachim Baumann.) Put a compass rose on the status line, displaying the directions
in which the room can be left.

�44 EXERCISE 96

(Cf. `Trinity'.) Make the status line consist only of the name of the current location, centred in
the top line of the screen.

�44 EXERCISE 97

Implement an Inform version of the standard `C' routine printf, taking the form

printf(format, arg1, ...)

to print out the format string but with escape sequences like %d replaced by the arguments (printed
in various ways). For example,

printf("The score is %e out of %e.", score, MAX_SCORE);

should print something like \The score is �ve out of ten."

�REFERENCES

The assembly-language connoisseur will appreciate `Freefall' by Andrew Plotkin and `Robots' by
Torbj�rn Andersson, although the present lack of on-line hints make these di�cult games to win.

110

Chapter V: Language and Compiler Reference

Language is a cracked kettle on which we beat out tunes for bears
to dance to, while all the time we long to move the stars to pity.

{ Gustave Flaubert (1821{1880)

30 Language speci�cation

The aim here is to describe the underlying language of Inform as if it were a general-purpose
programming language. A few technical and diagnostic commands are relegated to the Technical

Manual (henceforth abbreviated to TM), and Inform's assembly language is documented in the
Speci�cation of the Z-Machine. The version of the language discussed is Inform 5.5, which slightly
extends previous versions.

x30.1 Source �le format

When Inform reads in a �le, it treats a few characters in special ways. The character ! (when not
inside single or double quotes) means the rest of the line (up to the next new-line) is a comment,
and Inform throws it away, e.g.,

parade.number = 78; ! Setting the number of trombones

The backslash \ can be used inside strings in double-quotes "like so" to `fold' them, so that the
new-line and subsequent spaces are ignored: e.g., in

print "~Ou sont les neiges d'antan?~ \

Marjory asks, passing the bowl of grapes.^";

the string is understood to have only one space (and no new-line) between the ~ and the M of
Marjory. Inside double-quotes, the ~ is understood as a double-quote, and the ^ as a new-line:
thus the above string is actually read as

\Ou sont les neiges d'antan?" Marjory asks, passing the bowl of grapes.

followed by a new-line. If you want to get an un-typeable character in a double-quoted string,
or one which would otherwise cause problems, write @@ followed by its ASCII code in decimal.
(One to four digits of decimal may be given, but see the Speci�cation for what values outside
the normal ASCII range of 32 to 126 produce: in particular, German accented characters may be
available.) For example, @@92 produces a literal backslash and @@64 produces a literal @ sign. (A

111

30 Language speci�cation

single @ is also an escape character, for variable strings: see the east-west reection exercise of x6
for brief notes.)

Otherwise, new-lines have no signi�cance and are treated as spaces, as are tab characters.
Inside single quotes, "'", an apostrophe (i.e. a single quote) is also written ^. For instance,

if (word == 'can^t' or 'isaac^s') ...

Inform source code is a list of directives, which are instructions to the compiler itself (such as
\create an object as follows"), and routines, which are pieces of code for it to compile.

x30.2 The logical machine

All Inform programs run on an imaginary computer called the Z-machine. A program consists
of routines, which may either stand alone or be attached to particular objects (these are called
\embedded routines"). Almost all data is represented by 16-bit numbers (2 bytes long). For some
purposes, these are considered signed in the usual way, holding values

�32768 � n � 32767

with the hexadecimal value $ffff (i.e., 65535) being the same as �1. The operations of addition,
subtraction, multiplication and comparison are signed; but division (rounded to the integer below),
calculation of remainder after division and bitwise operations are not. So for instance (�4) +
(�1) = �5 but (�4)=(�1) = 65532=65535 = 0.

Global variables store numbers such as these, and so do local variables (which are
local in that they belong to particular routines). In all Inform expressions, such as

random(100+lives_left)

everything is always a number: 100, lives_left and the result.
In addition, the machine contains objects. These are related in a tree, so that an ob-

ject may be considered to contain other objects, which may themselves contain others, and so
on. Objects are referred to by number (these count upwards from 1, with a value of 0 repre-
senting `nothing', which is not an object but a concept). Objects carry certain variables, called
properties, with them, and also ags (states which are either on or o�) called attributes.

The dictionary contains words which might be understood by the game. Each word in
the dictionary has a unique associated number (actually its address in the dictionary table), so a
number may also refer to a dictionary word.

Inform has no concept of the `type' of an expression, so the compiler will allow (say)

'marble' - Brass_Lamp

even though subtracting the object number of the brass lamp from the dictionary reference to the
word \marble" is hardly going to have a meaningful result.

4 The memory map of the machine is divided into three. At the bottom (in terms of
addresses) is dynamic memory, data which can be written or read: this is stored when a game is
saved to disc. Next comes a region of static, read-only memory which can freely be read from,
including (for instance) the dictionary. The lower two regions together always take up less than
64K: when a number is regarded as an \address", it refers to one byte in these regions by number,
upwards from 0.

112

30 Language speci�cation

44 The third and largest region of memory, containing the program itself and (almost) all
strings (such as room descriptions), may extend the game's size to the top of memory, up to
the maximum (between 128K and 512K, depending on format). It is read-only and that only in
a limited way. Ordinary addresses can't reach above the 64K mark, so one cannot have a byte
address into this region. Instead, every routine and string has a reference number called a \packed
address"; there are commands to call the routine or to print the string with given packed address,
but that's the only access allowed.

44 Inform guarantees that the following numbers are all di�erent:

� zero;
� �1, which equals $ffff, which equals the library constant NULL;
� the number of an object;
� a function's packed address;
� a string's packed address.

It is thus possible to partially deduce the type of a number (see the library function ZRegion) from
its value. But note that byte addresses { in particular, dictionary addresses { are not guaranteed
to di�er. The translation function from packed to real addresses depends on the version number,
and no other assumption should be made about it.

44 The entire Z-machine lives in the memory map except for the stack (which is also stored
when the game is saved). It is only accessible to assembly language and use of it is not recom-
mended to those of a nervous disposition.

x30.3 Constants

Here is a set of example constants:

31415 -1 $ff $$1001001 'lantern' ##Look 'X'

"an emerald the size of a plover's egg"

"~Hello,~ said Peter.^~Hello, Peter,~ said Jane.^"

String constants in double-quotes are discussed above. Numbers can be written in decimal (in the
obvious way), or in hexadecimal, preceded by a $,

$ffff $1a $31

or in binary, preceded by a double dollar $$. Single characters can be represented in single
quotation marks, e.g.

'a' '\' '"' 'z'

Dictionary words are also written in single quotes, e.g.

'aardvark' 'tetrahedron' 'marquis'

4 This is a little ambiguous, but Inform knows the di�erence because a dictionary word
contains more than one letter. Very occasionally one needs to put a one-letter word in the
dictionary: to get the word `a', for instance, write #n$a (the #n$ usage is otherwise obsolete).

113

30 Language speci�cation

4 Writing the constant 'marjoram' somewhere in the code actually inserts the word \mar-
joram" into the dictionary if it isn't already present. Likewise, writing "You blink." will compile
the string automatically.

44 These are all internally represented by numbers. Characters are held as ASCII codes; dic-
tionary words by their reference numbers; and strings in double-quotes by their packed addresses.
Note, though, that of the two conditions

'yes' == 'yes' "no" == "no"

the �rst is always true (the word `yes' is only in the dictionary once), whereas the second is
probably false, because Inform has compiled two copies of the string \no", which have di�erent
packed addresses.

Actions (and fake actions) have numbers, by which it is sometimes helpful to refer to them: \the
action number corresponding to Take" is written ##Take.

Other constants known to Inform are:

� those already de�ned, by the Constant directive, in your code or by the library;
� names of speci�c objects (an object may move and alter in play, but the number which
refers to it does not);

� names of attributes and properties already created;
� names of arrays, de�ned by the Array directive;
� some arcane ones always created by Inform (see the TM).

4 Two standard library-de�ned constants are nothing, which equates to 0, and is the \no
object" value (thus, the child of a childless object is equal to nothing); and NULL, which equates
to �1 or (in hexadecimal) equivalently to $ffff, used as the \not given" default value of properties
which are expected to be routines (such as before).

44 Finally, you can also write the packed address of a function (de�ned by you elsewhere in
the code) as a constant. In the context of an initial value (for instance, when declaring an array
entry or object property) you can just give its name. In an expression, however, the name must
be preceded by #r$: for instance, fn_to_call=#r$Name;.

x30.4 Directives

A directive is an instruction to the compiler, rather than code for it to compile. Inside routines,
directives must start with a # (to distinguish them from statements), but outside routines this is
optional (and usually omitted). Directives end with a semi-colon ; (just as statements do). The
following directives de�ne or create things:

Array hnamei Make an array of data
Attribute hnamei De�ne a new attribute
Class : : : De�ne a new class
Constant hnamei hvaluei De�ne a named constant
Extend : : : Make extra grammar for an existing verb
Fake_action hnamei De�ne a new \fake action"
Global hnamei : : : Make a global variable
Nearby Make an object inside the last Object
Object Make an object

114

30 Language speci�cation

Property hnamei : : : De�ne a new property
Verb : : : Make grammar for a new verb

(The hvaluei of a Constant is zero if unspeci�ed; the other directives are described more fully
below.) The next set a�ect Inform's choice of what to compile and what not to:

End End compilation here
Endif End of conditional compilation
Ifdef hnamei Compile only if symbol is de�ned
Ifndef hnamei Compile only if symbol is unde�ned
Ifnot Compile only if previous If... failed
Ifv3 Compile only for Standard games
Ifv5 Compile only for Advanced games
Include h�le-namei Include that �le here
Replace hroutine-namei Don't compile this library routine

4 Conditional compilation allows code for routines which need only exist in some \versions"
of your games. For instance,

print "Welcome to the ";

#IFV3; print "Standard"; #IFNOT; print "Advanced"; #ENDIF;

print " version of Zork LVI.";

(The #IFNOT clause is optional.) Note the trailing semicolon: Inform is not C! Such clauses may
be nested up to 32 deep, and may contain whole routines. They may not, however, conditionally
give part of a statement or directive. Thus, for instance,

print #IFV3; "Standard"; #IFNOT; "Advanced"; #ENDIF;

is not legal.

44 One special case is checking to see if the constant VN_**** is de�ned, where **** is a
four-digit number n: it is if and only if the current Inform version number is at least n. Thus

#IFDEF VN_1501; print "The all new Inform show!^"; #ENDIF;

compiles the statement only under Inform 5.5 or later.

44 Warning: it is possible to accidentally arrange for a block of code only to be considered
on one of the two passes of the compiler: Inform will not like this. (Cf. the end of the library
grammar �le for an example of avoiding this problem.)

A few directives alter settings:

Release hnumberi Set the game's Release Number
Serial hstringi Set the game's Serial Number
Statusline : : : Make the status line show score or time
Switches hswitchesi Set default compilation switches

The release number of a game (by default 1) is generally an edition number; the serial number
is the compilation date in the form 950331, that is, yymmdd. Inform sets this automatically (on

115

30 Language speci�cation

machines where the date is accessible), so the Serial directive is provided only for forgers and
machines without an internal clock. Statusline score or Statusline time declare which piece
of information should be displayed on screen in the top right during play. Switches, which if
present should be the �rst directive in the source, sets \command-line switches" as if they had
been typed as part of the command starting Inform. For instance,

Switches dv8;

declares that the game must be compiled as version-8 and that double-spaces are to be contracted.

44 These recondite directives exist, but not for public use:

Default Dictionary Listsymbols Listdict Listverbs Lowstring Stub System_file

Trace Btrace Etrace Ltrace Notrace Nobtrace Noetrace Noltrace

(all in the TM). The one low-level directive which might be of practical use is Abbreviate (see
x28), an economy measure for enormous games.

x30.5 Property and attribute de�nitions

Inform itself de�nes only one property (name, see below) and no attributes: all others must be
declared before use (and the library de�nes many). The syntax is

Attribute hnamei [alias hexisting-attributei]
Property [hquali�eri] hnamei [alias hexisting-propertyi]
or Property [hquali�eri] hnamei [hdefault-valuei]

The alias form is used for making new names for existing attributes and properties, so that
the same physical property can (with extreme care) be used for two di�erent things in di�erent
contexts; the library indulges in a little of this chicanery, but it is not recommended. There are
two property \quali�ers": additive, discussed below, and long.

44 long is meaningful only in Standard (V3) games and obsolete anyway: under Inform 5.5,
or in other versions, all properties are \long".

x30.6 Object and class de�nitions

An object de�nition consists of a header giving its name and initial residence, followed by a body
of its initial properties and attributes; a class de�nition just has a name and such a body.

4 The full syntax of the header is

Object hobj-namei "short name" [hparent-obji]
or Nearby hobj-namei "short name"

or Class hclass-namei

and the parent object, if given, must have already been de�ned. The parent of a Nearby object is
the last object de�ned by Object rather than Nearby, which is usually a room de�nition. A class
creates no speci�c object, so has no speci�c parent. The syntax for an object, then, is

116

30 Language speci�cation

hHeaderi [,]
class hclass-1i hclass-2i : : : hclass-ni [,]
with hproperty-name-1i hvalue-1i : : : hvalue-ni,
hproperty-name-2i hvalue-1i : : : hvalue-ni,
: : :
hproperty-name-ni hvalue-1i : : : hvalue-ni [,]

has hatt-1i hatt-2i : : : hatt-ni

Although it's conventional to write class, with and has in this order, actually they can be in
any order and any or all can be omitted altogether: and the commas in square brackets [,] are
optional in between these �elds. The classes listed under class are those which the object inherits
from. Each hvaluei can be any legal constant: up to 4 can be given per property in Standard
games but up to 32 in other versions. In addition, a property may, instead of a list of constants,
give as its value a (nameless) embedded routine.

4 For deep-rooted historical reasons, one property is treated di�erently from the others:
name. Its data must be a list of English words in double-quotes, to be put into the dictionary.
This is illogical, as dictionary words are normally referred to in single quotes: but it has the
advantage that single-letter words are more easily written.

44 The attributes hatt-1i and so on can be taken away as well as added, thus:

...

has light ~scored;

which is sometimes useful to over-ride an inheritance from a class de�nition.

44 Here is exactly how inheritance works. Suppose an object is created with classes C1; :::; Cn
(in the order they are listed). It starts out tabula rasa (a blank slate), with no attributes and no
properties. It then inherits the attributes and property values of C1; next C2, and so on up to Cn;
�nally it acquires the attributes and properties from its own de�nition. The order is important
because there may be a clash. Ordinarily, a later speci�ed value wipes out an earlier one: if C1

says number is 5, and C2 says it is 7, then the answer is 7.

44 An additive property accumulates values instead. For instance, if C1 gives

name "small" "featureless" "cube",

and the object itself has "green" as name, the result is as if the object had been declared with

name "small" "featureless" "cube" "green",

because name is an additive property (whereas number is not).

44 Classes themselves may inherit from sub-classes, by this same rule.

117

30 Language speci�cation

x30.7 Global variables and arrays

There are two kinds of variable, global and local (plus one special one, the stack pointer sp).
Global variables must be declared before use, by a Global directive, so:

Global hvarnamei
or Global hvarnamei = hinitial-valuei
or Global harray-namei harray-typei hinitial-valuesi

The initial value can be any constant, and is 0 if not speci�ed.
There are four kinds of array: byte arrays (with entries written array->0 up to array-

>(n� 1)), word arrays (with entries array-->0 up to array-->(n� 1)), strings and tables. The
entries in a byte array or a string are just bytes, numbers from 0 to 255 (which can't be negative).
Thus they cannot hold dictionary words, function or string packed-addresses, or object numbers.
Entries in a word array or a table can be any Inform number.

A string is a special kind of byte array whose 0th entry is the size of the array: thus a
string s of size 20 contains s->0 (set to 20), and actual data entries s->1 up to s->20. A table is
the analogous kind of word array. For instance,

tab-->(random(tab-->0))

evaluates to a random entry from the table tab.
Arrays are created by

Array harray-namei harray-typei hinitial-valuesi

where the harray-typei is -> (byte array), --> (word array), string or table. There are also four
ways to give the hinitial-valuesi.

hnumberi This many entries, initially 0
hvalue-1i : : : hvalue-ni n � 2 entries with these values
"hstringi" Entries are ASCII values of chars in string
[hvalue-1i : : : hvalue-ni] n entries with these values

The last of these is useful for making very large arrays of (usually static) data, because semicolons
can be scattered freely between the values (avoiding the maximum line length). For example:

Array a1 -> 20;

Array a2 string "Hello";

Array a3 --> 1 3 5 7 9 11;

Array Public_Holidays table

[; "New Year's Day" "Twelfth Night";

"Ash Wednesday" "Good Friday";

"Martin Luther King Day";

];

which will store

a1 0 0 0 ... 0 (20 bytes)

a2 5 'H' 'e' 'l' 'l' 'o' (6 bytes)

a3 1 3 5 7 9 11 (6 words)

and so on. Initial values can be any legal constants, including names of other arrays or of functions.

118

30 Language speci�cation

4 The name of an Array is a constant whose initial value is the byte address to the area of
memory where the data lives. Creating an array with Global has identical e�ect except that the
name is of a global variable which initially holds this constant value. (In Inform 5.4 and earlier,
all arrays were made this way, somewhat wastefully of global variables. The old keywords data,
initial and initstr still work with Global, but are considered pass�e.)

�WARNING

You can write to the size byte (or word) of a string (or table), but that won't make the amount
of space allocated any larger: nor is there any bound-checking at run time.

x30.8 Grammar and verbs

For the Verb and Extend directives, see the summary given in x31.

x30.9 Routines

Routines start with a [and end with a]. That is, they open with

[hRoutine-namei hlocal-var-1i : : : hlocal-var-ni;

giving the names of local variables for the routine (0 � n � 15). The routine ends with just
];. Routines embedded in object de�nitions, i.e. routines which are the value of a property, are
the same except that no routine-name is given, and they may end in], if the object de�nition
resumes after them.

The �rst few local variables also hold the arguments passed to the routine when it is called.
That is, if you have a routine

[Wander from i j; ...some code...;];

and it is called by Wander(attic) then the local variable from will initially have the value attic.
The rest all start out at zero. As a debugging aid, if an asterisk * is inserted between the routine
name and the variable list then tracing code is compiled to print details each time the routine is
called.

Function calls (that is, calls to routines) are legal with between 0 and 7 arguments (except
for V3 Standard games, where the maximum is 3) and every routine always returns a value. If
execution runs into the] at the end, that value is `true' (or 1) for an ordinary routine, or `false'
(or 0) for an embedded one.

A routine consists of a sequence of lines of code. These come in six varieties:

� assignments (such as i=23;);
� statements (such as if or print);
� action commands in <, > (or <<, >>) brackets;
� function calls (see above);
� labels (such as .PrettyPass;), beginning with a full stop, provided for you to jump to (if
you have no tedious scruples about the use of a goto instruction);

� assembly language lines, beginning with an @ sign and documented in x29 and the Speci-

�cation of the Z-Machine.

It's legal to mix in directives, but a directive inside a routine should begin with a # character.

119

30 Language speci�cation

x30.10 Arithmetic expressions

Arithmetic (and other) expressions can contain the following:

+ - plus, minus
* / % & | times, divide, remainder, bitwise and, bitwise or
-> --> byte array, word array entry
. .& .# property, property address, property length
- unary minus
++ -- incrementing and decrementing variables (as in C)

The order of precedence is as shown: i.e., those on each line are equally potent, more potent than
those above but less than those beneath. Expressions are not allowed to contain conditions, nor
assignments: 2+(i=3/j) is not a legal expression. Some legal examples are:

4*(x+3/y) Fish(x)+Fowl(y) lamp.time buffer->5

Note that ++ and -- can only be applied to variables, not to properties or array entries.

�WARNING

A division by zero error (such as n/0 or n%0) may crash the game at run time.

x30.11 Built-in functions

A very few functions are built into the language of Inform itself, rather than written out longhand
in the library �les, but they behave like any other routines. They are:

parent(obj) parent of object
sibling(obj) sibling of object
child(obj) eldest child of object
children(obj) number of (direct) children of object
eldest(obj) same as child
youngest(obj) youngest child of object
elder(obj) elder sibling of object
younger(obj) same as sibling
random(x) uniformly random number between 1 and x � 1
indirect(addr) call routine with packed address addr, return its return value
indirect(addr,v1) call addr(v1), return its return value
indirect(addr,v1,v2) call addr(v1, v2), return its return value

�WARNING

random(0) may cause a division by zero error on some interpreters, though it should not.

44 Although normally implemented in `hardware', these routines can be Replaced as if they
were library routines in `software'.

x30.12 Conditions

A simple condition is

hai hrelationi hbi

where the relation is one of

120

30 Language speci�cation

== a equals b
~= a doesn't equal b
< > >= <= numeric (signed) comparisons
has object a has attribute b
hasnt object a hasn't attribute b
in object a is currently held by object b
notin : : :is not: : :

Note that in and notin look only at direct possession. Something in a rucksack which the player
holds, will not have in player, but it will have in rucksack. With == (and ~=) only, one may
also write the useful construction

hsomethingi == hv1i [or hv2i [or hv3i]]

which is true if the �rst something is any of the values given. An idiosyncracy of Inform, for
`hardware reasons', is that you can only have three. Conditions can be combined by the && and
jj operators (which have equal priority):

hcondition1i && hcondition2i
hcondition1i jj hcondition2i

true if both, or either (respectively) are true. These are always tested left to right until the
outcome is known. So, for instance,

i==1 jj Explode(2)==2

does not call Explode if i is 2. Examples of legal conditions are:

i==1 or 2 or 3

door has open jj (door has locked && key in player)

x30.13 Assignments

There are �ve legal forms of assignment:

hvariablei = hvaluei;
hvariablei++; hvariablei--; ++hvariablei; --hvariablei;
hbyte-array-or-stringi->hentryi = hvaluei;
hword-array-or-tablei-->hentryi = hvaluei;
hobjecti.hpropertyi = hvaluei;

For example:

i=-15-j; i=j-->1; albatross.weight = albatross.weight + 1;

(paintpot.&roomlist)-->i = location; turns++;

Although these look logical, they are not allowed:

paintpot.#roomlist = 5;

paintpot.&roomlist = my_array;

because one cannot change the size or address of a property in play.

�WARNING

Attempting to write to a property which an object does not have may crash the game at run time.
Likewise, you should not attempt to read or write properties of non-existent objects (such as 0,
sometimes called nothing).

121

30 Language speci�cation

x30.14 Printing commands

A string on its own, such as

"The world explodes in a puff of garlic.";

is printed, with a new-line, and the current routine is returned from with return value `true', i.e.,
1. In addition:

new_line prints a new-line
print ... prints the given things
print_ret ... prints, new-lines and returns 1
spaces n prints n spaces
font on/off turns proportional fonts on/o�
style ... in Advanced games, sets text style
box "s1" ... "sn" in Advanced games, puts up quotation box
inversion prints out the current Inform version number

The text style, normally Roman, can be changed to any one of

roman reverse bold underline

print and print_ret take a comma-separated list of things to print out, which can be:

"hstringi" prints this string
hexpressioni prints this number

(char) hexpressioni prints this ASCII character
(name) hexpressioni prints the name of this object
(the) hexpressioni prints de�nite article and name
(The) hexpressioni prints capitalised de�nite article and name
(a) hexpressioni prints inde�nite article and name
(number) hexpressioni prints this number in English
(string) hexpressioni prints the string with this packed address
(address) hexpressioni prints the string at this byte address
(hRoutinei)hexpressioni calls the Routine with this argument

Thus, for example,

print_ret (The) x1, " explodes messily. Perhaps it was unwise to \

drop it into ", (the) x2, ".";

produces, say,

The hand grenade explodes messily. Perhaps it was unwise to drop

it into the glassworks.

print (string) x should be used to convert the numerical value of "a string like this"

back to text. print (address) x is chiey useful for printing out dictionary words: thus print
(address) 'piano' will print the word \piano". These bracketed printing rules are easily added
to. Thus, if you de�ne a routine SpellName(x) to print the name of spell x, then

print "Your ", (SpellName) yomin_spell, " discharges horribly.";

122

30 Language speci�cation

will work nicely.
A few forms of print are now obsolete but still supported: print char x does the same

as print (char) x, and in addition there are three old printing commands:

print_char a same as print (char) a

print_addr a same as print (address) a

print_paddr a same as print (string) a

x30.15 Manipulating objects

remove obj removes object from the tree
move o1 to o2 moves o1 to become eldest child of o2
give obj a1 ... an gives attributes to obj

Attributes beginning with a ~ are taken away rather than given.

x30.16 Returning from routines

Apart from print_ret (and strings in isolation), which return true, one can:

return Return true, i.e., 1
return x Return value x
rtrue Return true, i.e., 1
rfalse Return false, i.e., 0

x30.17 Blocks of code

A block of code may be entirely empty, may be a single instruction or a series of several, in which
case it must be enclosed in braces { and }. Thus, for instance, in

if (i==1) print "The water rises!";

if (i==2) { print "The water rises further...";

water++;

}

the if statements contain a block of code each; the e�ect of

for (i=0:i<10:Frog(i++)) ;

is just to call Frog(0) up to Frog(9) (thus, an empty block can be a sensible thing to write).
Blocks can be nested inside each other up to 32 deep. An if statement (for example) is a single
statement even when it contains a great deal of code in its block: so, for example,

if (i>1) if (water<10) "The water is beginning to worry you.";

is legal. One small exception: an if followed by an else counts as two statements, and this means
Inform handles \hanging elses" in a possibly unwanted way:

if (i==1) if (j==1) "Hello."; else "Goodbye.";

The else clause here attaches to the �rst if statement, not the second, so \Goodbye." is printed
exactly when i==2. The moral of this is that it's wise to brace so that else is clearly unambiguous.

123

30 Language speci�cation

x30.18 Control constructs

Inform provides:

if hconditioni hblock1i [else hblock2i]
while hconditioni hblocki
do hblocki until hconditioni
for (hinitialisei:htesti:heach timei)
objectloop (hvariablei in hobjecti)
objectloop (hvariablei from hobjecti)
objectloop (hvariablei near hobjecti)
switch (hexpressioni) hblocki
break

jump hlabeli

The for construct is essentially the same as that in C, except for the colons : (which in C would
be semicolons). Its carries out the initial assignment(s), then executes the code for as long as the
condition holds, executing the end assignment after each pass through the code. For instance,

for (i=1:i<=10:i++) print i, " ";

counts to 10. All three clauses are optional, and the empty condition is always true; multiple
assignments can be made. For instance:

for (i=0,j=10:i<10:i++,j--) print i, " + ", j, " = ", i+j, "^";

for (::) print "Ha!^";

the latter laughing maniacally forever.
break breaks out of the current loop or switch (not quite the same as breaking out the

current block of code because if statements don't count).
objectloop goes through the object tree, and is extremely useful. from means from the

given object through its siblings; in means through all children of the given object, and near

means through all children of the parent of the object. For instance, the following do the same
thing:

objectloop (x in lamp) { ... }

for (x=child(lamp): x~=0: x=sibling(x)) { ... }

Note that the library creates a variable called top_object holding the highest existing object
number: so a way to loop over every object de�ned in your own code is

for (i=selfobj+1: i<=top_object: i++) ...

since selfobj is the last of the objects created by the library.

�WARNING

When looping through the object tree, be careful if you are altering it at the same time. For
instance, objectloop (x in rucksack) remove x; is likely to go horribly wrong { it's safer not
to cut down a tree while actually climbing it. The safe way is to keep lopping branches o�, while
(child(x)~=0) remove child(x);

124

30 Language speci�cation

�WARNING

If you jump all the way from a routine in one object to a routine in another, then the library's
self variable will not keep up with you. (In any case, jumping across routines is considered poor
form.)

The switch statement takes the form:

switch (expression)

{ constant-value-1: ...

constant-value-2: ...

...

default: ...

}

the default clause being optional. It executes only the code which follows whichever value the
expression has. There is no \case fall-through" as in C: so there's no need to keep using break

instructions as in C. The default code, if given, is executed when none of the others match. Each
hconstant-valuei is a comma-separated list of constants. For example,

switch(random(6))

{ 1: "A snake slithers.";

2 to 3: "An elephant bellows.";

default: "The jungle is ominously silent.";

}

The value c1 to c2 means \between c1 and c2, inclusive".
Embedded routines can, if desired, take the similar form: switching on actions, which can

conveniently be written without the need for a ## in front of their names. For instance,

before

[; Jump: "The ceiling is too low.";

Look, Inv, Wait: ;

default: "An invisible force holds you inactive.";

];

default is again optional.

44 The switch is actually on the value of a variable called sw__var, which the library sets to
the current action when calling before and after, and to its reason when calling life.

�EXERCISE 98
Write a routine to print out prime factorisations of numbers from 2 to 100.

x30.19 Actions

The commands

< hActioni [h�rst-objecti [hsecond-objecti]] >

<< hActioni [h�rst-objecti [hsecond-objecti]] >>

125

30 Language speci�cation

cause the given actions to take place. In the latter case, the current routine then returns 1, or
true. The objects can be given as any expression, but the action must just be a name (with no
initial ##): unless it is bracketed, in which case any expression is allowed, e.g.

<< (MyAmazingAction(15)) magic_lamp>>;

Unpleasant things may happen if this expression doesn't evaluate to an action.

31 A summary of grammar

This section summarises the syntax more fully described in xx22-23.

A `verb' is a set of possible initial words in keyboard command, which are treated synonymously
(for example, \wear" and \don") together with a `grammar'. A grammar is a list of `lines' which
the parser tries to match, one at a time, and accepts the �rst one which matches. The directive

Verb [meta] hverb-word-1i : : : hverb-word-ni hgrammari

creates a new verb. If it is said to be meta then it will count as `out of the game': for instance
\score" or \save". New synonyms can be added to an old verb with:

Verb hnew-word-1i : : : hnew-word-ni = hexisting-verb-wordi

An old verb can be modi�ed with the directive

Extend [only] hexisting-word-1i : : : hexisting-word-ni [hpriorityi] hgrammari

If only is speci�ed, the existing words given (which must all be from the same existing verb) are
split o� into a new independent copy of the verb. If not, the directive extends the whole existing
verb. The priority can be first (insert this grammar at the head of the list), last (insert it at
the end) or replace (throw away the old list and use this instead); the default is last.

A line is a list of `tokens' together with the action generated if each token matches so that
the line is accepted. The syntax of a line is

* htoken-1i htoken-2i : : :htoken-ni -> hactioni

where 0 � n � 6. The action is named without initial ## signs and if an action which isn't in the
standard library set is named then an action routine (named with the action name followed by
Sub) must be de�ned somewhere in the game.

A token matches a single particle of what has been typed. The possible tokens are:

"hwordi" that literal word only

noun any object in scope

126

31 A summary of grammar

held object held by the player

multi one or more objects in scope

multiheld one or more held objects

multiexcept one or more in scope, except the other

multiinside one or more in scope, inside the other

hattributei any object in scope which has the attribute

creature an object in scope which is animate

noun = hRoutinei any object in scope passing the given test

scope = hRoutinei an object in this de�nition of scope

number a number only

hRoutinei refer to this general parsing routine

special any single word or number

For the noun = hRoutinei token, the test routine must decide whether or not the object in the
noun variable is acceptable and return true or false.

For the scope = hRoutinei token, the routine must look at the variable scope_stage.
If this is 1, then it must decide whether or not to allow a multiple object (such as \all") here
and return true or false. If 2, then the routine may put objects into scope by calling either
PlaceInScope(obj) to put just obj in, or ScopeWithin(obj) to put the contents of obj into
scope. It must then return either true (to prevent any other objects from entering scope) or false
(to let the parser put in all the usual objects). If scope_stage=3, it must print a suitable message
to tell the player that this token was misunderstood.

A general parsing routine can match any text it likes. It should use wn, the variable holding
the number of the word currently being parsed (counting from the verb being word 1) and the
routine NextWord() to read the next word and move wn on by 1. The routine returns:

�1 if the user's input isn't understood,
0 if it's understood but doesn't refer to anything,
1 if there is a numerical value resulting, or
n if object n is understood.

In the case of a number, the actual value should be put into the variable parsed_number.On an
unsuccessful match (returning �1) it doesn't matter what the �nal value of wn is. Otherwise it
should be left pointing to the next thing after what the routine understood.

127

32 Compiler options and memory settings

I was promised a horse, but what I got instead
was a tail, with a horse hung from it almost dead.

{ Palladas of Alexandria (319?{400?)

{ translated by Tony Harrison (1937{)

The reader is warned that some details in this section are slightly di�erent on di�erent machines.

On most machines, Inform is run from the command line, by a command like

inform -xv5 balances

and simply typing inform will produce a good deal of help information about the command line
options available. The command line syntax is

inform hswitchesi hsettingsi hsource �lei houtput �lei

where only the hsource �lei is mandatory. By default, the full names to give the source and output
�les are derived in a way suitable for the machine Inform is running on: on a PC, for instance,
advent may be understood as asking to compile advent.inf to advent.z5.

The switches are given in one or more groups, preceded by a minus sign - in the usual Unix
command-line style. The current list of legal switches is:

a list assembly-level instructions compiled

b give statistics and/or line/object list in both passes

c more concise error messages

d contract double spaces after full stops in text

e economy mode (slower): make use of declared abbreviations

E0 Archimedes-style error messages (current setting)

E1 Microsoft-style error messages

f frequencies mode: show how useful abbreviations are

g with debugging code: traces all function calls

h print this information

i ignore default switches set within the file

j list objects as constructed

k output Infix debugging information to "Game_Debug"

l list all assembly lines

m say how much memory has been allocated

n print numbers of properties, attributes and actions

o print offset addresses

p give percentage breakdown of story file

q keep quiet about obsolete usages

r record all the text to "Game_Text"

s give statistics

t trace Z-code assembly

u work out most useful abbreviations

128

32 Compiler options and memory settings

v3 compile to version-3 (Standard) story file

v4 compile to version-4 (Plus) story file

v5 compile to version-5 (Advanced) story file

v6 compile to version-6 (graphical) story file

v7 compile to version-7 (*) story file

v8 compile to version-8 (*) story file

(*) formats for very large games, requiring

slightly modified game interpreters to play

w disable warning messages

x print # for every 100 lines compiled (in both passes)

z print memory map of the Z-machine

T enable throwback of errors in the DDE

(Thus, as long as your name doesn't have a `y' in it, you can amuse yourself typing your name in
as a switch and seeing what it does.) Note that these switches can also be selected by putting a
switches directive into the source code before anything else, such as

Switches xdv5s;

The most useful switch is v, to choose the game format. For example, the above line is from the
example game `Advent', which is consequently compiled to an Advanced game. (Under Inform
5.5, this is the default anyway.) The recommended versions to use are v3, v5 and v8.

Many of the remaining switches make Inform produce extra output, but do not a�ect its
compilation:

a b l m n t Tracing options to help with maintaining Inform, or for debugging assembly
language programs.
o p s z To print out information about the �nal game �le: the s (statistics) option is
particularly useful to keep track of how large the game is growing.
c w q E T In c mode, Inform does not quote whole source lines together with error messages;
in w mode it suppresses warnings; in T mode, which is only present on the Acorn Archimedes,
error throwback will occur in the `Desktop Development Environment'. Inform 5.5 and later gives
warnings about obsolete usages (such as for i 1 to 5), though it does compile them, unless q
is set. Finally, E is provided since di�erent error formats �t in better with debugging tools on
di�erent machines.
f Indicates roughly how many bytes the abbreviations saved.
h Prints out the help information (and is equivalent to just typing inform).
j x Makes Inform print out steady text to prove that it's still awake: on very slow machines
this may be a convenience.
k Writes a \debugging information" �le for the use of the In�x debugger (similarly, the �lename
is something suitable for the machine).
r Intended to help with proof-reading the text of a game: transcribes all of the text in double-
quotes to the given �le (whose name is something suitable for the machine).
u Tries to work out a good set of abbreviations to declare for your game, but extremely slowly

(a matter of hours) and consuming very much memory (perhaps a megabyte).

This leaves three more switches which actually alter the game �le which Inform would compile:

d Converts text like

"...with a mango. You applaud..."

129

32 Compiler options and memory settings

into the same with only a single space after the full stop, which will prevent an interpreter from
displaying a spurious space at the beginning of a line when a line break happens to occur exactly
after the full stop; this is to help typists who habitually double-space. Note that it does not
contract double spaces after question or exclamation marks.
e Only in `economy' mode does Inform actually process abbreviations, because this is seldom
needed and slows the compiler by 10% or so; the game �le should not play any di�erently if
compiled this way, but will probably be shorter, if your choice of abbreviations was sensible.
g Makes Inform automatically compile trace-printing code on every function call; in play this
will produce reams of text (several pages between each chance to type commands) but is sometimes
useful. Note that in Inform 5.3 or later, this can be set on an individual command by writing *

as its �rst local variable, without use of the g switch.
i Overrides any switches set by switches directives in the source code; so that the game can
be compiled with di�erent options without having to alter that source code.

One useful (optional) setting is the directory to take library �les from: this should be preceded
by a + sign.

Inform's memory management is about as exible as it can be given that it has to run in some
quite hostile environments. In particular, it is unable to increase the size of any stretch of memory
once allocated, so if it runs out of anything it has to give up. If it does run out, it will produce
an error message saying what it has run out of and how to provide more.

There are three main choices: $small, $large and $huge. (Which one is the default
depends on the computer you use.) Even $small is large enough to compile all the example
games, including `Advent'. $large compiles almost anything and $huge has been used only for
`Curses' and `Jigsaw' in their most advanced states, and even they hardly need it. A typical game,
compiled with $large, will cause Inform to allocate about 350K of memory: and the same game
about 100K less under $small. (These values will be rather lower if the computer Inform runs
on has 16-bit integers.) In addition, Inform physically occupies about 170K (on my computer).
Thus, the total memory consumption of the compiler at work will be between 4 to 500K.

Running

inform $list

will list the various settings which can be changed, and their current values. Thus one can compare
small and large with:

inform $small $list

inform $large $list

If Inform runs out of allocation for something, it will generally print an error message like:

"Game", line 1320: Fatal error: The memory setting MAX_OBJECTS (which

is 200 at present) has been exceeded. Try running Inform again with

$MAX_OBJECTS=<some-larger-number> on the command line.

and indeed

inform $MAX_OBJECTS=250 game

130

32 Compiler options and memory settings

(say) will tell Inform to try again, reserving more memory for objects this time. Note that settings
are made from left to right, so that for instance

inform $small $MAX_ACTIONS=200 ...

will work, but

inform $MAX_ACTIONS=200 $small ...

will not because the $small changes MAX_ACTIONS again. Changing some settings has hardly
any e�ect on memory usage, whereas others are expensive to increase. To �nd out about, say,
MAX_VERBS, run

inform $?MAX_VERBS

(note the question mark) which will print some very brief comments. Users of Unix, where $ and
? are special shell characters, will need to type

inform '$?list' inform '$?MAX_VERBS'

and so on.

33 All the Inform error messages

Inform can produce about 250 di�erent error messages. Since interpreters can in some cases crash
horribly when given incorrect �les, Inform never writes a �le which caused an error, though it will
permit �les which incurred only warnings.

Fatal errors

To begin with, fatal errors (which stop Inform in its tracks) come in three kinds, the �rst containing
only this one:

Too many errors: giving up

After 100 errors, Inform stops (in case it has been given the wrong source �le altogether). Secondly,
�le input/output can go wrong. Most commonly, Inform has the wrong �lename:

Couldn't open input file <filename>

Couldn't open output file <filename>

Couldn't open transcript file <filename>

Couldn't open debugging information file <filename>

Couldn't open temporary file 1 <filename>

Couldn't open temporary file 2 <filename>

Too many files have included each other: increase #define MAX_INCLUSION_DEPTH

131

33 All the Inform error messages

(Temporary �les are used (on most machines) for temporary storage space during compilation.
They are removed afterwards.) The last error only occurs if 5 �les all include each other. Increasing
this #definemeans re-compiling Inform from its C source, a drastic measure. The remaining �le-
handling errors usually mean that the disc is full: something has gone wrong with an already-open
�le.

I/O failure: couldn't read from source file

I/O failure: couldn't write to temporary file 1

I/O failure: couldn't reopen temporary file 1

I/O failure: couldn't read from temporary file 1

I/O failure: couldn't write to temporary file 2

I/O failure: couldn't reopen temporary file 2

I/O failure: couldn't read from temporary file 2

I/O failure: couldn't write to story file

I/O failure: couldn't write to transcript file

I/O failure: can't write to debugging information file

The third class of fatal error is Inform running out of memory. It might fail drastically, having
not enough memory to get started, as follows: : :

Couldn't allocate memory

Couldn't allocate memory for an array

There are four similar hallocate errors unique to the PC `Quick C' port. More often memory
will run out in the course of compilation, like so:

The memory setting <setting> (which is <value> at present) has been exceeded.

Try running Inform again with $<setting>=<some-larger-number> on the command line.

For details of memory settings, see x32 above.

Errors

There are a few conventions. Anything in double-quotes is a quotation from your source code;
other strings are in single-quotes. A message like

Expected ... but found "..."

means that Inform expected something di�erent from what it found; if it doesn't say what it
found, this usually means it found nothing (i.e. the statement was incomplete). Messages in the
form

No such ... as "..."

Not a ...: "..."

mean that a name is unrecognised in the former case (say, a typing error might produce this), or
is recognised but means something else in the latter case (an attempt to use a routine where a
property is expected would give such an error).

To begin with, the source-code format may go awry:

Too many tokens on line (note: to increase the maximum, set

$MAX_TOKENS=some-bigger-number on the Inform command line)

Line too long (note: to increase the maximum length, set

132

33 All the Inform error messages

$BUFFER_LENGTH=some-bigger-number on the Inform command line)

Too much text for one pair of "s to hold

Too much text for one pair of 's to hold

Open quotes " expected for text but found <text>

Close quotes " expected for text but found <text>

(Usually BUFFER_LENGTH allows about 2000 characters per line.) When giving something (such as
an object) an internal name, there are rules to be obeyed; for instance, you can't give an object
the same name as a property already declared:

Symbol name expected

Symbol names are not permitted to start with an '_'

Symbol name is too long: <text>

Duplicated symbol name: <text>

At the top level, the most common \no such command" errors are

Expected an assignment, command, directive or opcode but found <text>

Unknown directive: <text>

Expected directive or '[' but found statement <text>

Expected directive or '[' but found opcode <text>

Expected directive or '[' but found <text>

which means Inform didn't even understand the �rst word of a line. Directives to Inform can
produce the following errors:

All 32 attributes already declared (compile as Advanced game to get an extra 16)

All 48 attributes already declared

All 30 properties already declared (compile as Advanced game to get an extra 32)

All 62 properties already declared

Expected an attribute name after 'alias'

Expected a property name after 'alias'

'alias' incompatible with 'long'

'alias' incompatible with 'additive'

'alias' refers to undefined attribute <text>

'alias' refers to undefined property <text>

All 235 global variables already declared

An initialised global variable was defined only in Pass 1

A 'string' array can have at most 256 entries

Array entry too large for a byte: <text>

Expected ']' but found '['

Misplaced '['

Misplaced ']'

Missing array definition

Expected '->', '-->', 'string' or 'table' but found <text>

Expected '=', '->', '-->', 'string' or 'table' but found <text>

Use of alias is rare, except inside the library �les. The last of these errors means that a global
variable has been wrongly initialised, and a common cause of this is typing, say, global trolls

5; instead of global trolls = 5;.

'*' divider expected, but found <text>

133

33 All the Inform error messages

No such token as <text>

Expected '=' after 'scope' but found <text>

Expected routine after 'scope=' but found <text>

Expected routine after 'noun=' but found <text>

'=' is only legal here as 'noun=Routine'

'->' clause missing

No such action routine as <text>

Not an action: <text>

Too many lines of grammar for verb: increase #define MAX_LINES_PER_VERB

There is no previous grammar for the verb <text>

Two different verb definitions refer to <text>

Expected 'replace', 'last' or 'first' but found <text>

These are the grammatical errors, the last three concerning extended verb de�nitions. Normally
one gets 16 grammar lines per verb. It's probably better to write grammar more carefully (using
routines to parse adjectives more carefully, for instance) than to exceed this, as the game parser
will otherwise slow down. The object/class de�nition errors are largely self-explanatory:

Object/class definition finishes with ','

Two commas ',' in a row in object/class definition

No such attribute as <text>

No such class as <text>

Expected 'with', 'has' or 'class' in object/class definition but found <text>

Expected an (internal) name for object but found the string <text>

An object must be defined after the one which contains it: (so far)

there is no such object as <text>

Not an object: <text>

No such property as <text>

Not a property: <text>

Miscellaneous errors complete the list produced by mostly-uncommon directives:

Expected ';' after 'include <file>' but found <text>

A 'switches' directive must come before constant definitions

Expected 'score' or 'time' after 'statusline' but found <text>

The serial number must be a 6-digit date in double-quotes

The version number must be 3 to 8: 3 for Standard games and 5 for Advanced

Expected 'on' or 'off' after 'font' but found <text>

Defaulted constants can't be strings

Must specify 0 to 3 variables in 'stub' routine

Expected 'full' or nothing after 'etrace' but found <text>

Too many abbreviations declared

All abbreviations must be declared together

It's not worth abbreviating <text>

Expected a 'string' value

No such directive as <text>

Conditional compilation happens as a result of one of #IFDEF, #IFV3 or #IFV5. The former
tests whether a constant is de�ned; the latter test for version-3 (Standard) games or version-5

134

33 All the Inform error messages

(Advanced) games. An #IFNOT section is optional but the closing #ENDIF is compulsory. In these
error messages #IF... means any of the three opening clauses.

'#IF...' nested too deeply: increase #define MAX_IFDEF_DEPTH

'#ENDIF' without matching '#IF...'

'#IFNOT' without matching '#IF...'

Two '#IFNOT's in the same '#IF...'

End of file reached inside '#IF...'

Routines begin with a [and some local variables and end with]:

Routine has more than 15 local variables

The earliest-defined routine is not allowed to have local variables

Expected local variable but found ',' or ':' (probably the ';' after the

'[...' line was forgotten)

Misplaced ']'

Comma ',' after ']' can only be used inside object/class definitions

Expected ',' or ';' after ']' but found <text>

Expected ';' after ']' but found <text>

The error messages for expressions are fairly simple. Note, however, that one is not allowed to
type, say, lamp.number++; but must instead write lamp.number = lamp.number + 1; The ++

and -- operators can only be applied to variables, not properties or array entries.

Expected condition but found expression

Unexpected condition

Expected an assignment but found <text>

Expected an assignment but found an expression

Attempt to use void as a value

Attempt to use an assignment as a value

Attempt to use a condition as a value

Operator has too few arguments

Operator has too many arguments

'++' and '--' can only apply directly to variables

At most three values can be separated by 'or'

'or' can only be used with the conditions '==' and '~='

Too many brackets '(' in expression

Brackets '(' too deeply nested

Missing bracket ')' in function call

Spurious comma ','

Misplaced comma ','

Wrong number of arguments to system function

'children' takes a single argument

'youngest' takes a single argument

'elder' takes a single argument

'indirect' takes at least one argument

Type mismatch in argument <text>

A function may be called with at most 3 arguments

Malformed statement 'Function(...);'

Spurious terms after function call

Spurious terms after assignment

Spurious terms after expression

135

33 All the Inform error messages

Next, constants. Note that dictionary words cannot start with a non-alphabetic character, which
means that Infocom-style `debugging verbs' which traditionally begin with a # are not allowed.

No such variable as <text>

No such constant as <text>

Not a constant: <text>

Reserved word as constant: <text>

No such routine as <text>

Dictionary words must begin with a letter of the alphabet

Dictionary word not found for constant <text>

Loop constructs: note that `old-style' for loops are a rather obsolete form (e.g., for i 1 to 10),
and the more exible style for (i=1:i<=10:i++) is now preferred.

'if' statement with more than one 'else'

'else' attached to a loop block

'for' loops too deeply nested

':' expected in 'for' loop

Second ':' expected in 'for' loop

Concluding ')' expected in 'for' loop

'to' missing in old-style 'for' loop

'to' expected in old-style 'for' loop

Final value missing in old-style 'for' loop

'{' required after an old-style 'for' loop

Old-style 'for' loops must have simple final values

Open bracket '(' expected in 'objectloop'

'objectloop' must be 'from', 'near' or 'in' something

Close bracket ')' expected in 'objectloop'

Braces '{' are compulsory unless the condition is bracketed

Unmatched '}' found

Brace mismatch in previous routine

Expected bracketed expression but found <text>

Switch value too long or a string: perhaps a statement

accidentally ended with a comma?

A 'default' clause must come last

A 'default' rule must come last

Two 'default' clauses in 'switch'

Two 'default' rules given

Expected label after 'jump' but found <text>

'do' without matching 'until'

'until' without matching 'do'

Inform checks the level of braces when a routine closes so that it can recover as quickly as possible
from a mismatch; this last error means at least one brace is still open when the routine �nishes.

Expected some attributes to 'give'

Expected 'to <object>' in 'move'

Expected 'to' in 'move' but found <text>

Expected ',' in 'print' list but found <text>

Expected 'style' to be 'roman', 'bold', 'underline' or 'reverse' but found <text>

Expected a parse buffer for 'read'

136

33 All the Inform error messages

Expected some properties to 'write'

The object to 'write' must be a variable or constant

Expected property value to 'write'

Expected 'byte' or 'word' in 'put'

Expected 'byte' or 'word' in 'put' but found <text>

These are miscellaneous commands and put and write are quite obsolete. Only action commands
like <Take brass_lantern> remain:

Action name too long or a string: perhaps a statement accidentally ended

with a comma?

The longest action command allowed is '<Action noun second>'

Angle brackets '>' do not match

Missing '>' or '>>'

Action given in constant does not exist

Action name over 60 characters long: <text>

Expected ':' (after action) but found <text>

The �rst of these may be caused by something like:

"You load the crossbow bolt.",

Drop: "The bolt falls to the floor with a thump.";

where a comma has been typed instead of a semicolon after the �rst string, so that Inform thinks
you are giving a rule for two actions, one being Drop and the other apparently called "You load

the crossbow bolt.".

Internal and assembler errors

By now we have descended to the ninth circle of Inform: the assembler. These errors are fairly
unmysterious (if only because they seldom happen), but sometimes one is told something odd like

No such label as _f456

which is caused by Inform failing to recover properly from a previous brace mismatch error. Just
ignore this and �x the earlier error (which will also have been reported). The \no such variable"
error is occasionally seen when an unknown variable is �rst referred to by being written to.

No such assembly opcode as <text>

Too many arguments

Can't store to that (no such variable)

Branch too far forward: use '?'

No such return condition for branch

Can't branch to a routine, only to a label

No such label as <text>

Not a label: <text>

To conclude with, there are a few internal error messages:

A label has moved between passes because of a low-level error just before

(perhaps an improper use of a routine address as a constant)

Object has altered in memory usage between passes: perhaps an attempt to

use a routine name as value of a small property

Duplicated system symbol name <text>

Internal error - unknown directive code

Internal error - unknown compiler code

137

33 All the Inform error messages

The last three should not happen. The �rst two occasionally do, and cause some confusion. Inform
performs two tests regularly as a safeguard to make sure that code has not come out substantially
di�erent in its two passes. The �rst failure occurs in code, the second for object/class de�nitions.
Whatever caused this should be something unusual, low-level and just before the error occurred: if
you get these errors with innocent high-level code, then probably Inform should provide a suitable
error message, so please e-mail the author with a sample of o�ending code.

Warnings

Inform can produce any number of warnings without shutting down. Note that Inform tries to
give only warnings when it hits Advanced-game features in what is to be a Standard game, for the
sake of portability. Nevertheless it is probably better to use #IFV3 and #IFV5 clauses around any
pieces of code which are to be di�erent in these two versions (if, indeed, you want two di�erent
versions).

Local variable unused: <text>

Since it is defined before inclusion of the library, game-play will begin

not at 'Main' but at the routine <text>

Ignoring Advanced-game status routine

Ignoring this Advanced-game command

Missing ','? Property data seems to contain the property name <text>

Standard-game limit of 8 bytes per property exceeded (use Advanced to get

64), so truncating property <text>

Ignoring Advanced-game opcode <text>

Ignoring Standard-game opcode <text>

In addition, Inform 5.5 makes rather more thorough syntax checks than its predecessors
and (unless the -q switch is set) may produce the following \obsolete usage" warnings:

'#a$Action' is now superceded by '##Action'

'#w$word' is now superceded by ''word''

'#n$word' is now superceded by ''word''

All properties are now automatically 'long'

Use the ^ character for an apostrophe in a dictionary word, e.g. 'peter^s'

Use 'word' as a constant dictionary address

Modern 'for' syntax is 'for (start:condition:update)'

Use 'array->byte=value' or 'array-->word=value'

Write properties using the '.' operator

'If' conditions should be bracketed

Assembly-language lines should begin with '@'

Directives inside routines should begin with '#'

An object should only have one internal name

Use '->' instead of 'data'

Use '->' instead of 'initial'

Use '->' instead of 'initstr'

138

Chapter VI: Library Reference

34 The attributes

Here is a concise account of all the normal rules concerning all the library's attributes, except
that: rules about how the parser sorts out ambiguities are far too complicated to include here,
but should not concern designers anyway; and the de�nitions of `scope' and `darkness' are given
in xx24 and 13 respectively. These rules are the result of pragmatism and compromise, but are all
easily modi�able.

absent A `oating object' (one with a found_in property, which can appear in many
di�erent rooms) which is absent will in future no longer appear in the game. Note
that you cannot make a oating object disappear merely by giving it absent, but
must explicitly remove it as well.

animate \Is alive (human or animal)." Can be spoken to in \richard, hello" style; matches
the creature token in grammar; picks up \him" or \her" (according to gender)
rather than \it", likewise \his"; an object the player is changed into becomes
animate; some messages read \on whom", etc., instead of \on which"; can't be
taken; its subobjects \belong to" it rather than \are part of" it; messages don't
assume it can be \touched" or \squeezed" as an ordinary object can; the actions
Attack, ThrowAt are diverted to life rather than rejected as being `futile violence'.

clothing \Can be worn."
concealed \Concealed from view but present." The player object has this; an object which

was the player until ChangePlayer happened loses this property; a concealed door
can't be entered; does not appear in room descriptions.

container A�ects scope and light; object lists recurse through it if open (or transparent);
may be described as closed, open, locked, empty; a possession will give it a LetGo

action if the player tries to remove it, or a Receive if something is put in; things
can be taken or removed from it, or inserted into it, but only if it is open; like-
wise for \transfer" and \empty"; room descriptions describe using when_open or
when_closed if given; if there is no de�ned description, an Examine causes the
contents to be searched (i.e. written out) rather than a message \You see nothing
special about: : :"; Search only reveals the contents of containers, otherwise saying
\You �nd nothing".

door \Is a door or bridge." Room descriptions describe using when_open or when_closed
if given; and an Enter action becomes a Go action. If a Go has to go through this
object, then: if concealed, the player \can't go that way"; if not open, then the
player is told either that this cannot be ascended or descended (if the player tried
\up" or \down"), or that it is in the way (otherwise); but if neither, then its
door_to property is consulted to see where it leads; �nally, if this is zero, then it
is said to \lead nowhere" and otherwise the player actually moves to the location.

edible \Can be eaten" (and thus removed from game).
enterable A�ects scope and light; only an enterable on the oor can be entered. If an

enterable is also a container then it can only be entered or exited if it is open.

139

34 The attributes

female Only applies to animates (and cannot have a found_in list for arcane reasons), and
only a�ects the parser's use of pronouns: it says \her" is appropriate but \him"
and \his" are not.

general A general-purpose attribute, de�ned by the library but never looked at or altered
by it. This is left free to mean something di�erent for each object: often used by
programmers for something like \the puzzle for this object has been solved".

light \Is giving o� light." (See x13.) Also: the parser understands \lit", \lighted",
\unlit" using this; inventories will say \(providing light)" of it, and so will room
descriptions if the current location is ordinarily dark; it will never be automatically
put away into the player's SACK_OBJECT, as it might plausibly be inammable or
the main light source.

lockable Can be locked or unlocked by a player holding its key object, which is given by
the property with_key; if a container and also locked, may be called \locked" in
inventories.

locked Can't be opened. If a container and also lockable, may be called \locked" in
inventories.

moved \Has been or is being held by the player." Objects (immediately) owned by the
player after Initialise has run are given it; at the end of each turn, if an item is
newly held by the player and is scored, it is given moved and OBJECT_SCORE points
are awarded; an object's initial message only appears in room descriptions if it
is unmoved.

on \Switched on." A switchable object with this is described by with_on in room
descriptions; it will be called \switched on" by Examine.

open \Open door or container." A�ects scope and light; lists (such as inventories) re-
curse through an open container; if a container, called \open" by some descrip-
tions; things can be taken or removed from an open container; similarly inserted,
transferred or emptied. A container can only be entered or exited if it is both
enterable and open. An open door can be entered. Described by when_open in
room descriptions.

openable Can be opened or closed, unless locked.
proper Its short name is a proper noun, and never preceded by \the" or \The". The

player's object must have this (so something changed into will be given it).

scenery Not listed by the library in room descriptions; \not portable" to be taken; \you
are unable to" pull, push, or turn it.

scored The player gets OBJECT_SCORE points for picking it up for the �rst time; or, if a
room, ROOM_SCORE points for visiting it for the �rst time.

static \Fixed in place" if player tries to take, remove, pull, push or turn.
supporter \Things can be put on top of it." A�ects scope and light; object lists recurse

through it; a possession will give it a LetGo action if the player tries to remove it,
or a Receive if something is put in; things can be taken or removed from it, or put
on it; likewise for transfers; a player inside it is said to be \on" rather than \in"
it; room descriptions list its contents in separate paragraphs if it is itself listed.

switchable Can be switched on or o�; listed as such by Examine; described using when_on or
when_off in room descriptions.

talkable Player can talk to this object in \thing, do this" style. This is useful for micro-
phones and the like, when animate is inappropriate.

transparent \Contents are visible." A�ects scope and light; a transparent container is treated
as if it were open for printing of contents.

140

34 The attributes

visited \Has been or is being visited by the player." Given to a room immediately after
a Look �rst happens there: if this room is scored then ROOM_SCORE points are
awarded. A�ects whether room descriptions are abbreviated or not.

workflag Temporary ag used by Inform internals, also available to outside routines; can be
used to select items for some lists printed by WriteListFrom.

worn \Item of clothing being worn." Should only be an object being immediately carried
by player. A�ects inventories; doesn't count towards the limit of MAX_CARRIED;
won't be automatically put away into the SACK_OBJECT; a Drop action will cause a
Disrobe action �rst; so will PutOn or Insert.

Note that very few attributes sensibly apply to rooms: only really light, scored and visited,
together with general if you choose to use it. Note also that an object cannot be both a container
and a supporter; and that the old attribute autosearch, which was in earlier releases, has been
withdrawn as obsolete.

35 The properties

The following table lists every library-de�ned property. The banner headings give the name, what
type of value makes sense and the default value (if other than 0). The symbol � means \this
property is additive" so that inherited values from class de�nitions pile up into a list, rather than
wipe each other out. Recall that `false' is the value 0 and `true' the value 1.

n to, s to, e to, w to, ... Room, object or routine

For rooms These twelve properties (there are also ne_to, nw_to, se_to, sw_to, in_to, out_to,
u_to and d_to) are the map connections for the room. A value of 0 means \can't go this way".
Otherwise, the value should either be a room or a door object: thus, e_to might be set to
crystal_bridge if the direction \east" means \over the crystal bridge".
Routine returns The room or object the map connects to; or 0 for \can't go this way"; or 1 for
\can't go this way; stop and print nothing further".
Warning Do not confuse the direction properties n_to and so on with the twelve direction objects,
n_obj et al.

add to scope List of objects or routine

For objects When this object is in scope, so are all those listed, or all those nominated by the
routine. A routine given here should call PlaceInScope(obj) to put obj in scope.
No return value

after Routine NULL �

Receives actions after they have happened, but before the player has been told of them.
For rooms All actions taking place in this room.
For objects All actions for which this object is noun (the �rst object speci�ed in the command);
and all fake actions for it.
Routine returns False to continue (and tell the player what has happened), true to stop here
(printing nothing).

141

35 The properties

The Search action is a slightly special case. Here, after is called when it is clear that it would
be sensible to look inside the object (e.g., it's an open container in a light room) but before the
contents are described.

article String or routine "a"

For objects Inde�nite article for object or routine to print one.
No return value

before Routine NULL �

Receives advance warning of actions (or fake actions) about to happen.
For rooms All actions taking place in this room.
For objects All actions for which this object is noun (the �rst object speci�ed in the command);
and all fake actions, such as Receive and LetGo if this object is the container or supporter
concerned.
Routine returns False to continue with the action, true to stop here (printing nothing).
First special case: A vehicle object receives the Go action if the player is trying to drive around
in it. In this case:
Routine returns 0 to disallow as usual; 1 to allow as usual, moving vehicle and player; 2 to
disallow but do (and print) nothing; 3 to allow but do (and print) nothing. If you want to move
the vehicle in your own code, return 3, not 2: otherwise the old location may be restored by
subsequent workings.
Second special case: in a PushDir action, the before routine must call AllowPushDir() and then
return true in order to allow the attempt (to push an object from one room to another) to succeed.

cant go String or routine "You can't go that way."

For rooms Message, or routine to print one, when a player tries to go in an impossible direction
from this room.
No return value

capacity Number or routine 100

For objects Number of objects a container or supporter can hold.
For the player-object Number of things the player can carry (when the player is this object);
the default player object (selfobj) has capacity initially set to the constant MAX_CARRIED.

daemon Routine NULL

This routine is run each turn, once it has been activated by a call to StartDaemon, and until
stopped by a call to StopDaemon.
Warning The same object cannot have both a daemon and a time_out property.

describe Routine NULL �

For objects Called when the object is to be described in a room description, before any paragraph
break (i.e., skipped line) has been printed. A sometimes useful trick is to print nothing in this
routine and return true, which makes an object `invisible'.
For rooms Called before a room's long (\look") description is printed.
Routine returns False to describe in the usual way, true to stop printing here.

description String or routine

For objects The Examine message, or a routine to print one out.
For rooms The long (\look") description, or a routine to print one out.
No return value

142

35 The properties

door dir Direction property or routine

For compass objects When the player tries to go in this direction, e.g., by typing the name of
this object, then the map connection tried is the value of this direction property for the current
room. For example, the n_obj \north" object normally has door_dir set to n_to.
For objects The direction that this door object goes via (for instance, a bridge might run east,
in which case this would be set to e_to).

Routine returns The direction property to try.

door to Room or routine

For objects The place this door object leads to. A value of 0 means \leads nowhere".
Routine returns The room. Again, 0 (or false) means \leads nowhere". Further, 1 (or true)
means \stop the movement action immediately and print nothing further".

each turn String or routine NULL �

String to print, or routine to run, at the end of each turn in which the object is in scope (after
all timers and daemons for that turn have been run).

No return value

found in List of rooms or routine

This object will be found in all of the listed rooms, or if the routine says so, unless it has the
attribute absent. If an object in the list is not a room, it means \present in the same room as
this object".
Routine returns True to be present, otherwise false. The routine can look at the current location
in order to decide.
Warning This property is only looked at when the player changes rooms.

grammar Routine

For animate or talkable objects This is called when the parser has worked out that the object
in question is being spoken to, and has decided the verb_word and verb_wordnum (the position
of the verb word in the word stream) but hasn't yet tried any grammar. The routine can, if it
wishes, parse past some words (provided it moves verb_wordnum on by the number of words it
wants to eat up).
Routine returns False to carry on as usual; true to indicate that the routine has parsed the entire
command itself, and set up action, noun and second to the appropriate order; or a dictionary
value for a verb, such as 'take', to indicate \parse the command from this verb's grammar
instead"; or minus such a value, e.g. -'take', to indicate \parse from this verb and then parse
the usual grammar as well".

initial String or routine

For objects The description of an object not yet picked up, used when a room is described; or a
routine to print one out.

For rooms Printed or run when the room is arrived in, either by ordinary movement or by
PlayerTo.
Warning If the object is a door, or a container, or is switchable, then use one of the when_

properties rather than initial.

No return value

143

35 The properties

invent Routine
This routine is for changing an object's inventory listing. If provided, it's called twice, �rst with
the variable inventory_stage set to 1, second with it set to 2. At stage 1, you have an entirely
free hand to print a di�erent inventory listing.
Routine returns Stage 1: False to continue; true to stop here, printing nothing further about the
object or its contents.
At stage 2, the object's inde�nite article and short name have already been printed, but messages
like \ (providing light)" haven't. This is an opportunity to add something like \ (almost empty)".
Routine returns Stage 2: False to continue; true to stop here, printing nothing further about the
object or its contents.

life Routine NULL �

This routine holds rules about animate objects, behaving much like before and after but only
handling the person-to-person events:

Attack Kiss WakeOther ThrowAt Give Show Ask Tell Answer Order

See x12, and see also the properties orders and grammar.
Routine returns True to stop and print nothing, false to resume as usual (for example, printing
\Miss Gatsby has better things to do.").

list together Number, string or routine

For objects Objects with the same list_together value are grouped together in object lists
(such as inventories, or the miscellany at the end of a room description). If a string such as
"fish" is given, then such a group will be headed with text such as "five fish".
A routine, if given, is called at two stages in the process (once with the variable inventory_stage
set to 1, once with it set to 2). These stages occur before and after the group is printed;
thus, a preamble or postscript can be printed. Also, such a routine may change the vari-
able c_style (which holds the current list style). On entry, the variable parser_one holds the
�rst object in the group, and parser_two the current depth of recursion in the list. Applying
x=NextEntry(x,parser_two); moves x on from parser_one to the next item in the group. An-
other helpful variable is listing_together, set up to the �rst object of a group being listed (or
to 0 whenever no group is being listed).
Routine returns Stage 1: False to continue, true not to print the group's list at all.
Routine returns Stage 2: No return value.

orders Routine
For animate or talkable objects This carries out the player's orders (or doesn't, as it sees �t):
it looks at actor, action, noun and second to do so. Unless this object is the current player,
actor is irrelevant (it is always the player) and the object is the person being ordered about.
If the player typed an incomprehensible command, like \robot, og sthou", then the action is
NotUnderstood and the variable etype holds the parser's error number.
If this object is the current player then actor is the person being ordered about. actor can
either be this object { in which case an action is being processed, because the player has typed an
ordinary command { or can be some other object, in which case the player has typed an order.
See x15 for how to write orders routines in these cases.
Routine returns True to stop and print nothing further; false to continue. (Unless the object
is the current player, the life routine's Order section gets an opportunity to meddle next; after
that, Inform gives up.)

144

35 The properties

name List of dictionary words �

For objects A list of dictionary words referring to this object.
Warning The parse_name property of an object may take precedence over this, if present.
For rooms A list of words which the room understands but which refer to things which \do not
need to be referred to in this game"; these are only looked at if all other attempts to understand
the player's command have failed.
Warning Uniquely in Inform syntax, these dictionary words are given in double quotes "thus",
whereas in all other circumstances they would be 'thus'. This means they can safely be only one
letter long without ambiguity.

number Any value

A general purpose property left free: conventionally holding a number like \number of turns'
battery power left".
For compass objects Note that the standard compass objects de�ned by the library all provide
a number property, in case this might be useful to the designer.
For the player-object Exception: an object to be used as a player-object must provide one of
these, and musn't use it for anything.

parse name Routine

For objects To parse an object's name (this overrides the name but is also used in determining if
two objects are describably identical). This routine should try to match as many words as possible
in sequence, reading them one at a time by calling NextWord(). (It can leave the \word marker"
variable wn anywhere it likes).
Routine returns 0 if the text didn't make any sense at all, �1 to make the parser resume its
usual course (looking at the name), or the number of words in a row which successfully matched.
In addition to this, if the text matched seems to be in the plural (for instance, a blind mouse object
reading blind mice), the routine can set the variable parser_action to the value ##PluralFound.
The parser will then match with all of the di�erent objects understood, rather than ask a player
which of them is meant.
A parse_name routine may also (voluntarily) assist the parser by telling it whether or not two
objects which share the same parse_name routine are identical. (They may share the same routine
if they both inherit it from a class.) If, when it is called, the variable parser_action is set to
##TheSame then this is the reason. It can then decide whether or not the objects parser_one and
parser_two are indistinguishable.
Routine returns �1 if the objects are indistinguishable, �2 if not.

plural String or routine

For objects The plural name of an object (when in the presence of others like it), or routine to
print one; for instance, a wax candle might have plural set to "wax candles".
No return value

react after Routine
For objects Acts like an after rule, but detects any actions in the vicinity (any actions which
take place when this object is in scope).
Routine returns True to print nothing further; false to carry on.

react before Routine
For objects Acts like a before rule, but detects any actions in the vicinity (any actions which
take place when this object is in scope).
Routine returns True to stop the action, printing nothing; false to carry on.

145

35 The properties

short name Routine

For objects The short name of an object (like \brass lamp"), or a routine to print it.
Routine returns True to stop here, false to carry on by printing the object's `real' short name
(the string given at the head of the object's de�nition). It's sometimes useful to print text like
"half-empty " and then return false.

time left Number

Number of turns left until the timer for this object (if set, which must be done using StartTimer)
goes o�. Its initial value is of no signi�cance, as StartTimer will write over this, but a timer
object must provide the property. If the timer is currently set, the value 0 means \will go o� at
the end of the current turn", the value 1 means \...at the end of next turn" and so on.

time out Routine NULL

Routine to run when the timer for this object goes o� (having been set by StartTimer and not
in the mean time stopped by StopTimer).
Warning The same object cannot have both a daemon and a time_out.
Warning A timer object must also provide a time_left property.

when closed String or routine

For objects Description, or routine to print one, of something closed (a door or container) in a
room's long description.
No return value

when open String or routine

For objects Description, or routine to print one, of something open (a door or container) in a
room's long description.
No return value

when on String or routine

For objects Description, or routine to print one, of a switchable object which is currently
switched on, in a room's long description.
No return value

when off String or routine

For objects Description, or routine to print one, of a switchable object which is currently
switched o�, in a room's long description.
No return value

with key Object nothing

The key object needed to lock or unlock this lockable object. A player must explicitly name it
as the key being used and be holding it at the time. The value nothing, or 0, means that no key
�ts (though this is not made clear to the player, who can try as many as he likes).

146

36 Library-de�ned objects and routines

The library de�nes the following special objects:

compass To contain the directions. A direction object provides a door_dir property, and
should have the direction attribute. A compass direction with enterable, if there
is one (which there usually isn't), will have an Enter action converted to Go.

n obj, ... Both the object signifying the abstract concept of `northness', and the `north wall'
of the current room. (Thus, if a player types \examine the north wall" then the
action Examine n_objwill be generated.) Its door_dir property holds the direction
property it corresponds to (n_to). The other such objects are s_obj, e_obj, w_obj,
ne_obj, nw_obj, se_obj, sw_obj, u_obj, d_obj, in_obj and out_obj. Note that
the parser understands \ceiling" to refer to u_obj and \oor" to refer to d_obj.
(in_obj and out_obj di�er slightly, because \in" and \out" are verbs with other
e�ects in some cases; these objects should not be removed from the compass.)

thedark A pseudo-room representing `being in darkness'. location is then set to this room,
but the player object is not moved to it. Its description can be changed to
whatever \It is dark here" message is desired.

selfobj The default player-object. Code should never refer directly to selfobj, but only to
player, a variable whose value is usually indeed selfobj but which might become
green_frog if the player is transformed into one.

The following routines are de�ned in the library and available for public use:

Achieved(task) Indicate the task is achieved (which only awards score the �rst time).
AddToScope(obj) Used in an add_to_scope routine of an object to add another object

into scope whenever the �rst is in scope.
AllowPushDir() Signal that an attempt to push an object from one place to another

should be allowed.
CDefArt(obj) Print the capitalised de�nite article and short name of obj. Equivalent

to print (The) obj;.
ChangeDefault(p,v) Changes the default value of property p. (But this won't do anything

useful to name.)
ChangePlayer(obj,flag) Cause the player at the keyboard to play as the given object, which

must have a number property supplied. If the flag is set to 1, then sub-
sequently print messages like \(as Ford Prefect)" in room description
headers. This routine, however, prints nothing itself.

DefArt(obj) Print the de�nite article and short name of obj. Equivalent to print

(the) obj;.
DoMenu(text,R1,R2) Produce a menu, using the two routines given.
EnglishNumber(x) Prints out x in English (e.g., \two hundred and seventy-seven").
HasLightSource(obj) Returns true if obj `has light'.
InDefArt(obj) Print the inde�nite article and short name of obj. Equivalent to print

(a) obj;.
Locale(obj,tx1,tx2) Prints out the paragraphs of room description which would appear

if obj were the room: i.e., prints out descriptions of objects in obj

according to the usual rules. After describing the objects which have
their own paragraphs, a list is given of the remaining ones. The string

147

36 Library-de�ned objects and routines

tx1 is printed if there were no previous paragraphs, and the string tx2
otherwise. (For instance, you might want \On the ledge you can see"
and \On the ledge you can also see".) After the list, nothing else is
printed (not even a full stop) and the return value is the number of
objects in the list (possibly zero).

LoopOverScope(R,actor) Calls routine R(obj) for each object obj in scope. actor is optional: if
it's given, then scope is calculated for the given actor, not the player.

NextWord() Returns the next dictionary word in the player's input, moving the
word number wn on by one. Returns 0 if the word is not in the dictio-
nary or if the word stream has run out.

NextWordStopped() As NextWord, but returning �1 when the word stream has run out.
NounDomain(o1,o2,type) This routine is one of the keystones of the parser: the objects given

are the domains to search through when parsing (almost always the
location and the actor) and the type indicates a token. The only tokens
safely usable are: 0: noun , 1: held and 6: creature . The routine
parses the best single object name it can from the current position
of wn. It returns 0 (no match), an object number or the constant
REPARSE_CODE (to indicate that it had to ask a clarifying question:
this reconstructed the input drastically and the parser must begin
all over again). NounDomain should only be used by general parsing
routines and these should always return REPARSE_CODE if it does. Note
that all of the usual scope and name-parsing rules apply to the search
performed by NounDomain.

OffersLight(obj) Returns true if obj `o�ers light'.
PlaceInScope(obj) Puts obj into scope for the parser.

PlayerTo(place,flag) Move the player to place. Unless flag is given and is 1, describe the
player's surroundings.

PrintShortName(obj) Print the short name of obj. (This is protected against obj having a
meaningless value.) Equivalent to print (name) obj;.

ScopeWithin(obj) Puts the contents of obj into scope, recursing downward according to
the usual scope rules.

SetTime(time,rate) Set the game clock (a 24-hour clock) to the given time (in seconds
since the start of the day), to run at the given rate r: r = 0 means it
does not run, if r > 0 then r seconds pass every turn, if r < 0 then �r
turns pass every second.

StartDaemon(obj) Makes the daemon of obj active, so that its daemon routine will be
called every turn.

StartTimer(obj,time) Starts the timer of obj, set to go o� in time turns, at which time its
time_out routine will be called (it must provide a time_left prop-
erty).

StopDaemon(obj) Makes the daemon of obj inactive, so that its daemon routine is no
longer called.

StopTimer(obj) Stops the timer of obj, so that it won't go o� after all.

TestScope(obj,actor) Returns true if obj is in scope; otherwise false. actor is optional: if
it's given, then scope is calculated for the given actor, not the player.

TryNumber(wordnum) Tries to parse the word at wordnum as a number (recognising decimal
numbers and English ones from \one" to \twenty"), returning �1000 if
it fails altogether, or the number. Values exceeding 10000 are rounded

148

36 Library-de�ned objects and routines

down to 10000.

UnsignedCompare(a,b) Returns 1 if a > b, 0 if a = b and a < b, regarding a and b as unsigned
numbers between 0 and 65535 (or $ffff). (The usual > condition
performs a signed comparison.)

WordAddress(n) Returns the byte array containing the raw text of the n-th word in the
word stream.

WordLength(n) Returns the length of the raw text of the n-th word in the word stream.

WriteListFrom(obj,s) Write a list of obj and its siblings, with the style being s (a bitmap of
options).

YesOrNo() Assuming that a question has already been printed, wait for the player
to type \yes" or \no", returning true or false accordingly.

ZRegion(value) Works out the type of value, if possible. Returns 1 if it's a valid object
number, 2 if a routine address, 3 if a string address and 0 otherwise.

37 Entry points and meaningful constants

Entry points are routines which you can provide, if you choose to, and which are called by the
library routines to give you the option of changing the rules. All games must de�ne an Initialise

routine, which is obliged to set the location variable to a room; the rest are optional.

AfterLife When the player has died (a condition signalled by the variable dead-
flag being set to a non-zero value other than 2, which indicates win-
ning), this routine is called: by setting deadflag=0 again it can resur-
rect the player.

AfterPrompt Called just after the prompt is printed: therefore, called after all the
printing for this turn is de�nitely over. A useful opportunity to use
box to display quotations without them scrolling away.

Amusing Called to provide an `afterword' for players who have won: for in-
stance, it might advertise some features which a successful player might
never have noticed. (But only if you have de�ned the constant AMUS-
ING_PROVIDED in your own code.)

BeforeParsing Called after the parser has read in some text and set up the buffer

and parse tables, but has done nothing else yet (except to set the word
marker wn to 1). The routine can do anything it likes to these tables,
and can leave the word marker anywhere; there is no meaningful return
value.

ChooseObjects(obj,c) When c is 0, the parser is processing an \all" and has decided to
exclude obj from it; when c is 1, it has decided to include it. Returning
1 forces inclusion, returning 2 forces exclusion and returning 0 lets
the parser's decision stand. When c is 2, the parser wants help in
resolving an ambiguity: using the action_to_be variable the routine
must decide how appropriate obj is for the given action and return a
score of 0 to 9 accordingly. See x25.

149

37 Entry points and meaningful constants

DarkToDark Called when a player goes from one dark room into another one; a
splendid excuse to kill the player o�.

DeathMessage Prints up \You have died" style messages, for deadflag values of 3 or
more. (If you choose ever to set deadflag to such.)

GamePostRoutine A kind of super-after rule, which applies to all actions in the game,
whatever they are: use only in the last resort.

GamePreRoutine A kind of super-before rule, which applies to all actions in the game,
whatever they are: use only in the last resort.

Initialise A compulsory routine, which must set location and is convenient for
miscellaneous initialising, perhaps for random settings.

InScope An opportunity to place extra items in scope during parsing, or to
change the scope altogether. If et_flag is 1 when this is called, the
scope is being worked out for each_turn reasons; otherwise for every-
day parsing.

LookRoutine Called at the end of every Look description.
NewRoom Called when the room changes, before any description of it is printed.

This happens in the course of ordinary movements or use of PlayerTo,
but may not happen if the game uses move to shift the player object
directly.

ParseNoun(obj) To do the job of parsing the name property (if parse_name hasn't done
it already). This takes one argument, the object in question, and
returns a value as if it were a parse_name routine.

ParseNumber(text,n An opportunity to parse numbers in a di�erent (or additional) way.
The text to be parsed is a byte array of length n starting at text.

ParserError(pe) The chance to print di�erent parser error messages (like \I don't un-
derstand that sentence"). pe is the parser error number (see x25).

PrintRank Completes the printing of the score. You might want to change this,
so as to make the ranks something like \junior astronaut" or \master
catburglar" or whatever suits your game.

PrintVerb(v) A chance to change the verb printed out in a parser question (like
\What do you want to (whatever)?") in case an unusual verb via
UnknownVerb has been constructed. v is the dictionary address of the
verb. Returns true (or 1) if it has printed something.

PrintTaskName(n) Prints the name of task n (such as \driving the car").
TimePasses Called after every turn (but not, for instance, after a command like

\score" or \save"). It's much more elegant to use timers and daemons,
or each_turn routines for individual rooms { using this is a last resort.

UnknownVerb Called by the parser when it hits an unknown verb, so that you can
transform it into a known one.

The following constants, if de�ned in a game, change settings made by the library. Those described
as \To indicate that..." have no meaningful value; one simply de�nes them by, e.g., the directive
Constant DEBUG;.

AMUSING PROVIDED To indicate that an Amusing routine is provided.
DEBUG To indicate that the special \debugging" verbs are to be included.
Headline Style of game and copyright message.
MAX CARRIED Maximum number of (direct) possessions the player can carry.

150

37 Entry points and meaningful constants

MAX SCORE Maximum game score.
MAX TIMERS Maximum number of timers or daemons active at any one time (defaults to

32).
NO PLACES To indicate that the \places" and \objects" verbs should not be allowed.
NUMBER TASKS Number of `tasks' to perform.
OBJECT SCORE Score for picking up a scored object for the �rst time.
ROOM SCORE Score for visiting up a scored room for the �rst time.
SACK OBJECT Object which acts as a `rucksack', into which the game automatically tidies

away things for the player.
Story Story name, conventionally in CAPITAL LETTERS.
TASKS PROVIDED To indicate that \tasks" are provided.
WITHOUT DIRECTIONS To indicate that the standard compass directions are to be omitted.

38 The actions and fakes

The actions implemented by the library are in three groups. Group 1 consists of actions associated
with `meta'-verbs, which are not subject to game rules. (If you want a room where the game can't
be saved, as for instance `Spellbreaker' cunningly does, you'll have to tamper with SaveSub directly,
using a Replaced routine.)

1a. Quit, Restart, Restore, Verify, Save, ScriptOn, ScriptOff, Pronouns,

Score, Fullscore, LMode1, LMode2, LMode3, NotifyOn, NotifyOff,

Version, Places, Objects.

(Lmode1, Lmode2 and Lmode3 switch between \brief", \verbose" and \superbrief" room description
styles.) In addition, but only if DEBUG is de�ned, so that the debugging suite is present, group 1
contains

1b. TraceOn, TraceOff, TraceLevel, ActionsOn, ActionsOff, RoutinesOn,

RoutinesOff, TimersOn, TimersOff, CommandsOn, CommandsOff, CommandsRead,

Predictable, XPurloin, XAbstract, XTree, Scope, Goto, Gonear.

Group 2 contains actions which sometimes get as far as the `after' stage, because the library
sometimes does something when processing them.

2. Inv, InvTall, InvWide, Take, Drop, Remove, PutOn, Insert, Transfer,

Empty, Enter, Exit, GetOff, Go, GoIn, Look, Examine, Search, Give, Show,

Unlock, Lock, SwitchOn, SwitchOff, Open, Close, Disrobe, Wear, Eat.

Group 3 contains the remaining actions, which never reach `after' because the library simply prints
a message and stops at the `during' stage.

3. Yes, No, Burn, Pray, Wake, WakeOther [person], Consult,

Kiss, Think, Smell, Listen, Taste, Touch, Dig,

Cut, Jump [jump on the spot], JumpOver, Tie, Drink,

Fill, Sorry, Strong [swear word], Mild [swear word], Attack, Swim,

Swing [something], Blow, Rub, Set, SetTo, WaveHands [ie, just "wave"],

151

38 The actions and fakes

Wave [something], Pull, Push, PushDir [push something in a direction],

Turn, Squeeze, LookUnder [look underneath something],

ThrowAt, Answer, Buy, Ask, AskFor, Sing, Climb, Wait, Sleep.

4 The actions PushDir and Go (while the player is inside an enterable object) have special
rules: see x10.

The library also de�nes 8 fake actions:

LetGo, Receive, ThrownAt, Order, TheSame, PluralFound, Miscellany, Prompt

LetGo, Receive and ThrownAt are used to allow the second noun of Insert, PutOn, ThrowAt,
Remove actions to intervene; Order is used to process actions through somebody's life routine;
TheSame and PluralFound are de�ned by the parser as ways for the program to communicate with
it; Miscellany and Prompt are de�ned as slots for LibraryMessages.

39 Library message numbers

Answer: \There is no reply."
Ask: \There is no reply."
Attack: \Violence isn't the answer to this one."
Blow: \You can't usefully blow that."
Burn: \This dangerous act would achieve little."
Buy: \Nothing is on sale."
Climb: \I don't think much is to be achieved by that."
Close: 1. \That's not something you can close." 2. \It's already closed." 3. \You close

hx1i."
Consult: \You discover nothing of interest in hx1i."
Cut: \Cutting that up would achieve little."
Dig: \Digging would achieve nothing here."
Disrobe: 1. \You're not wearing that." 2. \You take o� hx1i."
Drink: \There's nothing suitable to drink here."
Drop: 1. \Already on the oor." 2. \You haven't got that." 3. \(�rst taking hx1i o�)"

4. \Dropped."
Eat: 1. \That's plainly inedible." 2. \You eat hx1i. Not bad."
EmptyT: 1. hx1i \ can't contain things." 2. hx1i \ is closed." hx1i \ is empty already."
Enter: 1. \But you're already on/in hx1i." 2. \That's not something you can enter." 3.

\You can't get into the closed hx1i." 4. \You can only get into something on the oor."
5. \You get onto/into hx1i."

Examine: 1. \Darkness, noun. An absence of light to see by." 2. \You see nothing special
about hx1i." 3. \hx1i is currently switched on/o�."

Exit: 1. \But you aren't in anything at the moment." 2. \You can't get out of the closed
hx1i." 3. \You get o�/out of hx1i."

152

39 Library message numbers

Fill: \But there's no water here to carry."
FullScore: 1. \The score is/was made up as follows:^" 2. \�nding sundry items" 3.

\visiting various places" 4. \total (out of MAX_SCORE)"
GetO�: \But you aren't on hx1i at the moment."
Give: 1. \You aren't holding hx1i." 2. \You juggle hx1i for a while, but don't achieve

much." 3. \hx1i doesn't seem interested."
Go: 1. \You'll have to get o�/out of hx1i �rst." 2. \You can't go that way." 3. \You are

unable to climb hx1i." 4. \You are unable to descend hx1i." 5. \You can't, since hx1i
is in the way." 6. \You can't, since hx1i leads nowhere."

Insert: 1. \You need to be holding it before you can put it into something else." 2. \That
can't contain things." 3. \Alas, it is closed." 4. \You'll need to take it o� �rst." 5.
\You can't put something inside itself." 6. \(�rst taking it o�)^" 7. \There is no more
room in hx1i." 8. \Done." 9. \You put hx1i into hsecondi."

Inv: 1. \You are carrying nothing." 2. \You are carrying"
Jump: \You jump on the spot, fruitlessly."
JumpOver: \You would achieve nothing by this."
Kiss: \Keep your mind on the game."
Listen: \You hear nothing unexpected."
LMode1: \ is now in its normal brief printing mode, which gives long descriptions of places

never before visited and short descriptions otherwise."
LMode2: \ is now in its verbose mode, which always gives long descriptions of locations

(even if you've been there before)."
LMode3: \ is now in its superbrief mode, which always gives short descriptions of locations

(even if you haven't been there before)."
Lock: 1. \That doesn't seem to be something you can lock." 2. \It's locked at the moment."

3. \First you'll have to close it." 4. \That doesn't seem to �t the lock." 5. \You lock
hx1i."

Look: 1. \on" 2. \in" 3. \as" 4. \^On hx1i is/are hlist of childreni" 5. \[On/In
hx1i] you/You can also see hlist of childreni [here]." 6. \[On/In hx1i] you/You can see
hlist of childreni [here]."

LookUnder: 1. \But it's dark." \You �nd nothing of interest."
Mild: \Quite."
Miscellany: 1. \(considering the �rst sixteen objects only)^" 2. \Nothing to do!" 3. \

You have died " 4. \ You have won " 5. (The RESTART/RESTORE/QUIT and possibly
FULL and AMUSING query, printed after the game is over.) 6. \[Your interpreter does
not provide undo. Sorry!]" 7. \Undo failed. [Not all interpreters provide it.]" 8. \Please
give one of the answers above." 9. \^It is now pitch dark in here!" 10. \I beg your
pardon?" 11. \[You can't \undo" what hasn't been done!]" 12. \[Can't \undo" twice in
succession. Sorry!]" 13. \[Previous turn undone.]" 14. \Sorry, that can't be corrected."
15. \Think nothing of it." 16. \\Oops" can only correct a single word."

No: see Yes
NotifyO�: \Score noti�cation o�."
NotifyOn: \Score noti�cation on."
Objects: 1. \Objects you have handled:^" 2. \None."
Open: 1. \That's not something you can open." 2. \It seems to be locked." 3. \It's

already open." 4. \You open hx1i, revealing hlist of children of x1i" 5. \You open hx1i."
Order: \hx1i has better things to do."
Places: \You have visited: "

153

39 Library message numbers

Pray: \Nothing practical results from your prayer."

Prompt: 1. \^>"

Pull: 1. \It is �xed in place." 2. \You are unable to." 3. \Nothing obvious happens."
4. \That would be less than courteous."

Push: see Pull

PushDir: 1. \Is that the best you can think of?" 2. \That's not a direction." 3. \Not
that way you can't."

PutOn: 1. \You need to be holding hx1i before you can put it on top of something else."
2. \You can't put something on top of itself." 3. \Putting things on hx1i would achieve
nothing." 4. \You lack the dexterity." 5. \(�rst taking it o�)^" 6. \There is no more
room on hx1i." 7. \Done." 8. \You put hx1i on <second>."

Quit: 1. \Please answer yes or no." 2. \Are you sure you want to quit? "

Remove: 1. \It is unfortunately closed." 2. \But it isn't there now." 3. \Removed."

Restart: 1. \Are you sure you want to restart? " 2. \Failed."

Restore: 1. \Restore failed." 2. \Ok."

Rub: \You achieve nothing by this."

Save: 1. \Save failed." 2. \Ok."

Score: \You have so far/In that game you scored hscorei out of a possible MAX_SCORE, in hturnsi
turn/turns"

ScriptOn: 1. \Transcripting is already on." 2. \Start of a transcript of"

ScriptO�: 1. \Transcripting is already o�." 2. \^End of transcript."

Search: 1. \But it's dark." 2. \There is nothing on hx1i." 3. \On hx1i is/are
hlist of childreni." 4. \You �nd nothing of interest." 5. \You can't see inside, since it
is closed." 6. \hx1i is empty." 7. \In hx1i is/are hlist of childreni."

Set: \No, you can't set that."

SetTo: \No, you can't set that to anything."

Show: 1. \You aren't holding hx1i." 2. \hx1i is unimpressed."

Sing: \Your singing is abominable."

Sleep: \You aren't feeling especially drowsy."

Smell: \You smell nothing unexpected."

Sorry: \Oh, don't apologise."

Squeeze: 1. \Keep your hands to yourself." 2. \You achieve nothing by this."

Strong: \Real adventurers do not use such language."

Swim: \There's not enough water to swim in."

Swing: \There's nothing sensible to swing here."

SwitchO�: 1. \That's not something you can switch." 2. \That's already o�." 3. \You
switch hx1i o�."

SwitchOn: 1. \That's not something you can switch." 2. \That's already on." 3. \You
switch hx1i on."

Take: 1. \Taken." 2. \You are always self-possessed." 3. \I don't suppose hx1i would
care for that." 4. \You'd have to get o�/out of hx1i �rst." 5. \You already have that."
6. \That seems to belong to hx1i." 7. \That seems to be a part of hx1i." 8. \That
isn't available." 9. \hx1i is not open." 10. \That's hardly portable." 11. \That's
�xed in place." 12. \You're carrying too many things already." 13. \(putting hx1i into
SACK_OBJECT to make room)"

Taste: \You taste nothing unexpected."

Tell: 1. \You talk to yourself a while." 2. \This provokes no reaction."

154

39 Library message numbers

Touch: 1. \Keep your hands to yourself!" 2. \You feel nothing unexpected." 3. \If you
think that'll help."

Think: \What a good idea."
Tie: \You would achieve nothing by this."
ThrowAt: 1. \Futile." 2. \You lack the nerve when it comes to the crucial moment."
Transfer: 1. \That isn't in your possession." \First pick that up."
Turn: see Pull
Unlock: 1. \That doesn't seem to be something you can unlock." 2. \It's unlocked at the

moment." 3. \That doesn't seem to �t the lock." 4. \You unlock hx1i."
VagueGo: \You'll have to say which compass direction to go in."
Verify: 1. \The game �le has veri�ed as intact." 2. \The game �le did not verify properly,

and may be corrupted (or you may be running it on a very primitive interpreter which is
unable properly to perform the test)."

Wait: \Time passes."
Wake: \The dreadful truth is, this is not a dream."
WakeOther: \That seems unnecessary."
Wave: 1. \But you aren't holding that." 2. \You look ridiculous waving hx1i."
WaveHands: \You wave, feeling foolish."
Wear: 1. \You can't wear that!" 2. \You're not holding that!" 3. \You're already

wearing that!" 4. \You put on hx1i."

Yes: \That was a rhetorical question."

155

What order the program should be in

This section summarises Inform's \this has to be de�ned before that can be" rules.

1. The three library �les, Parser, Verblib and Grammar must be included in that
order.

(a) Before inclusion of Parser: you must de�ne the constants Story and Head-

line; the constant DEBUG must be de�ned here, if anywhere; similarly for
Replace directives; but you may not yet de�ne global variables, objects or
routines.

(b) Between Parser and Verblib: if a `sack object' is to be included, it should be
de�ned here, and the constant SACK_OBJECT set to it; the LibraryMessages
object should be de�ned here, if at all; likewise the task_scores array.

(c) Before inclusion of Verblib: the constants

MAX_CARRIED, MAX_SCORE, NUMBER_TASKS, OBJECT_SCORE,
ROOM_SCORE, AMUSING_PROVIDED and TASKS_PROVIDED

must be de�ned before this (if ever).
(d) Before inclusion of Grammar: Verb and Extend directives cannot be used.
(e) After inclusion of Grammar: It's too late to de�ne any entry point routines.

2. Any Switches directive must come before the de�nition of any constants.
3. If an object begins inside another, it must be de�ned after its parent.
4. Global variables must be declared earlier in the program than the �rst reference to

them.
5. Properties, attributes and classes must be declared earlier than their �rst usage in

an object de�nition.
6. General parsing and scope routines must be de�ned before being quoted in grammar

tokens.
7. Nothing can be de�ned after the End directive.

156

actions byte address

A short Inform lexicon

This appendix is a brief dictionary of Inform jargon: it doesn't contain de�nitions of
anything set in computer type (except to clarify ambiguities), for which see Chapters V
and VI. Cross-references are italicised. All the information here is more fully explained in
the body of the text, and can be found via the index.

action A single attempted action by the player, such as taking a lamp, generated either by the
parser or in code. It is stored as three numbers, the �rst being the action number, the others
being the noun and second noun (if any: otherwise 0).

action number A number identifying which kind of action is under way, e.g., Take, which can
be written as a constant by prefacing its name with ##.

action routine The routine of code executed when an action has been allowed to take place.
What marks it out as the routine in question is that its name is the name of the action with
Sub appended, as for instance TakeSub.

actor The parser can interpret what the player types as either a request for the player's own
character to do something, in which case the actor is the player's object, or to request
somebody else to do something, in which case the actor is the person being spoken to. This
a�ects the parser signi�cantly because the person speaking and the person addressed may
be able to see di�erent things.

additive An additive property is one whose value accumulates into a list held in a word array,
rather than being over-written as a single value, during inheritance from classes.

Advanced game The default Inform format of story �le, also known as Version 5. It can be
extended (see version) if needed. Standard games should no longer be used unless necessary.

alias A single attribute or property may be used for two di�erent purposes, with di�erent names,
provided care is exercised to avoid clashes: the two names are called aliases. The library

does this: for instance, time_out is an alias for daemon.
ambiguity Arises when the player has typed something vague like \�sh" in circumstances when

many nearby objects might be called that. The parser then resolves this, possibly in con-
junction with the program.

argument A parameter speci�ed in a routine call, such as 7 in the call AwardPoints(7).
array An indexed collection of global variables. There are four kinds, byte arrays ->, word

arrays -->, strings and tables.
assembly language The Z-machine runs a sequence of low-level instructions, or assembly lines

(also called opcodes). These can be programmed directly as Inform statements by pre�xing
them with @, but only a few are documented in this manual, in x27, the rest being in the
`Speci�cation of the Z-machine'.

assembler error A very low-level error caused by a malformed line of assembly language. These
occasionally occur as a knock-on e�ect from Inform failing to recover from higher-level errors.

assignment A statement which sets the value of a global or local variable, or array entry.
attribute An object can be created as having certain attributes, which are simple o�-or-on

states (or ags), which can then be given, tested for or taken away by the program. For
example, light represents the state \is giving o� light".

block of code See code block.
box A rectangle of text, usually displayed in reverse video onto the screen and with text such

as a quotation inside (see x26).
byte An 8-bit cell of memory, capable of holding numbers between 0 and 255.
byte address The whole lower part of the memory map of the Z-machine can be regarded as

a byte array, and a byte address is an index into this. E.g., byte address 0 refers to the

157

byte array direction object

lowest byte in the machine (which always holds the version number). Dictionary words are
internally stored as byte addresses.

byte array An array indexed with the -> operator whose entries are only 1 byte each: they can
therefore hold numbers between 0 and 255, or ASCII characters, but not strings or object
numbers.

character A single letter `A' or symbol `*', written as a constant using the notation 'A', and
internally stored as its ASCII code. Can be printed using print (char).

child See object tree.
class A template for an object de�nition, giving certain properties and attributes which are

inherited by any objects de�ned as being of this class.
code block A collection of statements can be grouped together into a block using braces { and

} so that they count as a single unit for if statements, what is to be done inside a for loop,
etc.

compass The compass object, created by the library but never tangible to the player during
the game, is used to hold the currently valid direction objects.

compiler The Inform program itself, which transmutes Inform programs (or source code) into
the story �le which is played with the use of an interpreter at run-time.

condition A state of a�airs which either is, or isn't, true at any given moment, such as x == y,
often written in round brackets (and). The central operator == is also called the condition.

constant An explicitly written-out number, such as 34 or $$10110111; or the internal name of
an object, such as brass_lamp, whose value is its object number; or the internal name of
an array, whose value is its byte address; or a word de�ned by either the library or Inform
code as meaning a particular value; or a character, written 'X' and whose value is its ASCII
code; or a dictionary word, written 'word' and whose value is its byte address; or an action,
written ##Action and whose value is its action number; or a routine written #r$Routine

whose value is its packed address; or the name of a property or attribute or class.
containment See object tree.

cursor An invisible notional position at which text is being printed in the upper window, when
the windows are split; the origin is (1; 1) in the top left.

daemon A routine attached to an object which, once started, is run once during the end se-
quence of every turn until explicitly stopped. Used to manage events happening as time
passes by, or to notice changes in the state of the game which require some activity.

default value See property.

description The usually quite long piece of text attached to an object; if it's a room, then this
is the long description printed out when the room is �rst visited; otherwise it will usually be
printed when the object is examined by the player.

dictionary A list kept inside the Z-machine of all the words ordinarily understood by the
game, such as \throw" and \mauve", usually between about 300 and 2000 in length. Inform
automatically puts this list together from all the name values of objects and all usages of
constants like 'word'. Dictionary words are stored to a resolution of 9 characters (6 for
Standard games), written 'thus' (provided they have more than one letter; otherwise #n$x

for the word \x"; except as values of the special name property) and are internally referred
to by numbers which are their byte addresses inside the list.

direct containment See object tree.
direction object An object representing both the abstract idea of a direction and the wall

which is in that direction: for instance, n_obj represents \northness" and the north wall of
the current room. Typing \go north" causes the parser to generate the action Go n_obj. The
current direction objects are exactly those currently inside the compass object and they can

158

direction property interpreter

be dynamically changed. The door_dir property of a direction object holds its corresponding
direction property.

direction property The library creates 12 direction properties: n_to, s_to, etc., u_to, d_to,
in_to and out_to. These are used to give map connections from rooms and indicate direc-
tions which doors and direction objects correspond to.

directive A line of Inform code which instructs the compiler to do something, such as to de�ne
a new constant; it takes immediate e�ect and does not correspond to anything happening
at run-time. These are not normally written inside routines but can be if prefaced by a #

character.
eldest child See object tree.
embedded routine A routine de�ned as the property value of an object, which is de�ned

without a name of its own, and which by default returns `false' rather than `true'.
entry point A routine in an Inform program which is directly called by the library to intervene

in the normal operation of the game (if the routine so wishes). Provision of entry points is
optional, except for Initialise, which must always occur in every game.

error When the compiler �nds something in the program which it can't make sense of, it pro-
duces an error (which will eventually prevent it from generating a story �le, so that it cannot
generate an illegal story �le which would fail at run-time). If the error is fatal the compiler
stops at once.

examine message See description.
expression A general piece of Inform code which determines a numerical value. It may be

anything from a single constant to a bracketed calculation of variable, property or array

values, such as 3+(day_list-->(calendar.number)).
fake action A form of action which has no corresponding action routine and will have no e�ect

after the before-processing stage of considering an action is over. A fake action is never
generated by the parser, only by the program, which can use it to pass a message to an
object.

fake fake action A form of action which does have an action routine and is processed exactly
as ordinary actions are, but which is never generated by the parser, only by the program,
which can use it to pass a message to an object.

fatal error An error found by the compiler which causes it to give up immediately; for instance,
a disc being full or memory running out are fatal.

format See version.
function See routine.
fuse See timer.
global variable A variable which can be used by every routine in the program.
grammar A list of lines which is attached to a particular verb. The parser decodes what the

player has typed by trying to match it against each line in turn of the grammar attached to
the verb which the �rst word of the player's input corresponds to.

hardware function A function which is used just like any other routine but which is not
de�ned anywhere in the library or program: the compiler provides it automatically, usually
converting the apparent call to a routine into a single line of assembly language.

indirect containment See object tree.
inheritance The process in which property values and attribute settings speci�ed in a class

de�nition are passed on to an object de�ned as having that class.
internal name See name.
interpreter A program for some particular model of computer, such as an IBM PC, which reads

in the story �le of a game and allows someone to play it. A di�erent interpreter is needed

159

inventory noun

for each model of computer (though generic source codes exist which make it relatively easy
to produce these).

inventory 1. Verb, imperative: a demand for a list of the items one is holding; 2. noun: the list
itself. (When Crowther and Woods were writing the original `Advent', they were unable to
think of a good imperative verb and fell back on the barely sensible \take inventory", which
was soon corrupted into the not at all sensible \inventory", thence \inv" and �nally \i".)

library The `operating system' for the Z-machine: a large segment of Inform code, written out
in three library �les, which manages the model world and consults the game's program now
and then to give it a chance to make interesting things happen.

library �les The three �les parser, verblib and grammar containing the source code of the
library. These are normally Included in the code for every Inform game.

library routine A routine provided by the library which is `open to the public' in that the
designer's program is allowed to call and make use of it.

line One possible pattern which the parser might match against what the player has typed
beyond the initial verb word. A grammar line consists of a sequence of tokens, each of which
must be matched in sequence, plus an action which will be generated if the line successfully
matches.

local variable A variable attached to a particular routine (or, more precisely, a particular call
to a routine: if a routine calls itself, then the parent and child incarnation have independent
copies of the local variables) whose value is inaccessible to the rest of the program. Also used
to hold the arguments of the call.

long A property whose values must always be stored as words, or word arrays, rather than bytes

or byte arrays. A safely ignorable concept since except for Standard games all properties are
long.

logical machine See Z-machine.

low string A string which can be used as the value of a variable string, printed with the @

escape character. Must be declared with Lowstring.

map The geographical design of the game, divided into areas called rooms with connections
between them in di�erent directions. The story �le doesn't contain an explicit map table but
stores the information implicitly in the de�nition of the room objects.

memory map Internally, the Z-machine contains a large array in whose values the entire story
�le and all its data structures are stored. Particular cells low down in this array are indexed
by byte addresses, and routines and strings which are lodged higher up are referred to by
packed addresses. The organisation of this array (which ranges of indices correspond to what)
is called the memory map.

meta-verb A verb whose actions are always commands from the player to the game, rather
than requests for something to happen in the model world: for instance, \quit" is meta but
\take" is not.

multiple object The parser matches a token with a multiple object when the player has either
explicitly referred to more than one object (e.g. \drop lamp and basket") or implicitly done
so (e.g. \drop everything" when this amounts to more than 1 item); though the match is
only made if the token will allow it.

names An object has three kinds of name: 1. its internal name, a word such as brass_lamp,
which is a constant referring to it within the program; 2. its short name, such as \dusty old
brass lamp" or \Twopit Room", which is printed in inventories or before a room description;
3. dictionary words which appear as values of its name property, such as "dusty", "brass",
etc., which the player can type to refer to it.

noun The �rst parameter (usually an object but possibly a number) which the parser has

160

object room

matched in a line of grammar is the noun for the action which is generated. It is stored in
the noun variable (not to be confused with the noun token).

object The physical substance of the game's world is divided up into indivisible objects, such as
`a brass lamp' or `a meadow'. These contain each other in a hierarchy called the object tree.
An object may be de�ned with an initial location (another object) and must have an internal

name and a short name; attached to it throughout the game are variables called attributes

and properties which reect its current state. The de�nition of an object may make it inherit
initial settings for this state from one or more classes.

object number Objects are automatically numbered from 1 upwards, in order of de�nition,
and the internal name of an object is in fact a constant whose value is this number.

object tree The hierarchy of containment between objects. Each has a `parent', though this
may be `nothing' (to indicate that it is uncontained, as for instance rooms are) and possibly
some `children' (the objects directly contained within it). The `child' of an object is the
`eldest' of these children, the one most recently moved within it or, if none have been moved
into it since the start of play, the �rst one de�ned as within it. The `sibling' of this child is
then the next eldest, or may be `nothing' if there is no next eldest. Note that if A is inside
B which is itself inside C, then C `directly contains' B but only `indirectly contains' A: and
we do not call A one of the children of C.

obsolete usage A point in the program using Inform syntax which was correct under some
previous version of the compiler but is no longer correct (usually because there is a neater
way to express the same idea). Inform often allows these but, if so, issues warnings.

opcodes See assembly language.

operator A symbol in an expression which acts on one or more sub-expressions, combining their
values to produce a result. This may be arithmetic, as in + or =, or to do with array or
property value indexing, as in -> or .&. Note that condition operators such as == are not
formally expression operators.

order An instruction by the player for somebody else to do something. For instance, \policeman,
give me your hat" is an order. The order is parsed as if an action but is then processed in
the other person's object de�nition.

packed address A number encoding the location of a routine or string within the memory map

of the Z-machine.
parent See object tree.

parser That part of the library which, once per turn, issues the prompt; asks the player to type
something; looks at the initial verb word; tries to match the remaining words against one of
the lines of grammar for this verb and, if successful, generates the resulting action.

player 1. the person sitting at the keyboard at run-time, who is playing the game; 2. his
character inside the model world of the game. (There is an important di�erence - one has
access to the \undo" verb. The other actually dies.)

prompt The text printed to invite the player to type: usually just >.

property 1. The value of a variable attached to a particular object, accessible throughout the
program, which can be a single word, an embedded routine or an array of values; 2. a named
class of such variables, such as description, one of which may be held by any object created,
and which has a default value for any object not explicitly created with one.

resolution See dictionary.
return value See routine.

room The geography of a game is subdivided into parcels of area called rooms, within which it
is (usually) assumed that the player has no particular location but can reach all corners of
easily and without giving explicit instruction to do so. For instance, \the summit of Scafell

161

room description synonym

Pike" might be such an area, while \the summit of Ben Nevis" (being a large L-shaped ridge)
would probably be divided into three or four. These rooms �t together into the map and
each is implemented as an object.

room description See description.
routine In an Inform program (and indeed in the Z-machine) code is always executed in routines,

each of which is called (possibly with arguments) and must return a particular word value,
though this is sometimes disguised from the programmer because (for example) the statement
return; actually returns true (1) and the statement ExplodeBomb(); makes the call to the
routine but throws away the return value subsequently. Routines are permitted to call
themselves (if the programmer wants to risk it) and have their own local variables.

rule Embedded routines given as values of a property like before or after are sometimes loosely
called rules, because they encode exceptional rules of the game such as \the 10-ton weight
cannot be picked up". However, there is no formal concept of `rule'.

run-time The time when an interpreter is running the story �le, i.e., when someone is actually
playing the game, as distinct from `compile-time' (when the compiler is at work making the
story �le). Some errors (such as an attempt to divide a number by zero) can only be detected
at run-time.

scope To say that an object is in scope to a particular actor is roughly to say that it is visible,
and can sensibly be referred to.

second noun The second parameter (usually an object but possibly a number) which the parser
has matched in a line of grammar is the second noun for the action generated. It is stored
in the second variable.

see-through An object is called this if it has transparent, or is an open container, or is a
supporter. Roughly this means `if the object is visible, then its children are visible'. (This
criterion is often applied in the scope (and `light') rules inside the library.)

short name See name.
sibling See object tree.

statement A single instruction for the game to carry out at run-time; a routine is a collection
of statements. These include assignments and assembly language but not directives.

status line The region at the top of the screen which, in play, usually shows the current score
and location, and which is usually printed in reversed colours for contrast.

story �le The output of the compiler is a single �le containing everything about the game pro-
duced, in a format which is standard. To be played, the �le must be run with an interpreter.
Thus only one �le is needed for every Inform game created, and only one auxiliary program
must be written for every model of computer which is to run such games. In this way story
�les are absolutely portable across di�erent computers.

Standard game An old format (version 3) of story �le which should no longer be used unless
absolutely necessary (to run on very small computers) since it imposes tiresome restrictions.

string 1. a literal piece of text such as "Mary had a fox" (which is a constant internally
represented by a number, its packed address, and may be created as a low string); 2. a form
of byte array in which the 0th entry holds the number of entries (so called because such an
array is usually used as a list of characters, i.e. a string variable); 3. see variable string.

switch 1. certain objects are `switchable', meaning they can be turned o� or on by the player;
2. options set by the programmer when the compiler starts are called switches; 3. a switch

statement is one which switches execution, like a railway turntable, between di�erent lines
according to the current value of an expression.

synonym Two or more words which refer to the same verb are called synonyms (for example,
\wear" and \don").

162

table Z-machine

table A form of word array in which the 0th entry holds the number of entries.
timer A routine attached to a particular object which, once set, will be run after a certain

number of turns have passed by. (Sometimes called a `fuse'.)
token A particle in a line of grammar, which the parser tries to match with one or more words

from what the player has typed. For instance, the token held can only be matched by an
object the actor is holding.

tree See object tree.
turn The period in play between one typed command and another.
type A word value may represent a literal number, a packed address, an action number, etc.,

and there is only a limited way to tell what the `type' of it is: see x17.
untypeable word A dictionary word which contains at least one space, full stop or comma and

therefore can never be recognised by the parser as one of the words typed by the player.
variable A named value which can be set or compared so that it varies at run-time. It must

be declared before use (the library declares many such). Variables are either local or global;
entries in arrays (or the memory map) and properties of objects behave like global variables.

variable string (Not the same as a string (3) variable.) There are 32 of these, which can only
be set (to a string (1) which must have been de�ned as a low string) or printed out (using
the @ escape character).

vehicle An object which the player character can travel around in.
verb 1. a collection of synonymous one-word English verbs for which the parser has a grammar

of possible lines which a command starting with one of these verbs might take; 2. one of the
one-word English verbs.

version The compiler can produce 6 di�erent formats of story �le, from Version 3 (or Standard)
to Version 8. By default it produces Version 5 (or Advanced) which is the most portable.

warning When the compiler �nds something in the program which it disapproves of (for ex-
ample, an obsolete usage) or thinks might be a mistake, it issues a warning message. This
resembles an error but does not prevent successful compilation; a working story �le can still
be produced.

window (Except in Standard games) the screen is divided into two windows, an upper, �xed
window usually containing the status line and the lower, scrolling window usually holding
the text of the game. One can divert printing to the upper window and move a cursor about
in it.

word 1. an English word in the game's dictionary; 2. almost all numbers are stored in 16-bit
words of memory which unlike bytes can hold any constant value, though they take twice as
much storage space up.

word array An array indexed with the --> operator whose entries are words: they can therefore
hold any constant values.

youngest child See object tree.

Z-machine The imaginary computer which the story �le is a program for. One romantically

pretends that this is built from circuitboards and microchips (using terms like `hardware')

though in fact it is merely simulated at run-time by an interpreter running on some (much

more sophisticated) computer. Z is for `Zork'.

163

Answers to exercises 1-4

Answers to all the exercises

World is crazier and more of it than we think,
Incorrigibly plural. I peel and portion
A tangerine and spit the pips and feel
The drunkenness of things being various.

{ Louis MacNeice (1907{1963), Snow

�1 Change the mushroom's after rule to:

after

[; Take: if (self hasnt general)

{ give self general;

"You pick the mushroom, neatly cleaving its thin stalk.";

}

"You pick up the slowly-disintegrating mushroom.";

Drop: "The mushroom drops to the ground, battered slightly.";

],

Note that general is a general-purpose attribute, always free for the designer to use. The `neatly
cleaving' message can only happen once, because after that the mushroom object (which calls
itself self) must have general.

�2 if (obj.&door_to == 0) { ... }

�3 Put any validation rules desired into the GamePreRoutine. For example, the following will
�lter out any stray Drop actions for unheld objects:

[GamePreRoutine;

if (action==Drop && noun notin player)

print_ret "You aren't holding ", (the) noun, ".";

rfalse;

];

�4 Declare a fake action called, say, OpenUp. Then:

Object medicine "guaranteed child-proof medicine bottle" cupboard

with name "medicine" "bottle",

description "~Antidote only: no preventative effect.~",

before

[; Open, Unlock: "It's adult-proof too.";

OpenUp: give self open ~locked; "The bottle cracks open!";

],

has container openable locked;

Any other code in the game can execute <OpenUp medicine> to crack open the bottle. For brevity,
this solution assumes that the bottle is always visible to the player when it is opened.

164

Answers to exercises 5-9

�5 Briey: provide a GamePreRoutine which tests to see if second is a non-zero object. If it is,
then call a second_before property for the object (having already created this new property),
and so on.

�6

Object orange_cloud "orange cloud"

with name "orange" "cloud",

react_before

[; Look: "You can't see for the orange cloud surrounding you.";

Go, Exit: "You wander round in circles, choking.";

Smell: if (noun==0) "Cinnamon? No, nutmeg.";

],

has scenery;

Directions (such as \north") are objects called n_obj, s_obj and so on: in this case, in_obj. (They
are not to be confused with the property names n_to and so on.) Moreover, you can change these
directions: as far as Inform is concerned, a direction is any object in the special object compass.

�7 De�ne four objects along the lines of:

Object white_obj "white wall" compass

with name "white" "sac" "wall", article "the", door_dir n_to

has scenery;

and add the following line to Initialise:

remove n_obj; remove e_obj; remove w_obj; remove s_obj;

(We could even alias a new property white_to to be n_to, and then enter map directions in the
source code using Mayan property names.) As a �ne point of style, turquoise (yax) is the world
colour for `here', so add a grammar line to make this cause a \look":

Verb "turquoise" "yax" * -> Look;

�8

[SwapDirs o1 o2 x;

x=o1.door_dir; o1.door_dir=o2.door_dir; o2.door_dir=x;];

[ReflectWorld;

SwapDirs(e_obj,w_obj); SwapDirs(ne_obj,nw_obj); SwapDirs(se_obj,sw_obj);

];

�9 This is a prime candidate for using variable strings @nn. Briey: at the head of the source,
de�ne

Lowstring east_str "east"; Lowstring west_str "west";

and then add two more routines to the game,

[NormalWorld; String 0 east_str; String 1 west_str;];

[ReversedWorld; String 0 west_str; String 1 east_str;];

165

Answers to exercises 10-11

where NormalWorld is called in Initialise or to go back to normal, and ReversedWorld when
the reection happens. Write @00 in place of east in any double-quoted printable string, and
similarly @01 for west. It will be printed as whichever is currently set. (Inform provides up to 32
such variable strings.)

�10

Nearby bag "toothed bag"

with name "toothed" "bag",

description "A capacious bag with a toothed mouth.",

before

[; LetGo: "The bag defiantly bites itself \

shut on your hand until you desist.";

Close: "The bag resists all attempts to close it.";

],

after

[; Receive:

print_ret "The bag wriggles hideously as it swallows ",

(the) noun, ".";

],

has container open;

�11

Object television "portable television set" lounge

with name "tv" "television" "set" "portable",

before

[; SwitchOn: <<SwitchOn power_button>>;

SwitchOff: <<SwitchOff power_button>>;

Examine: <<Examine screen>>;

],

has transparent;

Nearby power_button "power button"

with name "power" "button" "switch",

after

[; SwitchOn, SwitchOff: <<Examine screen>>;

],

has switchable;

Nearby screen "television screen"

with name "screen",

before

[; Examine: if (power_button hasnt on) "The screen is black.";

"The screen writhes with a strange Japanese cartoon.";

];

166

Answers to exercises 12-14

�12

Nearby glass_box "glass box with a lid"

with name "glass" "box" "with" "lid"

has container transparent openable open;

Nearby steel_box "steel box with a lid"

with name "steel" "box" "with" "lid"

has container openable open;

�13 (The description part of this answer uses a routine from x19, but is only decoration.) Note
the careful use of inp1 and inp2 rather than noun or second: see the note at the end of x4.

Nearby macrame_bag "macrame bag"

with name "macrame" "bag" "string" "net" "sack",

react_before

[; Examine, Search, Listen, Smell: ;

default:

if (inp1>1 && inp1 in self)

print_ret (The) inp1, " is tucked away in the bag.";

if (inp2>1 && inp2 in self)

print_ret (The) inp2, " is tucked away in the bag.";

],

describe

[; print "^A macrame bag hangs from the ceiling, shut tight";

if (child(self)==0) ".";

print ". Inside you can make out ";

WriteListFrom(child(self), ENGLISH_BIT); ".";

],

has container transparent;

Object watch "gold watch" macrame_bag

with name "gold" "watch",

description "The watch has no hands, oddly.",

react_before

[; Listen: if (noun==0 or self) "The watch ticks loudly.";];

�14 The \plank breaking" rule is implemented here in its door_to routine. Note that this returns
`true' after killing the player.

Nearby PlankBridge "plank bridge"

with description "Extremely fragile and precarious.",

name "precarious" "fragile" "wooden" "plank" "bridge",

when_open

"A precarious plank bridge spans the chasm.",

door_to

[; if (children(player)~=0)

{ deadflag=1;

"You step gingerly across the plank, which bows under \

your weight. But your meagre possessions are the straw \

167

Answers to exercises 15-18

which breaks the camel's back! There is a horrid crack...";

}

print "You step gingerly across the plank, grateful that \

you're not burdened.^";

if (location==NearSide) return FarSide; return NearSide;

],

door_dir

[; if (location==NearSide) return s_to; return n_to;

],

found_in NearSide FarSide,

has static door open;

There might be a problem with this solution if your game also contained a character who wandered
about, and whose code was clever enough to run door_to routines for any doors it ran into. If
so, door_to could perhaps be modi�ed to check that the actor is the player.

�15

Nearby cage "iron cage"

with name "iron" "cage" "bars" "barred" "iron-barred",

when_open

"An iron-barred cage, large enough to stoop over inside, \

looms ominously here.",

when_closed "The iron cage is closed.",

has enterable container openable open static;

�16 Change the car's before to

before

[; Go: if (noun==e_obj)

{ print "The car will never fit through your front door.^";

return 2;

}

if (car has on) "Brmm! Brmm!";

print "(The ignition is off at the moment.)^";

],

�17 Insert these lines into the before rule for PushDir:

if (second==u_obj) <<PushDir self n_obj>>;

if (second==d_obj) <<PushDir self s_obj>>;

�18

Nearby bible "black Tyndale Bible"

with name "bible" "black" "book",

initial "A black Bible rests on a spread-eagle lectern.",

description "A splendid foot-high Bible, which must have survived \

168

Answers to exercises 19-20

the burnings of 1520.",

before

[w x; Consult:

wn = consult_from; w = NextWord();

switch(w)

{ 'matthew': x="Gospel of St Matthew";

'mark': x="Gospel of St Mark";

'luke': x="Gospel of St Luke";

'john': x="Gospel of St John";

default: "There are only the four Gospels.";

}

if (consult_words==1)

print_ret "You read the ", (string) x, " right through.";

w = TryNumber(wn);

if (w==-1000)

print_ret "I was expecting a chapter number in the ",

(string) x, ".";

print_ret "Chapter ", (number) w, " of the ", (string) x,

" is too sacred for you to understand now.";

];

�19 Note that whether reacting before or after, the psychiatrist does not cut any actions short,
because react_before and react_after both return false.

Nearby psychiatrist "bearded psychiatrist"

with name "bearded" "doctor" "psychiatrist" "psychologist" "shrink",

initial "A bearded psychiatrist has you under observation.",

life

[; "He is fascinated by your behaviour, but makes no attempt to \

interfere with it.";

],

react_after

[; Insert: print "~Subject puts ", (name) noun, " in ",

(name) second, ". Interesting.~^^";

Look: print "~Pretend I'm not here,~ says the psychiatrist.^";

],

react_before

[; Take, Remove: print "~Subject feels lack of ", (the) noun,

". Suppressed Oedipal complex? Mmm.~^";

],

has animate;

�20 Add the following lines, after the inclusion of Grammar:

[SayInsteadSub; "[To talk to someone, please type ~someone, something~ \

or else ~ask someone about something~.]";];

Extend "answer" replace * ConTopic -> SayInstead;

Extend "tell" replace * ConTopic -> SayInstead;

169

Answers to exercises 21-23

A slight snag is that this will throw out \nigel, tell me about the grunfeld defence" (which the
library will normally convert to an Ask action, but can't if the grammar for \tell" is missing); to
avoid this, you could instead Replace the TellSub routine (see x17) by the SayInsteadSub one.

�21 There are several ways to do this. The easiest is to add more grammar to the parser and
let it do the hard work:

Nearby computer "computer"

with name "computer",

orders

[; Theta: print_ret "~Theta now set to ", noun, ".~";

default: print_ret "~Please rephrase.~";

],

has talkable;

...

[ThetaSub; "You must tell your computer so.";];

Verb "theta" * "is" number -> Theta;

�22 Obviously, a slightly wider repertoire of actions might be a good idea, but:

Nearby Charlotte "Charlotte"

with name "charlotte" "charlie" "chas",

grammar

[; give self ~general;

wn=verb_wordnum;

if (NextWord()=='simon' && NextWord()=='says')

{ give self general;

verb_wordnum=verb_wordnum+2;

}

],

orders

[i; if (self hasnt general) "Charlotte sticks her tongue out.";

WaveHands: "Charlotte waves energetically.";

default: "~Don't know how,~ says Charlotte.";

],

initial "Charlotte wants to play Simon Says.",

has animate female proper;

�23 First add a Clap verb (this is easy). Then give Charlotte a number property (initially 0,
say) and add these three lines to the end of Charlotte's grammar routine:

self.number=TryNumber(verb_wordnum);

if (self.number~=-1000)

{ action=##Clap; noun=0; second=0; rtrue; }

170

Answers to exercises 24-25

Her orders routine now needs a local variable called i, and the new clause:

Clap: if (self.number==0) "Charlotte folds her arms.";

for (i=0:i<self.number:i++)

{ print "Clap! ";

if (i==100)

print "(You must be regretting this by now.) ";

if (i==200)

print "(What a determined girl she is.) ";

}

if (self.number>100)

"^^Charlotte is a bit out of breath now.";

"^^~Easy!~ says Charlotte.";

�24 The interesting point here is that when the grammar property �nds the word \take", it
accepts it and has to move verb_wordnum on by one to signal that a word has been parsed
succesfully.

Nearby Dan "Dyslexic Dan"

with name "dan" "dyslexic",

grammar

[; if (verb_word == 'take') { verb_wordnum++; return 'drop'; }

if (verb_word == 'drop') { verb_wordnum++; return 'take'; }

],

orders

[i;

Take: print_ret "~What,~ says Dan, ~ you want me to take ",

(the) noun, "?~";

Drop: print_ret "~What,~ says Dan, ~ you want me to drop ",

(the) noun, "?~";

Inv: "~That I can do,~ says Dan. ~I'm empty-handed.~";

No: "~Right you be then.~";

Yes: "~I'll be having to think about that.~";

default: "~Don't know how,~ says Dan.";

],

initial "Dyslexic Dan is here.",

has animate proper;

�25 Suppose Dan's grammar (but nobody else's) for the \examine" verb is to be extended. His
grammar routine should also contain:

if (verb_word == 'examine' or 'x')

{ verb_wordnum++; return -'danx,'; }

(Note the crudity of this: it looks at the actual verb word, so you have to check any synonyms
yourself.) The verb \danx," must be declared later:

Verb "danx," * "conscience" -> Inv;

171

Answer to exercise 26

and now \Dan, examine conscience" will send him an Inv order: but \Dan, examine cow pie" will
still send Examine cow_pie as usual.

�26

[PrintTime x; print (x/60), ":", (x%60)/10, (x%60)%10;];

Nearby alarm_clock "alarm clock"

with name "alarm" "clock",

number 480,

description

[; print "The alarm is ";

if (self has general) print "on, "; else print "off, but ";

print_ret "the clock reads ", (PrintTime) the_time,

" and the alarm is set for ", (PrintTime) self.number, ".";

],

react_after

[; Inv: if (self in player) { new_line; <<Examine self>>; }

Look: if (self in location) { new_line; <<Examine self>>; }

],

daemon

[; if (the_time >= self.number && the_time <= self.number+3

&& self has general) "^Beep! Beep! The alarm goes off.";

],

grammar [; return 'alarm,';],

orders

[; SwitchOn: give self general; StartDaemon(self); "~Alarm set.~";

SwitchOff: give self ~general; StopDaemon(self); "~Alarm off.~";

SetTo: self.number=noun; <<Examine self>>;

default: "~Commands are on, off or a time of day only, pliz.~";

],

life

[; Ask, Answer, Tell:

"[Try ~clock, something~ to address the clock.]";

],

has talkable;

and add a new verb to the grammar:

Verb "alarm," * "on" -> SwitchOn

* "off" -> SwitchOff

* TimeOfDay -> SetTo;

(using the TimeOfDay token from the exercises of x23). Note that since the word \alarm," can't
be matched by anything the player types, this verb is concealed from ordinary grammar. The
orders we produce here are not used in the ordinary way (for instance, the action SwitchOn with
no noun or second would never ordinarily be produced by the parser) but this doesn't matter: it
only matters that the grammar and the orders property agree with each other.

172

Answers to exercises 27-29

�27

Nearby tricorder "tricorder"

with name "tricorder",

grammar [; return 'tc,';],

orders

[; Examine: if (noun==player) "~You radiate life signs.~";

print "~", (The) noun, " radiates ";

if (noun hasnt animate) print "no ";

"life signs.~";

default: "The tricorder bleeps.";

],

life

[; Ask, Answer, Tell: "The tricorder is too simple.";

],

has talkable;

...

Verb "tc," * noun -> Examine;

�28

Object replicator "replicator"

with name "replicator",

grammar [; return 'rc,';],

orders

[; Give:

print_ret "The replicator serves up a cup of ",

(name) noun, " which you drink eagerly.";

default: "The replicator is unable to oblige.";

],

life

[; Ask, Answer, Tell: "The replicator has no conversation skill.";

],

has talkable;

Nearby earl_grey "Earl Grey tea" with name "earl" "grey" "tea";

Nearby brandy "Aldebaran brandy" with name "aldebaran" "brandy";

Nearby water "distilled water" with name "distilled" "water";

...

Verb "rc," * held -> Give;

The point to note here is that the held token means `held by the replicator' here, as the actor
is the replicator, so this is a neat way of getting a `one of the following phrases' token into the
grammar.

�29 This is similar to the previous exercises. One creates an attribute called crewmember and
gives it to the crew objects: the orders property is

orders

[; Examine:

if (parent(noun)==0)

173

Answer to exercise 30

print_ret "~", (name) noun,

" is no longer aboard this demonstration game.~";

print_ret "~", (name) noun, " is in ", (name) parent(noun), ".~";

default: "The computer's only really good for locating the crew.";

],

and the grammar simply returns 'stc,' which is de�ned as

[Crew i;

switch(scope_stage)

{ 1: rfalse;

2: for (i=selfobj+1:i<=top_object:i++)

if (i has crewmember) PlaceInScope(i); rtrue;

}

];

Verb "stc," * "where" "is" scope=Crew -> Examine;

An interesting point is that the scope routine doesn't need to do anything at stage 3 (usually
used for printing out errors) because the normal error-message printing system is never reached.
Something like \computer, where is Comminder Doto" causes a ##NotUnderstood order.

�30

Object Zen "Zen" Flight_Deck

with name "zen" "flight" "computer",

initial "Square lights flicker unpredictably across a hexagonal \

fascia on one wall, indicating that Zen is on-line.",

grammar [; return 'zen,';],

orders

[; Show: print_ret "The main screen shows a starfield, \

turning through ", noun, " degrees.";

Go: "~Confirmed.~ The ship turns to a new bearing.";

SetTo: if (noun==0) "~Confirmed.~ The ship comes to a stop.";

if (noun>12) print_ret "~Standard by ", (number) noun,

" exceeds design tolerances.~";

print_ret "~Confirmed.~ The ship's engines step to \

standard by ", (number) noun, ".";

Take: if (noun~=force_wall) "~Please clarify.~";

"~Force wall raised.~";

Drop: if (noun~=blasters) "~Please clarify.~";

"~Battle-computers on line. \

Neutron blasters cleared for firing.~";

default: "~Language banks unable to decode.~";

],

has talkable proper static;

Nearby force_wall "force wall" with name "force" "wall" "shields";

Nearby blasters "neutron blasters" with name "neutron" "blasters";

...

Verb "zen," * "scan" number "orbital" -> Show

* "set" "course" "for" Planet -> Go

* "speed" "standard" "by" number -> SetTo

174

Answers to exercises 31-32

* "raise" held -> Take

* "clear" held "for" "firing" -> Drop;

Dealing with Ask, Answer and Tell are left to the reader.

�31

[InScope;

if (action_to_be == ##Examine or ##Show or ##ShowR)

PlaceInScope(noslen_maharg);

if (scope_reason == TALKING_REASON)

PlaceInScope(noslen_maharg);

];

Note that ShowR is a variant form of Show in which the parameters are `the other way round': thus
\show maharg the phaser" generates ShowR maharg phaser internally, which is then converted to
the more usual Show phaser maharg.

�32 Martha and the sealed room are de�ned as follows:

Object sealed_room "Sealed Room"

with description

"I'm in a sealed room, like a squash court without a door, \

maybe six or seven yards across",

has light;

Nearby ball "red ball" with name "red" "ball";

Nearby martha "Martha"

with name "martha",

orders

[r; r=parent(self);

Give:

if (noun notin r) "~That's beyond my telekinesis.~";

if (noun==self) "~Teleportation's too hard for me.~";

move noun to player;

print_ret "~Here goes...~ and Martha's telekinetic talents \

magically bring ", (the) noun, " to your hands.";

Look:

print "~", (string) r.description;

if (children(r)==1) ". There's nothing here but me.~";

print ". I can see ";

WriteListFrom(child(r),CONCEAL_BIT+ENGLISH_BIT);

".~";

default: "~Afraid I can't help you there.~";

],

life

[; Ask: "~You're on your own this time.~";

Tell: "Martha clucks sympathetically.";

Answer: "~I'll be darned,~ Martha replies.";

],

has animate female concealed proper;

175

Answers to exercises 33-35

but the really interesting part is the InScope routine to �x things up:

[InScope actor;

if (actor==martha) PlaceInScope(player);

if (actor==player && scope_reason==TALKING_REASON)

PlaceInScope(martha);

rfalse;

];

Note that since we want two-way communication, the player has to be in scope to Martha too:
otherwise Martha won't be able to follow the command \martha, give me the �sh", because \me"
will refer to something beyond her scope.

�33 Just test if HasLightSource(gift)==1.

�34 We could solve this using a daemon, but for the sake of demonstrating a feature of thedark
we won't. In Initialise, write thedark.initial = #r$GoMothGo; and add the routine:

[GoMothGo;

if (moth in player)

{ remove moth;

"As your eyes try to adjust, you feel a ticklish sensation \

and hear a tiny fluttering sound.";

}

];

�35 This is a crude implementation, for brevity (the real Zork thief has an enormous stock of
attached messages). A life routine is omitted, and of course this particular thief steals nothing.
See `The Thief' for a much fuller, annotated implementation.

Nearby thief "thief"

with name "thief" "gentleman" "mahu" "modo",

each_turn "^The thief growls menacingly.",

daemon

[i p j n k;

if (random(3)~=1) rfalse;

p=parent(thief);

objectloop (i in compass)

{ j=p.(i.door_dir);

if (ZRegion(j)==1 && j hasnt door) n++;

}

if (n==0) rfalse;

k=random(n); n=0;

objectloop (i in compass)

{ j=p.(i.door_dir);

if (ZRegion(j)==1 && j hasnt door) n++;

if (n==k)

{ move self to j;

if (p==location) "^The thief stalks away!";

if (j==location) "^The thief stalks in!";

176

Answer to exercise 36

rfalse;

}

}

],

has animate;

ZRegion(j) works out what kind of value j is: 1 means `is a valid object number'. So the thief
walks at random but never via doors, bridges and the like (because these may be locked or have
rules attached); it's only a �rst approximation, and in a good game one should occasionally see
the thief do something surprising, such as open a secret door. As for the name, note that `The
Prince of darkness is a gentleman. Modo he's called, and Mahu' (William Shakespeare, King Lear

III iv).

�36 First de�ne a new property for object weight:

Property weight 10;

(10 being an average sort of weight). Containers weigh more when they hold things, so we will
need:

[WeightOf obj t i;

t = obj.weight;

objectloop (i in obj) t=t+WeightOf(i);

return t;

];

Now for the daemon which monitors the player's fatigue:

Object weigher "weigher"

with number 500,

time_left 5,

daemon

[w s b bw;

w=WeightOf(player)-100-player.weight;

s=self.number; s=s-w; if (s<0) s=0; if (s>500) s=500;

self.number = s;

if (s==0)

{ bw=-1;

objectloop(b in player)

if (WeightOf(b)>bw) { bw=WeightOf(b); w=b; }

print "^Exhausted with carrying so much, you decide \

to discard ", (the) w, ": "; <<Drop w>>;

}

w=s/100; if (w==self.time_left) rfalse;

if (w==3) print "^You are feeling a little tired.^";

if (w==2) print "^You possessions are weighing you down.^";

if (w==1) print "^Carrying so much weight is wearing you out.^";

self.time_left = w;

];

177

Answers to exercises 37-40

Notice that items are actually dropped with Drop actions: one of them might be, say, a wild boar,
which would bolt away into the forest when released. The daemon tries to drop the heaviest item.
(Obviously a little improvement would be needed if the game contained, say, an un-droppable but
very heavy ball and chain.) Now the daemon is going to run every turn forever, but needs to be
started: so put StartDaemon(weigher); into the game's Initialise routine.

�37 See the next answer.

�38

Object tiny_claws "sound of tiny claws" thedark

with article "the",

name "tiny" "claws" "sound" "of" "scuttling" "scuttle"

"things" "creatures" "monsters" "insects",

initial "Somewhere, tiny claws are scuttling.",

before

[; Listen: "How intelligent they sound, for mere insects.";

Touch, Taste: "You wouldn't want to. Really.";

Smell: "You can only smell your own fear.";

Attack: "They easily evade your flailing about in the dark.";

default: "The creatures evade you, chittering.";

],

each_turn [; StartDaemon(self);],

number 0,

daemon

[i; if (location~=thedark) { self.number=0; StopDaemon(self); rtrue; }

i=self.number+1; self.number=i;

switch(i)

{ 1: "^The scuttling draws a little nearer, and your breathing \

grows loud and hoarse.";

2: "^The perspiration of terror runs off your brow. The \

creatures are almost here!";

3: "^You feel a tickling at your extremities and kick outward, \

shaking something chitinous off. Their sound alone \

is a menacing rasp.";

4: deadflag=1;

"^Suddenly there is a tiny pain, of a hypodermic-sharp fang \

at your calf. Almost at once your limbs go into spasm, \

your shoulders and knee-joints lock, your tongue swells...";

}

];

�39 Either set a daemon to watch for the_time suddenly dropping, or put such a watch in the
game's TimePasses routine.

�40 A minimal solution is as follows:

Constant SUNRISE 360; ! i.e., 6 am

Constant SUNSET 1140; ! i.e., 7 pm

Attribute outdoors; ! Give this to external locations

178

Answers to exercises 41-45

Attribute lit; ! And this to artificially lit ones

Global day_state = 2;

[TimePasses f obj;

if (the_time >= SUNRISE && the_time < SUNSET) f=1;

if (day_state == f) rfalse;

for (obj=1: obj<=top_object: obj++)

{ if (obj has lit) give obj light;

if (obj has outdoors && obj hasnt lit)

{ if (f==0) give obj ~light; else give obj light;

}

}

if (day_state==2) { day_state = f; return; }

day_state = f; if (location hasnt outdoors) return;

if (f==1) "^The sun rises, illuminating the landscape!";

"^As the sun sets, the landscape is plunged into darkness.";

];

In the Initialise routine, set the time (using SetTime) and then call TimePasses to set all the
light attributes accordingly. Note that with this system, there's no need to set light at all:
that's automatic.

�41 Because you don't know what order daemons will run in. A `fatigue' daemon which makes
the player drop something might come after the `mid-air' daemon has run for this turn. Whereas
each_turn happens after daemons and timers have run their course, and can fairly assume no
further movements will take place this turn.

�42 It would have to provide its own code to keep track of time, and it can do this by providing
a TimePasses() routine. Providing \time" or even \date" verbs to tell the player would also be
a good idea.

�43 Two reasons. Firstly, there are times when we want to be able to trap orders to other people,
which react_before does not. Secondly, the player's react_before rule is not necessarily the
�rst to react. In the case of the player's deafness, a cuckoo may have already used react_before

to sing. But it would have been safe to use GamePreRoutine, if a little untidy (because a rule
about the player would not be part of the player's de�nition, which makes for confusing source
code). See x4 for the exact sequence of events when actions are processed.

�44

orders

[; if (gasmask hasnt worn) rfalse;

if (actor==self && action~=##Answer or ##Tell or ##Ask) rfalse;

"Your speech is muffled into silence by the gas mask.";

],

�45 The common man's wayhel was a lowly mouse. Since we think much more highly of the
player:

Object hog "Warthog" Caldera

with name "wart" "hog" "warthog", description "Muddy and grunting.",

number 0,

179

Answers to exercises 46-50

initial "A warthog snuffles and grunts about in the ash.",

orders

[; if (action~=##Go or ##Look or ##Examine)

"Warthogs can't do anything as tricky as that!";

],

has animate proper;

and we just ChangePlayer(warthog);. Note that the same orders routine applies to the player-
as-human typing \warthog, listen" as to the player-as-warthog typing just \listen".

�46

orders

[; if (player==self)

{ if (actor~=self)

"You only become tongue-tied and gabble.";

rfalse;

}

Attack: "The Giant looks at you with doleful eyes. \

~Me not be so bad!~";

default: "The Giant is unable to comprehend your instructions.";

],

�47 Give the \chessboard" room a short_name routine (it probably already has one, to print
names like \Chessboard d6") and make it change the short name to \the gigantic Chessboard" if
and only if action is currently set to ##Places.

�48 Put the following de�nition between inclusion of \Parser" and \Verblib":

Object LibraryMessages "lm"

with before

[; Prompt: if (turns==1)

print "What should you, the detective, do now?^>";

else

print "What next?^>";

rtrue;

];

�49 The details are left to the reader. One must provide a new grammar �le (generating the
same actions but from di�erent syntax) and a very large LibraryMessages object.

�50 Simply de�ne the following (for accusative, nominative and capitalised nominative pronouns,
respectively):

[PronounAcc i;

if (i hasnt animate) print "it";

else { if (i has female) print "her"; else print "him"; }];

[PronounNom i;

if (i hasnt animate) print "it";

180

Answers to exercises 51-53

else { if (i has female) print "she"; else print "he"; }];

[CPronounNom i;

if (i hasnt animate) print "It";

else { if (i has female) print "She"; else print "He"; }];

�51 Use the invent routine to signal to short_name and article routines to change their usual
habits:

invent

[; if (inventory_stage==1) give self general;

else give self ~general;

],

short_name

[; if (self has general) { print "box"; rtrue; }],

article

[; if (self has general) { print "that hateful"; rtrue; }

else print "a";],

�52 This answer is cheating, as it needs to know about the lookmode variable (set to 1 for
normal, 2 for verbose or 3 for superbrief). Simply include:

[TimePasses;

if (action~=##Look && lookmode==2) <Look>;

];

�53

[DoubleInvSub i count1 count2;

print "You are carrying ";

objectloop (i in player)

{ if (i hasnt worn) { give i workflag; count1++; }

else { give i ~workflag; count2++; }

}

if (count1==0) print "nothing.";

else

WriteListFrom(child(player),

FULLINV_BIT + ENGLISH_BIT + RECURSE_BIT + WORKFLAG_BIT);

if (count2==0) ".";

print ". In addition, you are wearing ";

objectloop (i in player)

{ if (i hasnt worn) give i ~workflag; else give i workflag;

}

WriteListFrom(child(player),

ENGLISH_BIT + RECURSE_BIT + WORKFLAG_BIT);

".";

];

181

Answers to exercises 54-55

�54

Attribute is_letter;

Class letter

with list_together

[; if (inventory_stage==1)

{ print "the letters ";

if (c_style & ENGLISH_BIT == 0) c_style = c_style + ENGLISH_BIT;

if (c_style & NOARTICLE_BIT == 0) c_style = c_style + NOARTICLE_BIT;

if (c_style & NEWLINE_BIT ~= 0) c_style = c_style - NEWLINE_BIT;

if (c_style & INDENT_BIT ~= 0) c_style = c_style - INDENT_BIT;

}

else print " from a Scrabble set";

],

short_name

[; if (listing_together has is_letter) rfalse;

print "letter ", object self, " from a Scrabble set"; rtrue;

],

article "the",

has is_letter;

and then as many letters as desired, along the lines of

Nearby s1 "X" class letter with name "x";

�55

Attribute is_coin;

Class coin_class

with name "coin",

description "A round unstamped disc, presumably local currency.",

parse_name

[i j w;

if (parser_action==##TheSame)

{ if ((parser_one.&name)-->0 == (parser_two.&name)-->0) return -1;

return -2;

}

w=(self.&name)-->0;

for (::i++)

{ j=NextWord();

if (j=='coins') parser_action=##PluralFound;

else if (j~='coin' or w) return i;

}

],

list_together "coins",

plural

[; print (string) (self.&name)-->0;

if (listing_together hasnt is_coin) print " coins";

182

Answer to exercise 56

],

short_name

[; if (listing_together has is_coin)

{ print (string) (self.&name)-->0; rtrue; }

],

article

[; if (listing_together has is_coin) print "one"; else print "a";

],

has is_coin;

Class gold_coin_class class coin_class with name "gold";

Class silver_coin_class class coin_class with name "silver";

Class bronze_coin_class class coin_class with name "bronze";

Nearby coin1 "silver coin" class silver_coin_class;

... and so on

�56 For brevity, the following answer omits the routines: CoinsTogether(attr) which �nds if
the three coins with this attr (is_gold or is_silver) are together, returning 0 if they aren't and
otherwise the object of which they are children; and Trigram(attr) which prints out the trigram
currently showing on the coins of that attr, e.g., \Tails, Tails, Heads (Chen)".

Attribute is_gold; Attribute is_silver;

[Face x; if (x.number==1) print "Heads"; else print "Tails";];

[CoinsLT attr k i c;

if (inventory_stage==1)

{ if (attr==is_gold) print "the gold"; else print "the silver";

print " coins ";

k=CoinsTogether(attr);

if (k==location)

{ for (i=selfobj+1:i<=top_object:i++)

{ if (i has attr)

{ print (name) i;

switch(++c)

{ 1: print ", "; 2: print " and ";

3: print " (showing the trigram ", (Trigram) attr, ")";

}

}

}

rtrue;

}

if (c_style & ENGLISH_BIT == 0) c_style = c_style + ENGLISH_BIT;

if (c_style & NOARTICLE_BIT == 0) c_style = c_style + NOARTICLE_BIT;

if (c_style & NEWLINE_BIT ~= 0) c_style = c_style - NEWLINE_BIT;

if (c_style & INDENT_BIT ~= 0) c_style = c_style - INDENT_BIT;

}

rfalse;

];

Class coin

with number 1, article "the",

183

Answer to exercise 57

parse_name

[i j w;

if (parser_action==##TheSame) return -2;

w='gold'; if (self has is_silver) w='silver';

for (::i++)

{ j=NextWord();

if (j=='coins') parser_action=##PluralFound;

else if (j~='coin' or w or self.name) return i;

}

],

after

[j; Drop, PutOn:

self.number=random(2); print (Face) self, ". ";

if (self has is_gold) j=is_gold; else j=is_silver;

if (CoinsTogether(j)~=0)

{ print "The ";

if (j==is_gold) print "gold"; else print "silver";

print_ret " trigram is now ", (Trigram) j, ".";

}

new_line; rtrue;

];

Class gold_coin class coin

has is_gold with list_together [; return CoinsLT(is_gold);];

Class silver_coin class coin

has is_silver with list_together [; return CoinsLT(is_silver);];

...

Nearby goat "goat" class gold_coin with name "goat";

Nearby deer "deer" class gold_coin with name "deer";

Nearby chicken "chicken" class gold_coin with name "chicken";

Nearby robin "robin" class silver_coin with name "robin";

Nearby snake "snake" class silver_coin with name "snake";

Nearby bison "bison" class silver_coin with name "bison";

There are two unusual points here. Firstly, the CoinsLT routine is not simply given as the common
list_together value in the coin class since, if it were, all six coins would be grouped together:
we want two groups of three, so the gold and silver coins have to have di�erent list_together
values. Secondly, if a trigram is together and on the oor, it is not good enough to simply append
text like \showing Tails, Heads, Heads (Tui)" at inventory_stage 2 since the coins may be listed
in a funny order: for example, in the order snake, robin, bison. In that event, the order the coins
are listed in doesn't correspond to the order their values are listed in, which is misleading. So
instead CoinsLT takes over entirely at inventory_stage 1 and prints out the list of three itself,
returning true to stop the list from being printed out by the library as well.

�57

parse_name

[i j w; if (self has general) j='red'; else j='green';

w=NextWord();

while (w==j or 'fried')

{ w=NextWord(); i++;

184

Answers to exercises 58-59

}

if (w=='tomato') return i+1;

return 0;

],

�58

Nearby princess "/?%?/ (the artiste formerly known as Princess)"

with name "princess" "artiste" "formerly" "known" "as",

short_name

[; if (self hasnt general) { print "Princess"; rtrue; }

],

parse_name

[x; if (self hasnt general)

{ if (NextWord()=='princess') return 1;

return 0;

}

x=WordAddress(wn);

if (x->0 == '/' && x->1 == '?' && x->2 == '%'

&& x->3 == '?' && x->4 == '/') return 1;

return -1;

],

react_before

[; Listen: if (noun==0)

print_ret (name) self, " sings a soft siren song.";

],

life

[; Kiss: give self general; self.life = NULL;

"In a fairy-tale transformation, the Princess \

steps back and astonishes the world by announcing \

that she will henceforth be known as ~/?%?/~.";

],

has animate proper female;

�59 Something to note here is that the button can't be called just \co�ee" when the player's
holding a cup of co�ee: this means the game responds sensibly to the sequence \press co�ee" and
\drink co�ee". Also note the way itobj is set to the delivered drink, so that \drink it" works
nicely.

Nearby drinksmat "drinks machine",

with name "drinks" "machine",

initial

"A drinks machine here has buttons for Cola, Coffee and Tea.",

has static;

Nearby thebutton "drinks machine button"

has scenery

with parse_name

185

Answer to exercise 59

[i flag type;

for (: flag == 0: i++)

{ flag = 1;

switch(NextWord())

{ 'button', 'for': flag = 0;

'coffee': if (type == 0) { flag = 0; type = 1; }

'tea': if (type == 0) { flag = 0; type = 2; }

'cola': if (type == 0) { flag = 0; type = 3; }

}

}

if (type==drink.number && i==2 && type~=0 && drink in player)

return 0;

self.number=type; return i-1;

],

number 0,

before

[; Push, SwitchOn:

if (self.number == 0)

"You'll have to say which button to press.";

if (parent(drink) ~= 0) "The machine's broken down.";

drink.number = self.number; move drink to player; itobj = drink;

print_ret "Whirr! The machine puts ", (a) drink, " into your \

glad hands.";

Attack: "The machine shudders and squirts cola at you.";

Drink: "You can't drink until you've worked the machine.";

];

Object drink "drink"

with parse_name

[i flag type;

for (: flag == 0: i++)

{ flag = 1;

switch(NextWord())

{ 'drink', 'cup', 'of': flag = 0;

'coffee': if (type == 0) { flag = 0; type = 1; }

'tea': if (type == 0) { flag = 0; type = 2; }

'cola': if (type == 0) { flag = 0; type = 3; }

}

}

if (type ~= 0 && type ~= self.number) return 0;

return i-1;

],

short_name

[; print "cup of ";

switch (self.number)

{ 1: print "coffee"; 2: print "tea"; 3: print "cola"; }

rtrue;

],

number 0,

186

Answers to exercises 60-63

before

[; Drink: remove self;

"Ugh, that was awful. You crumple the cup and responsibly \

dispose of it.";

];

�60 Create a new property adjective, and move names which are adjectives to it: for instance,

name "tomato" "vegetable", adjective 'fried' 'green' 'cooked',

(Recall that dictionary words can only be written in " quotes for the name property.) Then (using
the same IsAWordIn routine),

[ParseNoun obj n m;

while (IsAWordIn(NextWord(),obj,adjective) == 1) n++; wn--;

while (IsAWordIn(NextWord(),obj,noun) == 1) m++;

if (m==0) return 0; return n+m;

];

�61

[ParseNoun obj;

if (NextWord() == 'object' && TryNumber(wn) == obj) return 2;

wn--; return -1;

];

�62

[ParseNoun;

if (WordLength(wn)==1 && WordAddress(wn)-->0 == '#') return 1;

return -1;

];

�63

[ParseNoun;

if (WordLength(wn)==1 && WordAddress(wn)-->0 == '#') return 1;

if (WordLength(wn)==1 && WordAddress(wn)-->0 == '*')

{ parser_action = ##PluralFound; return 1; }

return -1;

];

187

Answers to exercises 64-67

�64 The trick is to convert \y in amber" into \y y amber" (a harmless name) before the
parser gets under way.

[BeforeParsing i j;

for (i=parse->1,j=2:j<i:j++)

{ wn=j-1;

if (NextWord()=='fly' && NextWord()=='in' && NextWord()=='amber')

parse-->(j*2-1) = 'fly';

}

];

�65

Global c_warned = 0;

Class cherub_class

with parse_name

[i j flag;

for (flag=1:flag==1:flag=0)

{ j=NextWord();

if (j=='cherub' or j==self.name) flag=1;

if (j=='cherubs' && c_warned==0)

{ c_warned=1;

parser_action=##PluralFound; flag=1;

print "(I'll let this go once, but the plural of cherub is cherubim.)^";

}

if (j=='cherubim')

{ parser_action=##PluralFound; flag=1; }

i++;

}

return i-1;

];

Then again, Shakespeare even writes \cherubins" in `Twelfth Night', so who are we to censure?

�66 Because the parser might go on to reject the line it's working on: for instance, if the player
typed \inventory splurge" then the message \Shazam!" followed by a parser complaint will be
somewhat unedifying.

�67 De�ne two properties:

Property place_name;

Property to_places;

The scheme will work like this: a named room should have the place_name property set to a single
dictionary word; say, the Bedquilt cave could be called 'bedquilt'. Then in any room, a list of
those other rooms which can be moved to in this way should appear in the to_places entry. For
instance,

to_places Bedquilt Slab_Room Twopit_Room;

188

Answer to exercise 68

Now the code: see if a not-understood verb is a place name of a nearby room, and if so store that
room's object number in goto_room, converting the verb to a dummy.

Global goto_room;

[UnknownVerb word p i;

p = location.&to_places; if (p==0) rfalse;

for (i=0:(2*i)<location.#to_places:i++)

if (word==(p-->i).place_name)

{ goto_room = p-->i; return 'go#room';

}

rfalse;

];

[PrintVerb word;

if (word=='go#room')

{ print "go to "; PrintShortName(goto_room); rtrue; }

rfalse;

];

(The supplied PrintVerb is icing on the cake: so the parser can say something like \I only
understood you as far as wanting to go to Bedquilt." in reply to, say, \bedquilt the nugget".) It
remains only to create the dummy verb:

[GoRoomSub;

if (goto_room hasnt visited) "But you have never been there.";

PlayerTo(goto_room);

];

Verb "go#room" * -> GoRoom;

Note that if you don't know the way, you can't go there! A purist might prefer instead to not
recognise the name of an unvisited room, back at the UnknownVerb stage, to avoid the player being
able to deduce names of nearby rooms from this `error message'.

�68

Nearby genies_lamp "brass lamp"

with name "brass" "lamp",

before

[; Rub: if (self hasnt general) give self general;

else give self ~general;

print_ret "A genie appears from the lamp, declaring:^^\

~Mischief is my sole delight:^ \

If white means black, black means white!~^^\

She vanishes away with a vulgar parting wink.";

];

Nearby white_stone "white stone" with name "white" "stone";

Nearby black_stone "black stone" with name "black" "stone";

...

[BeforeParsing;

if (genies_lamp hasnt general) return;

for (wn=1::)

{ switch(NextWordStopped())

189

Answers to exercises 69-70

{ 'white': parse->(wn*2-3) = 'black';

'black': parse->(wn*2-3) = 'white';

-1: return;

}

}

];

�69

Constant MAX_FOOTNOTES 10;

Array footnotes_seen -> MAX_FOOTNOTES;

Global footnote_count;

[Note n i pn;

for (i=0:i<footnote_count:i++)

if (n==footnotes_seen->i) pn=i;

if (footnote_count==MAX_FOOTNOTES) "** MAX_FOOTNOTES exceeded! **";

if (pn==0) { pn=footnote_count++; footnotes_seen->pn=n; }

print " [",pn+1,"]";

];

[FootnoteSub n;

if (noun>footnote_count)

{ print "No footnote [",noun,"] has been mentioned.^"; rtrue; }

if (noun==0) "Footnotes count upward from 1.";

n=footnotes_seen->(noun-1);

print "[",noun,"] ";

switch(n)

{ 0: "This is a footnote.";

1: "D.G.REG.F.D is inscribed around English coins.";

2: "~Jackdaws love my big sphinx of quartz~, for example.";

}

];

Verb "footnote" "note" * number -> Footnote;

And then you can code, for instance,

print "Her claim to the throne is in every pocket ", (Note) 1,

", her portrait in every wallet.";

�70 The general parsing routine needed is:

[FrenchNumber n;

switch(NextWord())

{ 'un', 'une': n=1;

'deux': n=2;

'trois': n=3;

'quatre': n=4;

'cinq': n=5;

default: return -1;

190

Answers to exercises 71-72

}

parsed_number = n; return 1;

];

�71 First we must decide how to store oating-point numbers internally: in this case we'll simply
store 100x to represent x, so that \5:46" will be parsed as 546.

[DigitNumber n type x;

x = NextWordStopped(); if (x==-1) return -1; wn--;

if (type==0)

{ x = WordAddress(wn);

if (x->n>='0' && x->n<='9') return (x->n) - '0';

return -1;

}

if (x=='nought' or 'oh') { wn++; return 0; }

x = TryNumber(wn++); if (x==-1000 x>=10) x=-1; return x;

];

[FloatingPoint a x b w d1 d2 d3 type;

a = TryNumber(wn++);

if (a==-1000) return -1;

w = NextWordStopped(wn); if (w==-1) return a*100;

x = NextWordStopped(wn); if (x==-1) return -1; wn--;

if (w=='point') type=1;

else

{ if (WordAddress(wn-1)->0~='.' WordLength(wn-1)~=1)

return -1;

}

d1 = DigitNumber(0,type);

if (d1==-1) return -1;

d2 = DigitNumber(1,type); d3 = DigitNumber(2,type);

b=d1*10; if (d2>=0) b=b+d2; else d3=0;

if (type==1)

{ x=1; while (DigitNumber(x,type)>=0) x++; wn--;

}

else wn++;

parsed_number = a*100 + b;

if (d3>=5) parsed_number++;

return 1;

];

�72 Again, the �rst question is how to store the number dialled: in this case, into a string

array. The token is:

Constant MAX_PHONE_LENGTH 30;

Array dialled_number string MAX_PHONE_LENGTH;

[PhoneNumber f a l ch pp i;

pp=1; if (NextWordStopped()==-1) return 0;

191

Answer to exercise 73

do

{ a=WordAddress(wn-1); l=WordLength(wn-1);

for (i=0:i<l:i++)

{ ch=a->i;

if (ch>='0' && ch<='9')

{ if (pp<MAX_PHONE_LENGTH) dialled_number->(pp++)=ch-'0';

}

else

{ if (ch~='-') f=1; if (i~=0) return -1; }

}

if (f==1)

{ if (pp==1) return -1; dialled_number->0 = pp-1; return 0; }

} until (NextWordStopped()==-1);

if (pp==1) return -1;

dialled_number->0 = pp-1;

return 0;

];

To demonstrate this in use,

[DialPhoneSub i;

print "You dialled <";

for (i=1:i<=dialled_number->0:i++) print dialled_number->i;

">";

];

Verb "dial" * PhoneNumber -> DialPhone;

�73 The time of day will be returned as a number in the usual Inform time format: as hours
times 60 plus minutes (on the 24-hour clock, so that the `hour' part is between 0 and 23).

Constant TWELVE_HOURS 720;

[NumericTime hr mn word x;

if (hr>=24) return -1;

if (mn>=60) return -1;

x=hr*60+mn; if (hr>=13) return x;

x=x%TWELVE_HOURS; if (word=='pm') x=x+TWELVE_HOURS;

if (word~='am' or 'pm' && hr==12) x=x+TWELVE_HOURS;

return x;

];

[MyTryNumber wordnum i j;

i=wn; wn=wordnum; j=NextWordStopped(); wn=i;

switch(j)

{ 'twenty-five': return 25;

'thirty': return 30;

default: return TryNumber(wordnum);

}

];

[TimeOfDay i j k flag loop ch hr mn;

192

Answer to exercise 73

i=NextWord();

switch(i)

{ 'midnight': parsed_number=0; return 1;

'midday', 'noon': parsed_number=TWELVE_HOURS; return 1;

}

! Next try the format 12:02

j=WordAddress(wn-1); k=WordLength(wn-1);

flag=0;

for (loop=0:loop<k:loop++)

{ ch=j->loop;

if (ch==':' && flag==0 && loop~=0 && loop~=k-1) flag=1;

else { if (ch<'0') flag=-1; if (ch>'9') flag=-1; }

}

if (k<3) flag=0; if (k>5) flag=0;

if (flag==1)

{ for (loop=0:j->loop~=':':loop++, hr=hr*10)

hr=hr+j->loop-'0';

hr=hr/10;

for (loop++:loop<k:loop++, mn=mn*10)

mn=mn+j->loop-'0';

mn=mn/10;

j=NextWordStopped();

parsed_number=NumericTime(hr, mn, j);

if (parsed_number<0) return -1;

if (j~='pm' or 'am') wn--;

return 1;

}

! Next the format "half past 12"

j=-1; if (i=='half') j=30; if (i=='quarter') j=15;

if (j<0) j=MyTryNumber(wn-1); if (j<0) return -1;

if (j>=60) return -1;

k=NextWordStopped();

if (k==-1)

{ hr=j; if (hr>12) return -1; jump TimeFound; }

if (k=='o^clock' or 'am' or 'pm')

{ hr=j; if (hr>12) return -1; jump TimeFound; }

if (k=='to' or 'past')

{ mn=j; hr=MyTryNumber(wn);

if (hr<=0)

{ switch(NextWordStopped())

{ 'noon', 'midday': hr=12;

'midnight': hr=0;

default: return -1;

}

}

if (hr>=13) return -1;

if (k=='to') { mn=60-mn; hr=hr-1; if (hr==-1) hr=23; }

wn++; k=NextWordStopped();

193

Answer to exercise 74

jump TimeFound;

}

hr=j; mn=MyTryNumber(--wn);

if (mn<0) return -1; if (mn>=60) return -1;

wn++; k=NextWordStopped();

.TimeFound;

parsed_number = NumericTime(hr, mn, k);

if (parsed_number<0) return -1;

if (k~='pm' or 'am' or 'o^clock') wn--;

return 1;

];

�74 Here goes: we could implement the buttons with �ve separate objects, essentially duplicates
of each other. (And by using a class de�nition, this wouldn't look too bad.) But if there were 500
slides this would be less reasonable.

[ASlide w n;

if (location~=Machine_Room) return -1;

w=NextWord(); if (w=='slide') w=NextWord();

switch(w)

{ 'first', 'one': n=1;

'second', 'two': n=2;

'third', 'three': n=3;

'fourth', 'four': n=4;

'fifth', 'five': n=5;

default: return -1; ! Failure!

}

w=NextWord(); if (w~='slide') wn--; ! (Leaving word counter at the

! first misunderstood word)

parsed_number=n;

return 1; ! Success!

];

Global slide_settings --> 5; ! A five-word array

[SetSlideSub;

slide_settings-->(noun-1) = second;

print_ret "You set slide ", (number) noun,

" to the value ", second, ".";

];

[XSlideSub;

print_ret "Slide ", (number) noun, " currently stands at ",

slide_settings-->(noun-1), ".";

];

Extend "set" first

* ASlide "to" number -> SetSlide;

Extend "push" first

* ASlide "to" number -> SetSlide;

Extend "examine" first

* ASlide -> XSlide;

194

Answers to exercises 75-79

�75 (See the Parser �le.) NextWord roughly returns parse-->(w*2-1) (but it worries a bit about
commas and full stops).

[WordAddress w; return buffer + parse->(w*4+1);];

[WordLength w; return parse->(w*4);];

�76 (Cf. the blackboard code in `Toyshop'.)

Global from_char; Global to_char;

[QuotedText i j f;

i = parse->((++wn)*4-3);

if (buffer->i=='"')

{ for (j=i+1:j<=(buffer->1)+1:j++)

if (buffer->j=='"') f=j;

if (f==0) return -1;

from_char = i+1; to_char=f-1;

if (from_char>to_char) return -1;

while (f> (parse->(wn*4-3))) wn++; wn++;

return 0;

}

return -1;

];

Note that in the case of success, the word marker wn is moved beyond the last word accepted (since
the Z-machine automatically tokenises a double-quote as a single word). The text is treated as
though it were a preposition, and the positions where the quoted text starts and �nishes in the
raw text buffer are recorded, so that an action routine can easily extract the text and use it
later. (Note that "" with no text inside is not matched by this routine but only because the last
if statement throws out that one case.)

�77

[NeverMatch; return -1;];

�78 Perhaps to arrange better error messages when the text has failed all the `real' grammar
lines of a verb (see `Encyclopaedia Frobozzica' for an example).

�79 (See the NounDomain speci�cation in x36.) This routine passes on any REPARSE_CODE, as it
must, but keeps a matched object in its own third variable, returning the `skip this text' code to
the parser. Thus the parser never sees any third parameter.

Global third;

[ThirdNoun x;

x=NounDomain(player,location,0);

if (x==REPARSE_CODE) return x; if (x==0) return -1; third = x;

return 0;

];

195

Answers to exercises 80-83

�80

Global scope_count;

[PrintIt obj; print_ret ++scope_count, ": ", (a) obj, " (", obj, ")";];

[ScopeSub; LoopOverScope(#r$PrintIt);

if (scope_count==0) "Nothing is in scope.";

];

Verb meta "scope" * -> Scope;

�81

[MegaExam obj; print "^", (a) obj, ": "; <Examine obj>;];

[MegaLookSub; <Look>; LoopOverScope(#r$MegaExam);];

Verb meta "megalook" * -> MegaLook;

�82 A slight re�nement of such a \purloin" verb is already de�ned in the library (if the constant
DEBUG is de�ned), so there's no need. But here's how it could be done:

[Anything i;

if (scope_stage==1) rfalse;

if (scope_stage==2)

{ for (i=1:i<=top_object:i++) PlaceInScope(i); rtrue; }

"No such in game.";

];

(This disallows multiple matches for e�ciency reasons { the parser has enough work to do with
such a huge scope de�nition as it is.) Now the token scope=Anything will match anything at all,
even things like the abstract concept of `east'.

�83 Note the sneaky way looking through the window is implemented, and that the `on the other
side' part of the room description isn't printed in that case.

Property far_side;

Class window_room

with description

"This is one end of a long east/west room.",

before

[; Examine, Search: ;

default:

if (inp1~=1 && noun~=0 && noun in self.far_side)

print_ret (The) noun, " is on the far side of \

the glass.";

if (inp2~=1 && second~=0 && second in self.far_side)

print_ret (The) second, " is on the far side of \

the glass.";

],

after

[; Look:

if (ggw has general) rfalse;

196

Answer to exercise 84

print "^The room is divided by a great glass window";

if (location.far_side hasnt light) " onto darkness.";

print ", stretching from floor to ceiling.^";

if (Locale(location.far_side,

"Beyond the glass you can see",

"Beyond the glass you can also see")~=0) ".";

],

has light;

Object window_w "West of Window" class window_room

with far_side window_e;

Object window_e "East of Window" class window_room

with far_side window_w;

Object ggw "great glass window"

with name "great" "glass" "window",

before

[place; Examine, Search: place=location;

if (place.far_side hasnt light)

"The other side is dark.";

give self general;

PlayerTo(place.far_side,1); <Look>; PlayerTo(place,1);

give self ~general;

give place.far_side ~visited; rtrue;

],

found_in window_w window_e,

has scenery;

A few words about inp1 and inp2 are in order. noun and second can hold either objects or
numbers, and it's sometimes useful to know which. inp1 is equal to noun if that's an object, or 1
if that's a number; likewise for inp2 and second. (In this case we're just being careful that the
action SetTo eggtimer 35 wouldn't be stopped if object 35 happened to be on the other side of
the glass.) We also need:

[InScope actor;

if (actor in window_w && window_e has light) ScopeWithin(window_e);

if (actor in window_e && window_w has light) ScopeWithin(window_w);

rfalse;

];

�84 For good measure, we'll combine this with the previous rule about moved objects being in
scope in the dark. The following can be inserted into the `Shell' game:

Object coal "dull coal" Blank_Room

with name "dull" "coal";

Object Dark_Room "Dark Room"

with description "An empty room with a west exit.",

each_turn

[; if (self has general) self.each_turn=0;

else "^You hear the breathing of a dwarf.";

],

197

Answer to exercise 85

w_to Blank_Room;

Nearby light_switch "light switch"

with name "light" "switch",

initial "On one wall is the light switch.",

after

[; SwitchOn: give Dark_Room light;

SwitchOff: give Dark_Room ~light;

],

has switchable static;

Nearby diamond "shiny diamond"

with name "shiny" "diamond"

has scored;

Nearby dwarf "dwarf"

with name "voice" "dwarf",

life

[; Order: if (action==##SwitchOn && noun==light_switch)

{ give Dark_Room light general;

give light_switch on; "~Right you are, squire.~";

}

],

has animate;

[InScope person i;

if (parent(person)==Dark_Room)

{ if (person==dwarf Dark_Room has general)

PlaceInScope(light_switch);

}

if (person==player && location==thedark)

objectloop (i near player)

if (i has moved i==dwarf)

PlaceInScope(i);

rfalse;

];

Note that the routine puts the light switch in scope for the dwarf { if it didn't, the dwarf would
not be able to understand \dwarf, turn light on", and that was the whole point.

�85 In the Initialise routine, move newplay somewhere and ChangePlayer to it, where:

Object newplay "yourself"

with description "As good-looking as ever.", number 0,

add_to_scope nose,

capacity 5,

before

[; Inv: if (nose has general) print "You're holding your nose. ";

Smell: if (nose has general)

"You can't smell a thing with your nose held.";

],

has concealed animate proper transparent;

Object nose "nose"

with name "nose", article "your",

198

Answer to exercise 86

before

[; Take: if (self has general)

"You're already holding your nose.";

if (children(player) > 1) "You haven't a free hand.";

give self general; player.capacity=1;

"You hold your nose with your spare hand.";

Drop: if (self hasnt general) "But you weren't holding it!";

give self ~general; player.capacity=5;

print "You release your nose and inhale again. ";

<<Smell>>;

],

has scenery;

�86

Object steriliser "sterilising machine"

with name "washing" "sterilising" "machine",

add_to_scope top_of_wm go_button,

before

[; PushDir: AllowPushDir(); rtrue;

Receive:

if (receive_action==##PutOn)

<<PutOn noun top_of_wm>>;

SwitchOn: <<Push go_button>>;

],

after

[; PushDir: "It's hard work, but the steriliser does roll.";

],

initial

[; print "There is a sterilising machine on casters here (a kind of \

chemist's washing machine) with a ~go~ button. ";

if (children(top_of_wm)~=0)

{ print "On top";

WriteListFrom(child(top_of_wm), ISARE_BIT + ENGLISH_BIT);

print ". ";

}

if (children(self)~=0)

{ print "Inside";

WriteListFrom(child(self), ISARE_BIT + ENGLISH_BIT);

print ". ";

}

],

has static container open openable;

Object top_of_wm "top of the sterilising machine",

with article "the",

has static supporter;

Object go_button "~go~ button"

with name "go" "button",

199

Answer to exercise 87

before [; Push, SwitchOn: "The power is off.";],

has static;

�87 The label object itself is not too bad:

Nearby label "red sticky label"

with name "red" "sticky" "label",

number 0,

before

[; PutOn, Insert:

if (self.number~=0)

{ print "(first removing the label from ",

(the) self.number, ")^"; self.number=0; move self to player;

}

if (second==self) "That would only make a red mess.";

self.number=second; remove self;

print_ret "You affix the label to ", (the) second, ".";

],

react_after

[x; x=self.number; if (x==0) rfalse;

Look: if (x in location)

print "^The red sticky label is stuck to ", (the) x, ".^";

Inv: if (x in player)

print "^The red sticky label is stuck to ", (the) x, ".^";

],

each_turn

[; if (parent(self)~=0) self.number=0;];

Note that label.number holds the object the label is stuck to, or 0 if it's unstuck: and that when
it is stuck, it is removed from the object tree. It therefore has to be moved into scope, so we need
the rule: if the labelled object is in scope, then so is the label.

Global disable_self;

[InScope actor i1 i2;

if (label.number==0) rfalse; if (disable_self==1) rfalse;

disable_self=1;

i1 = TestScope(label, actor);

i2 = TestScope(label.number, actor);

disable_self=0;

if (i1~=0) rfalse;

if (i2~=0) PlaceInScope(label);

rfalse;

];

This routine has two interesting points: �rstly, it disables itself while testing scope (since otherwise
the game would go into an endless recursion), and secondly it only puts the label in scope if it
isn't already there. This is just a safety precaution to prevent the label reacting twice to actions
(and isn't really necessary since the label can't already be in scope, but is included for the sake
of example).

200

Answers to exercises 88-90

�88 Firstly, create an attribute is_key and give it to all the keys in the game. Then:

Global assumed_key;

[DefaultLockSub;

print "(with ", (the) assumed_key, ")^"; <<Lock noun assumed_key>>;

];

[DefaultLockTest i count;

if (noun hasnt lockable) rfalse;

objectloop (i in player)

if (i has is_key) { count++; assumed_key = i; }

if (count==1) rtrue; rfalse;

];

Extend "lock" first * noun = DefaultLockTest -> DefaultLock;

(and similar code for \unlock"). Note that \lock strongbox" is matched by this new grammar
line only if the player only has one key: the DefaultLock strongbox action is generated: which
is converted to, say, Lock strongbox brass_key.

�89

Array quote_done -> 50;

Global next_quote = -1;

[Quote i;

if (quote_done->i==0) { quote_done->i = 1; next_quote = i; }

];

[AfterPrompt;

switch(next_quote)

{ 0: box "His stride is wildernesses of freedom:"

"The world rolls under the long thrust of his heel."

"Over the cage floor the horizons come."

""

"-- Ted Hughes, ~The Jaguar~";

1: ...

}

next_quote = -1;

];

�90 Note the magic line of assembly code here, which only works for Advanced games:

[GiveHint hint keypress;

print (string) hint; new_line; new_line;

@read_char 1 0 0 keypress;

if (keypress == 'H' or 'h') rfalse;

rtrue;

];

And a typical menu item using it:

if (menu_item==1)

{ print "(Press ENTER to return to menu, or H for another hint.)^^";

if (GiveHint("(1/3) What kind of bird is it, exactly?")==1) return 2;

201

Answers to exercises 91-93

if (GiveHint("(2/3) Magpies are attracted by shiny items.")==1) return 2;

"(3/3) Wave at the magpie with the kitchen foil.";

}

�91 By encoding the character into a byte array and using @save and @restore. The numbers
in this array might contain the character's name, rank and abilities, together with some coding
system to show what possessions the character has (a brass lamp, 50 feet of rope, etc.)

�92 Note that we wait for a space character (32) or either kind of new-line which typical ASCII
keyboards produce (10 or 13), just to be on the safe side:

[TitlePage i;

@erase_window -1; print "^^^^^^^^^^^^^";

i = 0->33; if (i==0) i=80; i=(i-50)/2;

style bold; font off; spaces(i);

print " RUINS^";

style roman; print "^^"; spaces(i);

print " [Please press SPACE to begin.]^";

font on;

box "And make your chronicle as rich with praise"

"As is the ooze and bottom of the sea"

"With sunken wreck and sumless treasures."

""

"-- William Shakespeare, ~Henry V~ I. ii. 163";

do { @read_char 1 0 0 i; } until (i==32 or 10 or 13);

@erase_window -1;

];

�93 First put the directive Replace DrawStatusLine; before including the library; de�ne the
global variable invisible_status somewhere. Then give the following rede�nition:

[DrawStatusLine i width posa posb;

if (invisible_status==1) return;

@split_window 1; @set_window 1; @set_cursor 1 1; style reverse;

width = 0->33; posa = width-26; posb = width-13;

spaces (width-1);

@set_cursor 1 2; PrintShortName(location);

if (width > 76)

{ @set_cursor 1 posa; print "Score: ", sline1;

@set_cursor 1 posb; print "Moves: ", sline2;

}

if (width > 63 && width <= 76)

{ @set_cursor 1 posb; print sline1, "/", sline2;

}

@set_cursor 1 1; style roman; @set_window 0;

];

202

Answers to exercises 94-95

�94 First put the directive Replace DrawStatusLine; before including the library. Then add
the following routine anywhere after treasures_found, an `Advent' variable, is de�ned:

[DrawStatusLine;

@split_window 1; @set_window 1; @set_cursor 1 1; style reverse;

spaces (0->33)-1;

@set_cursor 1 2; PrintShortName(location);

if (treasures_found > 0)

{ @set_cursor 1 50; print "Treasure: ", treasures_found;

}

@set_cursor 1 1; style roman; @set_window 0;

];

�95 Replace with the following. (Note the use of @@92 as a string escape, to include a literal
backslash character, and @@124 for a vertical line.)

Constant U_POS 28; Constant W_POS 30; Constant C_POS 31;

Constant E_POS 32; Constant IN_POS 34;

[DrawStatusLine i;

@split_window 3; @set_window 1; style reverse; font off;

@set_cursor 1 1; spaces (0->33)-1;

@set_cursor 2 1; spaces (0->33)-1;

@set_cursor 3 1; spaces (0->33)-1;

@set_cursor 1 2; print (name) location;

@set_cursor 1 51; print "Score: ", sline1;

@set_cursor 1 64; print "Moves: ", sline2;

if (location ~= thedark)

{ ! First line

if (location.u_to ~= 0) { @set_cursor 1 U_POS; print "U"; }

if (location.nw_to ~= 0) { @set_cursor 1 W_POS; print "@@92"; }

if (location.n_to ~= 0) { @set_cursor 1 C_POS; print "@@124"; }

if (location.ne_to ~= 0) { @set_cursor 1 E_POS; print "/"; }

if (location.in_to ~= 0) { @set_cursor 1 IN_POS; print "I"; }

! Second line

if (location.w_to ~= 0) { @set_cursor 2 W_POS; print "-"; }

@set_cursor 2 C_POS; print "o";

if (location.e_to ~= 0) { @set_cursor 2 E_POS; print "-"; }

! Third line

if (location.d_to ~= 0) { @set_cursor 3 U_POS; print "D"; }

if (location.sw_to ~= 0) { @set_cursor 3 W_POS; print "/"; }

if (location.s_to ~= 0) { @set_cursor 3 C_POS; print "@@124"; }

if (location.se_to ~= 0) { @set_cursor 3 E_POS; print "@@92"; }

if (location.out_to ~= 0){ @set_cursor 3 IN_POS; print "O"; }

}

@set_cursor 1 1; style roman; @set_window 0; font on;

];

203

Answers to exercises 96-97

�96 The tricky part is working out the number of characters in the location name, and this is
where @output_stream is so useful. This time Replace with:

Array printed_text table 64;

[DrawStatusLine i j;

i = 0->33; if (i==0) i=80;

font off;

@split_window 1; @buffer_mode 0; @set_window 1;

style reverse; @set_cursor 1 1; spaces(i);

printed_text-->0 = 64;

@output_stream 3 printed_text;

print (name) location;

@output_stream -3;

j=(i-(printed_text-->0))/2;

@set_cursor 1 j; print (name) location; spaces(j-1);

style roman;

@buffer_mode 1; @set_window 0; font on;

];

Note that the table can hold 128 characters (plenty for this purpose), and that these are stored
in printed_text->2 to printed_text->129; the length printed is held in printed_text-->0.
(`Trinity' actually does this more crudely, storing away the width of each location name.)

�97 The following implementation is limited to a format string 2 � 64 = 128 characters long,
and six subsequent arguments. %d becomes a decimal number, %e an English one; %c a character,
%% a (single) percentage sign and %s a string.

Array printed_text table 64;

Array printf_vals --> 6;

[Printf format p1 p2 p3 p4 p5 p6 pc j k;

printf_vals-->0 = p1; printf_vals-->1 = p2; printf_vals-->2 = p3;

printf_vals-->3 = p4; printf_vals-->4 = p5; printf_vals-->5 = p6;

printed_text-->0 = 64; @output_stream 3 printed_text;

print (string) format; @output_stream -3;

j=printed_text-->0;

for (k=2:k<j+2:k++)

{ if (printed_text->k == '%')

{ switch(printed_text->(++k))

{ '%': print "%";

'c': print (char) printf_vals-->pc++;

'd': print printf_vals-->pc++;

'e': print (number) printf_vals-->pc++;

's': print (string) printf_vals-->pc++;

default: print "<** Unknown printf escape **>";

}

}

else print (char) printed_text->k;

}

];

204

Answer to exercise 98

�98 Primes(100), where:

[Primes i j k l;

for (j=2:j<=i:j++)

{ print j, " : "; l=j;

while (l > 1)

for (k=2:k<=l:k++)

if (l%k == 0) { l=l/k; print k, " "; break; }

new_line;

}

];

(which was the �rst algorithm ever compiled by Inform).

205

Index

*, 101, 119.
++, 135.
--, 135.
->, 84.
.&, 20.
@, 104, 112, 119.
@@, 104, 112.
[, 16.

`A Nasal Twinge', 96, 199,
200.

`A Scenic View', 35.
(a), 122.
Abbreviate, 116.
abbreviations, 103, 130.
absent, 139.
\abstract" verb, 100.
accusative pronoun, 68, 180.
`Acheton', 8.
Achieved, 147.
Achieved(task), 63.
acquisitive bag, 37, 166.
action to be, 83, 97.
actions, 23.
creation of, 27.
de�ned in Library, 151.
diversion of, 34.
groups of, 26.
how the parser chooses, 83.
in debugging suite, 151.
list of group 1, 151.
numbers, 114.
of the �ve senses, 34.
sequence of processing, 24.
statements to cause, 24, 126.
validation (exercise), 26,
164.

\actions" verb, 24, 100.
actor, 93.
actor, 82, 95.
adaptive hints, 106.
add to scope, 38, 96, 141.
additive, 30, 65.
(address), 122.

AddToScope, 147.
adjectives, 79, 187.
Advanced games, 17, 65, 102,

138.
`Advent', 8, 28, 30, 35, 38, 40,

41, 52, 54, 55, 58, 61, 86,
87, 101, 106, 110, 129,
130, 160, 203.

`Adventureland', 8, 38, 58, 73.
after, 12, 33, 141.
AfterLife, 61, 149.
AfterPrompt, 105, 149.
alarm clock, 52, 172.
Aldebaran brandy, 52.
alias, 64, 65, 133.
`Alice Through The Looking-

{Glass', 8, 23, 30, 38, 43,
52, 79, 87.

\all", 97.
AllowPushDir, 43, 147.
altar, 42.
ambiguity, 97.
ambiguous inputs, 97.
Amusing, 149.
AMUSING PROVIDED, 62.
ancient honeycomb, 30.
Andrew Clover, 52, 58, 67, 73,

91.
Andrew Plotkin, 110.
animals, 48.
animate, 68, 139.
Answer, 47.
appallingly convenient verb,

89.
archaeological dig, 58.
\Area 400", 70.
@aread, 108.
Aristotle, 18.
arithmetic, 120.
list of operators, 120.
signed and unsigned, 112.

Array, 15, 118.
array of names, 76.
arrays, 16.
as property values, 20.
byte, word, string and table,
118.

de�nition of, 118.

article, 69, 142.
artiste formerly known as

Princess, 78, 185.
Ask, 46.
asking questions, 93.
assembly language, 106, 119.
error messages from, 137.
tracing switches, 129.

assignments, 121.
asterisk, 119.
at character, 104, 112.
Attack, 46.
Attribute, 64, 116.
attributes, 12, 19.
de�ned in library, 139.
de�nition of, 116.
maximum number of, 103.

audibility, 56.
autosearch, 141.

background colour, 108.
background daemon, 55.
backslash character, 104, 111.
bag of six coins, 80.
`Balances', 8, 28, 30, 38, 43,

48, 52, 58, 61, 67, 73, 76,
79, 81, 82, 85, 87, 96, 98.

ball and chain, 178.
ball of pumice, 43, 168.
banana, 88.
battery strength, 41.
before, 13, 142.
BeforeParsing, 82, 149, 190.
Beretta pistol, 48.
\Beware of the Dog", 105.
`Beyond Zork', 105.
Bible, 45, 168.
binary numbers, 113.
Black Forest gateau, 98.
\black" and \white", 87, 189.
blackboard, 195.
Blake's 7, 50, 174.
blindfold Adventure, 67.
blocks of code, 123.
Blofeld, Ernst Stavro, 48.
Blorple, 27.
blue liquid, 69.
boldface, 106.

206

Bond, James, 48.
box, 105.
braces, 123.
mismatch errors, 136.

bracketed printing rules, 122.
brain transference machine,

60.
break, 124.
bridge which collapses, 40,

167.
\brief", 151.
broken shells, 20.
buffer, 91, 195.
@buffer mode, 108.
built-in functions, 120.
byte arrays, 118.

c style, 75.
C. P. Snow, 53.
C. S. Lewis, 31, 55.
`Caf�e Inform', 78.
caged animals, 89.
Cambridge University, 8.
campaigns and scenarios, 110,

202.
cannon-�re, 60.
cant go, 33, 142.
capacity, 36, 60, 142.
Captain Picard, 52, 175.
carriage return, 111.
cartoon, 166.
carved inscriptions, 32.
case sensitivity of dictionary,

77, 102.
@catch, 109.
catchrestic words, 76.
CDefArt, 147.
\ceiling", 147.
centred status line, 110, 204.
Chambers English Dictionary,

76.
ChangeDefault, 65, 147.
ChangePlayer, 60, 71, 147.
changing articles, 69.
changing library messages, 66.
changing room, 59.
changing scope, 95.
changing short names, 69.

changing the player, 60.
changing the prompt, 66, 180.
char, 122.
character graphic, 104.
characters, 158.
Charlotte's game, 50, 170.
chemical reaction, 69.
cherubim, 82, 188.
chessboard, 64, 180.
child, 18, 100.
children, 100.
ChooseObjects, 97, 149.
`Christminster', 52.
clapping game, 51, 170.
Class, 15, 30, 117.
classes, 29.
and additive properties, 30.
and subclasses, 30.
de�nition of (full syntax),
116.

error messages, 134.
inheritance rules, 30, 117.

clearing the screen, 108.
closing credits, 62.
clothing, 139.
clues, 105.
coding mazes, 35.
coiled snake, 48.
coins (in I Ching trigrams), 75,

183.
coins (listed together), 75, 182.
`Colossal Cave', 86.
colours, 108.
command bu�er, 77.
command line syntax, 128.
comments, 111.
communications badge, 52,

173.
`companion volumes', 7.
comparing dictionary words,

114.
comparing strings, 114.
compass, 35, 147.
compass rose, 110, 203.
compilation date, 115.
compiler switches, 129.
component parts of objects,

96.

computer (voice-activated), 50,
170.

\computer, 143", 47.
concealed, 72, 93, 139.
conditional compilation, 115,

135.
conditions, 120.
Connie Booth, 104.
Constant, 15.
constants (syntax), 113.
consult from, 44.
consult words, 44.
container, 36, 139.
control constructs, 124.
copyright, 8.
copyright message, 10.
cow pie, 171.
crashing the interpreter, 100.
creature token, 87.
crossbow bolt, 137.
crowns, 81.
Crowther and Woods, 86.
cuckoo, 179.
`Curses', 60, 130, 179.
cursor keys, 109.

daemon, 55, 142.
daemons, 55.
clash with timers, 56.
maximum number active,
56.

running order, 179.
starting and stopping, 55.

darkness, 53.
abolition of, 53.
a�ecting scope, 92.
changing scope within, 96,
197.

moving through, 54.
nightfall, 57, 178.
special object, 54.
when it occurs, 53.

DarkToDark, 54, 150.
dartboard, 28.
data, 119.
David M. Baggett, 61, 89.
David Seal, 8.
David Wagner, 35, 101.

207

daylight, 57, 178.

deadflag, 13, 61.
deafness, a period of, 60.
death, 61.

and resurrection, 61.
DeathMessage, 61, 150.
DEBUG, 24, 99.

debugging, 99.
information �le, 100, 129.

referring to objects by num-
ber, 79, 187.

suite of verbs, 100.
switches to help assembly
language debugging, 129.

tracing calls to every routine
in game, 130.

tracing routine calls, 119.

using In�x, 100, 129.
`debugging code', 101.
debugging suite actions, 151.

decimal places, 90.
DefArt, 147.
default, 32, 125.

default value of properties, 65.
\delores, yes", 49.
Dennis Spooner, 40.

describe, 41, 71, 142.
description, 142.
desiccated priest, 48.

deviation, 116.
dictionary, 158.

addresses of words in, 65,
114.

characters which can be part
of words in, 77.

error messages, 136.
maximum size of, 102.

referring to words in, 114.
resolution and case sensitiv-
ity, 102.

tokenisation using, 109.
untypeable words in, 77.

words not to put in, 23.
dictionary of Mayan glyphs,

45.
direct possession, 121.

directions, 32, 93.

compiling without the usual,
35.

direction objects, 147, 165.
direction properties, 141.

directives, 15.
list of, 114.

dirty tricks, 106.
disambiguation, 98, 201.
diverting actions, 34.
divided room, 96, 196.
division by zero, 120.
Doctor Who, 40.
dollar sign, 113.
DoMenu, 105, 147.
Don Woods, 9.
Donna Tartt, 23.
door, 38, 139.
door dir, 38, 39, 143.
door to, 38, 143.
doors, 38.
trapping movement through,
40.

two-way, 39.
Dorothy Parker, 105.
double inventory, 74, 182.
double spacing, 130.
double-quote, 195.
drawings, 104.
DrawStatusLine, 104, 203.
`drunk player object', 60.
dummy verb, 189.
dye, 69.
dynamic memory allocation,

103.
Dyslexic Dan, 51, 171.

each turn, 56, 143.
EACHTURN REASON, 95.
Earl Grey tea, 52.
earshot, 56.
east lintel, 32.
eating edible things for prefer-

ence, 98.
economy measure, 116.
`economy' mode, 130.
edible, 139.
eight-foot pumice ball, 43, 168.
elder, 19.

eldest, 19.
Elizabeth Eisenstein, 44.
embedded routines, 22, 119.
\employ" verb, 89.
`Enchanter', 38.
`Enchanter' trilogy, 67.
@encode text, 109.
`Encyclopaedia Frobozzica',

46, 52, 195.
End, 15, 115.
Endif, 115.
English verb words, 82.
EnglishNumber, 147.
Enter, 40.
enterable, 42, 139.
entry points, 149.
epigrams, 105.
@erase window, 108.
Ernst Stavro Blofeld, 48.
error messages, 131.
conditional compilation, 135.
dictionary, 136.
expressions, 136.
fatal errors, 131.
�le handling, 132.
from assembler, 137.
global variables, 133.
grammar, 134.
memory allocation, 130, 132.
object and class de�nitions,
134.

obsolete usage warnings,
138.

routines, 135.
source code format, 133.
symbol names, 133.
warnings, 138.

error numbers used by parser,
97.

escape characters, 104.
etype, 50.
\examine" v. \read", 46.
exercises, 7.
\y in amber", 79, 188.
\lock" and \unlock" infer-
ring keys, 98, 201.

\megalook" verb, 93, 196.
\scope" verb, 93, 196.

208

acquisitive bag, 37, 166.
action validation, 26, 164.
alarm clock, 52, 172.
bearded psychiatrist, 48,
169.

before on second noun, 28,
165.

cage to open and enter, 42,
168.

car that won't go east, 43,
168.

Charlotte playing Simon
Says, 50, 170.

Charlotte's clapping game,
51, 170.

cherubim plural, 82, 188.
chessboard of rooms, 64,
180.

communications badge, 52,
173.

computer (voice-activated),
50, 170.

double inventory, 74, 181.
drinks machine, 78, 185.
dwarf breathing in dark, 96,
197.

Dyslexic Dan, 51, 171.
exchanging \east"/\west",
35, 165.

extensions for one actor
only, 51, 171.

oating-point numbers, 90,
191.

footnotes, 89, 190.
genie muddling black and
white, 87, 189.

Giant with conscience, 61,
180.

glass and steel boxes, 38,
167.

I Ching coins, 75, 183.
implementing parser primi-
tives, 91, 195.

Invisiclues hints, 106, 201.
long time-scale game, 58,
179.

low numbers in French, 90,
190.

macram�e bag, 38, 167.
Martha the telepath, 52,
175.

Mayan directions, 35, 165.
mid-air location, 57, 179.
midnight, 57, 178.
moving to a room by typing
its name, 86, 188.

mushroom picking, 14, 164.
nightfall and daybreak, 57,
178.

nose attached to player, 96,
198.

opening medicine bottle, 28,
164.

orange cloud surrounding
player, 35, 165.

ornate box (inventory in-
side), 71, 181.

parsing adjectives, 79, 187.
parsing any quoted text, 91,
195.

parsing times of day, 91,
192.

pet moth escapes in the
dark, 54, 176.

phone numbers, 90, 191.
Picard and Maharg, 52, 175.
plank bridge, 40, 167.
player reacting before, 60,
179.

prime factorisation, 125,
205.

printf routine, 110, 204.
printing pronouns, 68, 180.
pushing pumice ball uphill,
43, 168.

putting everything in scope,
95, 196.

quotations in boxes, 105,
201.

red sticky label, 96, 200.
referring to objects by num-
ber, 79, 187.

reecting the map east-west,
35, 165.

removing conversation ac-
tions, 49, 169.

replicator, 52, 173.
room divided by glass win-
dow, 96, 196.

saving the character, 110,
202.

Scrabble pieces, 75, 182.
scuttling claws, 56, 178.
silencing player, 60, 179.
spaceship control panel, 91,
194.

status line invisible, 110,
202.

status line showing treasure,
110, 203.

status line with centred
room, 110, 204.

status line with compass
rose, 110, 203.

sterilising machine, 96, 199.
television set, 37, 166.
testing presence of property,
21, 164.

the artiste formerly known
as Princess, 78, 185.

the player's wayhel, 61, 179.
thief who wanders, 55, 176.
third noun for parser, 92,
195.

three denominations of coin,
75, 182.

title page, 110, 202.
tokens which never match,
92, 195.

tomato in red or green, 78,
184.

tricorder, 52, 173.
troll afraid of the dark, 54,
176.

Tyndale's Bible, 45, 168.
varying the prompt, 66, 180.
very verbose mode, 72, 181.
weight{watching daemon,
55, 177.

wild-card for a single object,
79, 187.

wild-card for multiple ob-
jects, 79, 187.

Zen ight computer, 52, 174.

209

exotic forms of death, 61.
expressions, 120.
error messages, 136.

Extend, 15, 85.
extensions for one actor only,

51, 171.
extensions of the library, 66.

Fake Action, 27.
fake actions, 27, 37, 81.
de�ned in library, 152.
numbers, 114.

fake fake actions, 51.
*", 79, 187.
\#", 79, 187.
Consult action, 44.
IsAWordIn (example), 79.
fatal errors, 131.
fatigue daemon, 177.
Fawlty Towers, 104.
female, 140.
�le format, 111.
first, 85.
�ve senses, 34.
�xed-pitch font, 104.
ags, 19.
exible verbs, 86.
ight computer, 50, 174.
oating objects, 59, 139.
oating-point numbers, 90,

191.
\oor", 147.
uorescent jelly�sh, 54.
y in amber, 79, 188.
`focus' of game, 60.
`Follow my leader', 52.
\follower.h", 52.
font, 104.
foodstu�s, 75.
footnotes, 89, 190.
for, 124.
foreground colour, 108.
foreign languages, 67.
forgers, 116.
formatted text, 108.
found in, 34, 59, 143.
four Gospels, 45, 168.
Frankenstein, 60.

\free" verb, 89.
`Freefall', 110.
French numbers, 90, 190.
fried green tomato, 76.
ftp site, 8.
full stop, 119.
function arguments, 119.
maximum number of, 103.

function keys, 109.
fuses, 56.

G. K. Chesterton, 68.
Game Over choice, 66.
game transcript, 105.
GamePostRoutine, 150.
GamePreRoutine, 25, 150.
Gareth Rees, 8, 46, 52, 68, 76.
gas mask, 60, 179.
general, 140.
general parsing routines, 90,

148.
genie, 87, 189.
gentleman thief, 55, 176.
Geo�rey's book, 70.
George Bernard Shaw, 92.
giant magnet, 48.
Giant with a conscience, 61,

180.
girl playing Simon Says, 50,

170.
give, 19, 46.
glass box, 38.
glass window, 96, 196.
glassworks, 122.
Global, 15, 118.
global variables, 13.
de�nition of, 118.
error messages, 133.
maximum number of, 103.

glyphs, 44.
Go, 33, 42.
gold�sh bowl, 54.
\gonear" verb, 100.
Gotham City, 40.
goto instruction, 119.
\goto" verb, 100.
Graham Nelson, 8.
grammar, 83.

Grammar, 10, 50, 143.
de�nition of verbs, 84.
error messages, 134.
extension of, 85.
limits on, 102.
lines of, 83.
replacement of, 85.
summary of, 126.
tokens of, 87.

Grantland Rice, 62.
grouping of non-identical items

in lists, 75.
groups of actions, 26.
group 1, 151.
group 2, 151.
group 3, 152.

grues, 93.
Gustave Flaubert, 111.

habitual messages, 66.
hacker and urchin, 48.
hanging elses, 123.
has, 19, 21.
`has light', 53.
hash character, 114.
HasLightSource, 53, 147.
heaps of food, 75.
hearing (sense), 34.
held token, 87.
\her", 97.
herobj, 97.
hexadecimal numbers, 20, 113.
hills, rolling, 22.
\him", 97.
himobj, 97.
\his", 68.
hissing snake, 48.
hole in wall, 79.
holy searchlight, 40.
home page, 8.
honeycomb, 30.
horrid sludge, 69.

I Ching, 75, 183.
IBM PC, ugliness of, 108.
idiosyncracy, 121.
if, 123.
If..., 115.

210

implicit taking, 88.
in, 121.
in scope, 92.
Include, 115.
InDefArt, 147.
inde�nite article, 69.
indirect, 100.
`indistinguishable', 80.
Infact, 100.
In�x, 100, 129.
\Infoclues", 106.
Infocom, Inc., 9.
Inform home page, 8, 67.
InfoTaskForce, 107.
inheritance, 30, 117.
initial, 12, 59, 119, 143.
initial possessions, 58.
Initialise, 11, 57, 58, 149,

150.
initstr, 119.
inp1, 25, 197.
inp2, 25, 197.
@input stream, 109.
InScope, 150, 176.
Insert, 37.
internal errors, 138.
internal text format, 109.
interpreters, 106.
invent, 144.
inventories, 70.
inventory stage, 70, 75.
invisible force, 125.
invisible status line, 110, 202.
\Invisiclues", 105, 106, 201.
\it", 97.
item name, 106.
item width, 106.
itobj, 97.
Ivan O. Ideas, 62.

jackdaws, 190.
James Bond, 48.
James Shirley, 23.
Japanese cartoon, 166.
Jean de la Bruy�ere, 58.
Jean Frederic Waldeck, 45.
`Jigsaw', 130.
Joachim Baumann, 110.

John Christopher, 31.
John Cleese, 104.
John Donne, 9.
Jonathan Thackray, 8.
jungle noises, 125.
\junior astronaut", 150.

keep silent, 27.
keyboard, 108.
keyboard bu�er, 77.
Kiss, 46.
`Knight of Ages', 57.

label, red sticky, 96, 200.
676 labelled buttons, 84.
labels, 119.
lamp (of genie), 87, 189.
large memory, 130.
last, 85.
last resort, 67.
legibility, 46.
LetGo, 37.
library routines, 147.
LibraryMessages, 25, 66.
life, 46, 144.
light, 53.
light, 19, 140.
daylight, 57, 178.
when it occurs, 53.

light switch, 96, 197.
limitations, 102.
line feed, 111.
line of sight, 56.
lines, 83.
`List Property', 75.
list together, 144.
literal characters, 104.
little red car, 42, 168.
Locale, 72, 147.
location, 59.
\lock" and \unlock" disam-

biguation, 98, 201.
lockable, 140.
locked, 36, 140.
logical machine, 112.
long, 65.
Long Count, 94.
long description, 71.

long jump, 109.
Look, 71.
\look inside", 37.
LookRoutine, 72, 150.
loop over every object, 124.
LoopOverScope, 148.
LOOPOVERSCOPE REASON, 95.
Lord Byron, 14.
Louis MacNeice, 7, 164.
low ceiling, 125.
low mist, 34.
low numbers in French, 90,

190.
Lowstring, 165.
Ludwig Wittgenstein, 46, 68.

Macbeth, 58.
macram�e bag, 38, 167.
Mahu, 177.
mainframe `Adventure', 8.
making actions, 27.
making attributes, 64.
making grammar, 27.
making properties, 65.
Manga, 166.
maniacal laughter, 124.
map, 38.
map connection, 32.
Marc Blank, 38, 42.
Martha, 52, 175.
Martin Luther King, 118.
\master catburglar", 150.
matchbook, 70.
Max Beerbohm, 92.
MAX CARRIED, 62.
MAX SCORES, 63.
MAX TIMERS, 56.
Mayan directions, 35, 165.
\me", 60.
medicine bottle, 28.
medieval French, 67.

\megalook" verb, 93, 196.
memory, 112.
compiler settings, 130.
dynamic allocation, 103.
maximum size of game, 102.
small, large or huge, 130.

211

typical consumption of by
compiler, 130.

menu item, 106.
menu of text options, 105.
message numbers, 66.
meta, 84.
`meta' actions, 26.
Metropolitan Museum, 29.
Michel de Montaigne, 46.
microphones, 49.
mid-air location, 57.
midnight, 57.
Modo, 177.
Modular extensions, 66.
Moli�ere, 82.
Monty Python's Flying Circus,

36.
move, 19.
moved, 95, 140.
moving room, 59.
Mrofni, 52, 175.
multiexcept token, 87.

multiheld token, 87.
mummi�ed priest, 48.
mushroom, 11.
\myself", 60.

nagual, 61, 180.
name, 23, 32, 76, 117, 145.
(name), 122.
named rooms, 86, 188.
names per object (limit), 103.
Naming of Cats, 76.
narrow inventory, 74.
Nearby, 15, 22.
neo-Platonist philosophy, 55.
NetHack, 107.
New Testament, 45, 168.
new-line character, 112.
NewRoom, 59, 150.
NextWord, 77, 90, 91, 148, 195.
NextWordStopped, 90, 148.
nightfall, 57, 178.
@nn, 165.
NO PLACES, 64.
nominative pronoun, 68, 180.
normal rules, 139.
NormalWorld, 166.

`northness', 147.

nose, 96, 199.
Noslen Maharg, 52, 175.
nothing, 19, 100, 114.

notify mode, 64.
\notify" verb, 64.
notin, 121.
NotUnderstood, 49, 50.

noun, 33.
noun token, 87.
NounDomain, 148, 195.

NULL, 28, 114.
number, 145.
NUMBER TASKS, 63.
number token, 87.

(number), 122.
number-parsing, 89.
numbers, 112.

Object, 15, 21.
object 31, 79.
OBJECT SCORE, 63.

objectloop, 124.
objects, 18.
articles of, 69.

attributes and properties,
19.

creation and destruction at
run time, 103.

de�ned in library, 147.
de�nition, 21.
de�nition of (full syntax),
116.

direction and compass ob-
jects, 165.

duplicate and plural, 80.

error messages, 134.
grouping of in lists, 74.
inventory entries of, 70.

listed in room descriptions,
72.

maximum number of, 103.
maximum number of names
for, 103.

movement of, 19, 123.
names of, 76.

printing lists of, 73.

referred to by number, 79,
187.

short names of, 68.
tree of, 18.
with embedded routines, 22.

\objects" verb, 64.
obsolete usage warnings, 138.
Occitan, 67.
`o�ers light', 53.
OffersLight, 53, 148.
ogre with limited patience, 56.
Oliver Goldsmith, 102.
on, 40, 140.
\on", \at" or \in", 90.
once-only rules, 28.
only, 86.
open, 36, 140.
openable, 36, 140.
operators, 120.
or, 121.
orange cloud, 35, 165.
Order, 47.
orders, 49, 60, 144.
ornate box, 71, 181.
other four senses, 34.
\out" verb, 43.
@output stream, 109.

P. David Lebling, 36, 38, 42,
52.

packed address of function,
114.

packed address of string, 114.
packing case, 37.
pairs of verbs to separate, 86.
Palladas of Alexandria, 128.
Panoramic Hillside, 22.
parent, 18, 100.
parse, 91.
parse name, 77, 81, 93, 145.
parsed number, 90, 127.
ParseNoun, 78, 150.
ParseNumber, 89, 150.
parser, 14, 77.
Parser, 10.
breaking up text into word
stream, 77.

error numbers, 97.

212

parsing quoted strings, 91,
195.

parsing the player's ques-
tions, 93.

tidying up questions asked
by, 86.

tracing and levels, 101.
parser one, parser two,

parser action, 81.
ParserError, 97, 150.
text bu�er holding com-
mands, 77, 91.

PARSING REASON, 95.
passing messages, 27.
peculiar book, 70.
Pepper Room, 24.
Percy Bysshe Shelley, 55.
perfectionism, 32.
perfectly sensible, 20.
persona of player, 60.
pet moth, 54, 176.
Peter and Jane, 113.
phone number, 77.
phone number parsing, 90,

191.
pinfocom, 107.
PlaceInScope, 94, 148.
\places" verb, 64.
plagiarism, 62.
plank bridge, 40, 167.
platinum pyramid, 71.
Plato, 55.
player's origin, 58.
player-object, 147.
PlayerTo, 59, 148.
plural, 80, 145.
plural objects, 80.
\pluralobj.h", 67, 73.
possessions, testing direct, 121.
precedence of class inheritance,

30.
precedence of operators, 120.
pregnant mouse, 69.
pretty flag, 105.
priest, 47.
prime factorisations, 125, 205.
Prince of darkness, 177.
Princess, 78, 185.

print, 33.
print (a) obj, 68.
print (address), 101.
print (name) obj, 68.
print (string), 101.
print (the) obj, 68.
print addr, 123.
print char, 123.
print object, 69, 101.
print paddr, 123.
printf exercise, 110, 204.
printing commands, 122.
printing routines, 68.
PrintOrRun, 30, 65.
PrintRank, 63, 150.
PrintShortName, 148.
PrintTaskName, 63, 150.
PrintVerb, 86, 150.
prompt, 66, 105, 180.
pronouns, 48, 68, 97, 180.
proper, 69, 140.
proper noun, 69.
properties, 12, 20.
additive, 30.
de�ned in library, 141.
de�nition of, 65, 116.
holding arrays, 20.
holding routines, 22.
length and address, 21.
maximum number of, 103.

Property, 65, 116.
proportional font, 104.
public holidays, 118.
pu� of garlic, 122.
pumice ball, 43, 168.
punctuation in dictionary

words, 77.
\purloin" verb, 95, 100, 196.
purple liquid, 69.
PushDir, 43.
pygmy statuette, 29.

questions, asking yes or no,
104.

questions, parsing the player's,
93.

quotations beautiful, 105.
quoted text, 195.

\quotes o�" verb, 105.

R. B. Sheridan, 64.
radio, 56.
random, 100.
\random" verb, 100.
raw text, 91.
react after, 48, 145.
REACT AFTER REASON, 95.
react before, 34, 48, 145.
REACT BEFORE REASON, 95.
@read char, 109.
\read" v. \examine", 46.
reading books, 44.
real location, 59.
real time, 108.
reasons for scope searching, 95.
Receive, 37.
receive action, 37.
recondite directives, 116.
\recording" verb, 100.
recursion (limit), 103.
red sticky label, 96, 200.
reecting the map, 35, 165.
regions of the machine, 65.
Release, 115.
release number, 115.
Remove, 37.
removing conversation actions,

49, 169.
removing rules, 28.
REPARSE CODE, 148, 195.
Replace, 67, 85, 115.
replacing grammar, 85.
\replay" verb, 100.
replicator, 52, 173.
resolution, 77, 102.
resolving ambiguity, 97.
@restore, 110.
restoring data, 110.
resurrection, 61.
returning from routines, 123.
reusing attributes, 64.
reverse video, 106.
ReversedWorld, 166.
Richard Barnett, 35.
rising water, 123.
`Robots', 110.

213

role-playing games, 110, 202.
roman text, 106.
room descriptions, 41, 71.
room divided in half, 96, 196.
ROOM SCORE, 63.
routine errors, 135.
routines, 16, 119.
as property values, 22.
embedded in objects, 22.
in bracketed printing rules,
123.

maximum depth of recur-
sion, 103.

simple example of, 13.
tracing calls to, 101.

\routines" verb, 100.
Royal Society For Putting

Things On Top Of Other
Things, 36.

rucksack, 88.
`Ruins', 8, 10, 15, 21, 22, 24,

25, 29, 31, 34, 36, 37, 39,
41, 42, 43, 44, 47, 56, 59,
62, 63, 110, 168, 178, 202.

run-time crashes, 100.
run-time format, 102.
running out of memory, 132.

SACK OBJECT, 62.
Sam Hulick, 57.
satchel, 62.
@save, 109.
saving data, 109.
saving the character, 110, 202.
scenery, 32, 72, 140.
scenery penalised, 98.
scope, 92.
addition to, 38, 96.
looping over, 93.
testing, 93.

scope reason, 52, 56, 95.
scope stage, 94.
\scope" verb, 100.
\scope" verb exercise, 93, 196.
ScopeWithin, 148.
score noti�cation, 64.
\score" verb, 84.
scored, 140.

scoring in `Ruins', 29.
scoring systems, 62.
Scott Adams, 8, 73.

Scrabble pieces, 75, 182.
screen, 52, 175.
script of player's commands,

109.

scrolling screen, 105.
scuttling claws, 56, 178.
sealed room, 52, 175.
Search, 26, 37.
searchlight, 40.
second, 33.
`see-through', 92.
self, 125.
selfobj, 124, 147.
senses, 34.
Serial, 116.
serial number, 115.
@set colour, 108.
@set cursor, 108.
@set window, 108.
SetTime, 57, 148.
shaft of sunlight, 32.

\shazam" verb, 86.
`Shell', 10.
shopping mall, 67.
short name, 69, 146.
Show, 46.
\showobj.h", 101.
ShowR, 175.
Shrine, 47, 49.
sibling, 18.
signed operations, 112.
silence, imposition on player,

60, 179.
silent actions, 27.
Simon Says, 50, 170.
small array, 20.
small memory, 130.
\smartcantgo.h", 35.
smell (sense), 34.
snake, 48.
\snavig" spell, 60.
sodium lamp, 41.
`Sorcerer', 59.

`Sorceror', 99.

sound of scuttling claws, 56,
178.

source �le format, 111.
source-level debugger, 100.
sp, 118.
Space Invaders, 107.
spaceship control panel, 91,

194.
special number, 47.
special objects, 147.
special token, 87.
speckled mushroom, 11.
`Spellbreaker cubes', 81.
`Spellbreaker', 35, 60, 151.
spiny trees, 33.
@split window, 108.
Square Chamber, 32.
St Peter, 82.
stack frame, 109.
stack pointer, 118.
stack usage (limit), 103.
Standard games, 17, 21, 23,

64, 65, 102, 104, 106, 117,
119, 138.

Star Trek: The Next Genera-
tion, 52, 173, 175.

`Starcross', 50, 51, 170.
Starship Enterprise, 52, 175.
StartDaemon, 55, 148.
StartTimer, 56, 148.
static, 39, 140.
statistics, 129.
status line, 104, 203.
Statusline, 57, 115.
stealing actions, 34.
steel box, 38.
steel grate, 39.
sterilising machine, 96, 200.
stone altar, 42.
stone door, 39.
stone-cut steps, 21, 22.
StopDaemon, 55, 148.
StopTimer, 56, 148.
story �les, 7.
stream of words, 77.
stream running through forest,

56.
streams of input/output, 109.

214

String, 165.
(string), 122.
strings, 118.
style, 106, 122.
style of list, 73.
sub-objects, 38, 96.
sunrise and sunset, 57, 178.
\superbrief", 151.
supporter, 36, 42, 140.
supporting scenery, 72.
switch, 125.
switch variable, 125.
switchable, 40, 140.
Switches, 116.
switches (on command line),

129.
sword, 56.
symbol names, 133.
synonyms, 82.
System file, 66.

T. S. Eliot, 76.
tab character, 112.
table of holidays, 118.
tables, 118.
\take all", 98.
\take" verb, 83.
talkable, 49, 140.
TALKING REASON, 52, 95.
talking, preventing player

from, 60, 179.
tape recorders, 49.
tapestry and key, 28.
task scores, 63.
TASKS PROVIDED, 63.
taste (sense), 34.
team of four adventurers, 60.
Ted Hughes, 201.
tedious scruples, 119.
telekinesis, 52, 175.
telepathic contact, 52, 175.
telephone number parsing, 90,

191.
teleportation, 59.
television set, 37, 166.
Tell, 46.
temperature dial, 96.
Tera, 8.

TestScope, 148.
TESTSCOPE REASON, 95.
text bu�er (of bu�er), 77.
text bu�er (of parser), 91.
text cursor, 108.
text formatting, 108.
text of a command, 77.
text style, 106.
`The Legend Lives', 89.
The Prisoner, 42.
The quick brown fox jumped

over the lazy dog, 190.
the Sun, 34.
`The Thief', 52, 76, 176.
`The Witness', 66.
(the), 122.
thedark, 59, 147.
TheSame, 81.
thief in `Zork', 55, 56, 176.
third parameter for parser, 92,

195.
three denominations of coin,

75, 182.
@throw, 109.
ThrowAt, 28, 46.
ThrownAt, 28.
tidying-up operations, 55.
tilde character, 20, 111.
time left, 146.
time of day, 57.
time of day (parsing), 91, 192.
time out, 56, 146.
time sequence, 57.
timed input, 108.
TimePasses, 150.
timers, 56.
clash with daemons, 56.
maximum number active,
56.

starting and stopping, 56.
\timers" verb, 100.
`timewait.h', 58, 91.
Timothy Anderson, 42.
title page, 110, 202.
TitlePage, 59.
toadstool poisoning, 13.
to�ee apple, 24.
token for `any object', 196.

token never matching any-
thing, 92, 195.

@tokenise, 109.
tokenising, 108, 195.
tokens, 83, 87, 148.
tomato, 76.
Tony Harrison, 128.
toothed bag, 37, 166.
top object, 124.
Torbj�rn Andersson, 110.
touch (sense), 34.
`Toyshop', 8, 30, 35, 38, 52, 58,

62, 63, 70, 195.
\trace" verb, 100.
tracing a routine, 101.
tracing code, 119.
tracing routines, actions, dae-

mons and timers, 100.
tracing the parser, 101.
transcript, 105, 108, 109.
translating Inform to foreign

languages, 67.
transparent, 37, 48, 140.
treasure class, 29.
treasures on status line, 110,

203.
treating name as a word array,

76.
tree felling, 124.
tree of objects, 18.
\tree" verb, 100.
tricorder, 52, 173.
trigrams, 75, 183.
`Trinity', 35, 110, 204.
troll, 54.
TryNumber, 77, 148, 149.
two-way door, 39.
txd (disassembler), 100.
types (lack of), 20.

UHS format hints, 106.
underlining, 106.
\undo" verb, 103, 107.
UnknownVerb, 86, 150.
unsigned operations, 112.
UnsignedCompare, 149.
`untypeable verbs', 51.
untypeable words, 77.

215

up-arrow character, 111.
upper-level window, 108.
urchin and hacker, 48.
\use" verb, 89.

vague obj, 97.
vague word, 97.
vampire, 57.
variable strings, 165.
variables, 118.
vehicles, 42.
Verb, 16, 83.
verb num, 50.
verb word, 82, 97.
VerbLib, 10.
verbose mode, 72.
\verbose", 71.
\verbose", 151.
verbs (Inform and English),

82.
Versions 7 and 8, 102.
versions of the Z-machine, 102.
very verbose mode, 72, 181.
visited, 141.
vocabulary size (limit), 102.
voice-activated computers, 49.
VT100, 106.

W. H. Auden, 38.
W. S. Gilbert, 73.
WakeOther, 46.
Waldeck's Mayan dictionary,

45.
walking into walls, 65.
walls, 147.
`wandering monsters', 55.
warnings, 138.
warthog, 180.
washing-machine, 96.
weights, 55, 177.
weird thing, 78.
`welcome' message, 11.
\what is a grue", 93.
\What next?", 66, 180.
when closed, 39, 146.
when off, 146.
when on, 146.
when open, 39, 146.

\white" and \black", 87, 189.
wide inventory, 74.
wild boar, 178.
wild-card, 79, 187.
William Shakespeare, 58, 92,

177, 188, 202.
William Tyndale, 45, 168.
Willie Crowther, 9.
window 0, 108.
with, 21.
with key, 36, 146.
WITHOUT DIRECTIONS, 35.
`Witness', 66, 180.
wizened man, 77.
woodpecker, 99.
word array, 76.
word arrays, 118.
word breaking, 77, 108.
word stream, 77.
WordAddress, 77, 91, 149, 195.
WordLength, 77, 91, 149, 195.
workflag, 141.
world colours, 35, 165.
World Wide Web, 8.
worn, 141.
WriteListFrom, 73, 149.

\xyzzy" verb, 84.

YesOrNo, 104, 149.
\you don't need to refer to",

32.
younger, 19.
youngest, 19.

Z-encoded text, 109.
Zen, 50, 174.
\zero", 90.
Zip, 100, 107.
`Zork I', 56.
`Zork', 18, 52, 55.
ZRegion, 65, 149.
zterp, 107.

216

217

