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Notes

– From version 0.6d onwards, this document is written using the document formatting language
Lout. This makes it is available in both plain ASCII and PostScript, but not in DVI format.

– Feedback on all aspects of this rewrite is very welcome. These include my (ab)use of the En-
glish language, typos, errors, obscurities, structure, and the Questions that appear throughout.
Feel free to write me, and get your name mentioned in the introduction!

Major changes from version 0.6 to 0.6a

– Renumbered sections 3-6 to 5, 4, 6, 3.

– Simplified text style handling.

– Simplified the buffering process.

– Completed section 8.

Major changes since version 0.6a

– Introduced modes ‘predictable’and ‘unpredictable’ for the random generator.

– Added an index.

To Do

– Add something on menus.

– Correct fixed/variable-width font selection in V3 (and higher?).

– Check all details against Standard 0.2 [Nelson], the changes described in the Informal
Z-machine Newsletter #1, and Stefan Jokisch’s list of comments.

– Disallow output characters 1024-65535?

– Add table describing the graphics font; or create a separate document for that; or refer to
[Nelson] (but then this document won’t be self-contained).

– Complete, correct, and beautify the index.

– Add a diagram describing the Z-machine’s structure.
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0. Introduction

The Z-machine is a (basically) elegant imaginary computer that runs text-adventure games.
It was conceived and designed by the founders of Infocom, a company that produced a line
of high-quality adventure games in the 1980s. By writing these in Z-code, and emulating the
Z-machine on many different computers, Infocom succeeded in reaching a wide audience. Their
emulators – and a number of free ones – make programs written for the Z-machine very portable.
Over the years there has been a large amount of archeology into the world of the Z-machine and
its emulators, the main investigators being the InfoTaskForce (ITF), Paul David Doherty, Mark
Howell, Matthias Pfaller, and Mike Threepoint. The reason for these investigations is that today,
the Z-machine still is a good vehicle for running text adventures – or Interactive Fiction, as the
admirers of this form of art like to call it.

Below, I attempt to completely describe the Z-machine, and give hints about its emulation;
therefore, this document might be of use to writers of emulators and Z-code alike. I draw heavily
on the definitive guide to the Z-machine and its history, Graham Nelson’s “Specification of the
Z-machine” [Nelson]; in fact,his Specification inspired me to do this rewrite. To steal a quotation
from it:

“The highest ideal of a translation […] is achieved when the reader flings it impa-
tiently into the fire,and begins patiently to learn the language for himself.”

Well, here is another translation for you to feed to the flames. I am well aware that I can’t hope
to match Graham’s literary style of writing; but what I lose in poetry, maybe I can make up for in
clarity. I wrote thismainly for myself,asa clarifyingand concise supplement to hisSpecification;
perhaps others find it useful too. If not, feel free to ignore it. In any case, please let me know
what you think.

An alert reader will probably find places where this rewrite contradicts the Specification.
In such cases he or she should follow the Specification – and I wouldn’t mind being informed of
these contradictions.

Many thanks go to Paul David Doherty and Stefan Jokisch for their detailed comments
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on earlier versions of this document – which probably never would have existed at all without
everything Graham Nelson has done for the interactive fiction community.

There is an electronic mailing list available for discussion of the Z-machine, thanks to the
kind people at GMD in Germany. To subscribe, send electronic mail tomajordomo@gmd.de

containing the following text in thebodyof the message:

subscribe z-machine YourEMailAddress@Goes.Here

Unsubscribing can be done similarly, replacingsubscribe by unsubscribe. For more
information on Infocom,Inform (Graham Nelson’scompiler targeted at the Z-machine [Inform]),
or interactive fiction in general, take a look at the Interactive Fiction Archive [IFA], or read the
Usenet newsgrouprec.arts.int-fiction .

After section 1,which introducessome terminology,the overall structureof the Z-machine is
described in section 2. Section 3 explains the main data structures. The video card is the subject
of section 4. Section 5 details the fonts and styles, and section 6 describes how the I/O card uses
these. Next,section 7delves into the structureof instructions,and the last section details the effect
of every legal Z-code instruction. It is followed by an appendix containing reference tables, and
I close off with a few references to literature and software.

1. How To Read This Document

This document describes the structure and operation of the Z-machine. This is not an easy thing
to do, since there are in fact a number of different Z-machines. It all began of course with the
Infocom Z-machine,of which six versions were created over the years. After Infocom deceased,
there have been a number of attempts and proposals to refine and extend the Infocom Z-machine.
The most recent result in thisdirection is the Standard Z-machine,an attempt to clear up a number
of fuzzy issues, at the same time collecting some useful extensions. This document basically
describes the Infocom Z-machine,with Standard extensions and changes marked down explicitly
as such.

We will refer to the six different versions of the Z-machine as V1 to V6, Vn+ meaning all
versions fromn to 6. Within each version, there are Z-machines with different capabilities; for
instance,some Z-machinescan show pictures,while others cannot. The machine language of the
Z-machine is called Z-code, which differs a bit between versions. A game file that is to be run
on a Z-machine is called a Z-program.

Standard extension:Versions 7 and 8 were invented as non-Infocom extensions by Graham
Nelson to accommodate very large Z-programs. These are completely equivalent to V5, except
for the version number, the meaning of packed addresses, the maximum program size, and the
meaning of the header word at $1A; see 2.3, and theverify instruction in section 8.

1.1. Emulators

Since the Z-machine is (still) an imaginary computer, the only way to run Z-programs is by em-
ulating this machine. We distinguish between the Z-machine and its emulators (or interpreters).

It is important to realize that an emulator is only committed to producing the behaviour that
is described in here. How this behaviour is achieved,i.e., how the emulator is implemented, is
not important for the purposes of this specification. For instance, in the following a distinction
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is made between a call stack and a routine stack; an emulator might very well use one stack to
implement these (as indeed ZIP and Frotz do).

On the other hand some emulators might not be able to completely follow the specification,
e.g., for technical reasons. (For example,most emulatorsprobablywon’t implement the unlimited
call and routine stacks discussed below. Or an emulator might just emulate enough of the
Z-machine to run one version,or even one specificgame file.) In such a case, thisdeviation should
be clearly indicated (e.g., by giving an appropriate message), and if possible a behaviour in the
spirit of the Z-machine should be substituted.

1.2. Different behaviours

There are some terms that are used here in a technical sense only:error, unspecified, andlegal.
If something is called anerror, then the Z-machine presumably crashes at that point. A friendly
emulator would display an error message and halt, but an unfriendly one might crash, or even
go on as if nothing has happened. Note that an erroneous construct – be it instruction or data
structure – is only an error if it is encountered or used. Sometimes the result of an operation is
calledunspecified,and this isoften accompanied by the description of a recommended behaviour.
In thiscase an unfriendlyemulator might crash,but a friendlyone would behave asrecommended,
optionally displaying a warning message. Anything that is not an error or unspecified is called
legal; the effects of all legal operations are completely specified in this document.

The writer of Z-code should avoid anything that is not legal. Of course, any situation set
down as illegal in this document, but not occuring in an existing Z-program (i.e., Infocom or
Inform game file), could be made legal if the writers of emulators agree on its interpretation.

1.3. Notations

There are a number of terms used to refer to numbers:

bit: either 0 or 1. In any sequence of bits, the individual bits are numbered from right to
left, counting from zero.

bottom (top) bit:
the least (most) significant bit,i.e., the bit with the lowest (highest) number.

byte: a sequence of 8 bits.

word: a sequence of 16 bits.

natural number:
0, 1, 2, …

integer: …, -2, -1, 0, 1, 2, …

unsigned:a sequence of bits is read as natural number.

signed: a sequence of bits is read as an integer. Letn be the unsigned natural number repre-
sented by the sequence of bits. If the top bit is 0, the sequence is read asn ; if the top
bit is 1, the sequence is read asn − number of bits2 .
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If x is a sequence of bits, the phrase ‘x is byte-valued’ is used to mean:x has an (unsigned)
value between 0 and 255, or equivalently: all bits from bit 8 upwards are 0.

Any sequence of bytes can be interpreted as a sequence of bits, by taking first the bits of the
first byte, then the bits of the second, etc. Conversely, any sequence of a8 ∗nbits (e.g., a word or
a longword) can be split up inton bytes. The top 8 bits form the first byte, the next 8 the second
byte, etc.

The percent sign ‘%’ followed by a number of bits stands for that sequence of bits. (Note
that [Nelson] and [Inform] use ‘$$’ instead of ‘%’.) The dollar sign $ followed by a number of
hexadecimal digits also stands for a sequence of bits, each digit representing four bits. The
notation ‘n/m’means bitmat addressn.

Another useful piece of notation is them-n-table, which consists ofmbytes representing an
unsigned number, followed by that much entries ofn bytes long.

Taking a number ‘modulon’ (for n > 0) means that a multiple ofn is added to or subtracted
from the number to make it at least 0 and less thann. For example,−535 modulo $10000 equals
65000. The expression floor(n) stands for the greatest integer that is not greater thann. For
example, floor(−3.1415) = −4.

2. General Structure And Operation

The main components of the Z-machine are the central processing unit (CPU), the memory, the
call stack, the random number generator, the I/O card, and the video card; these are connected to
the outside world in various ways. From version 3 the Z-machine contains a sound card. From
version 4 a timer is added, and different text styles can be used. From version 5 the Z-machine
optionally has a save memory, which can be used to revert to a previous state; and non-ASCII
fonts may be provided. In version 6 the video card can show pictures, and an optional mouse
can be used. This section describes all components; a detailed description of the video and I/O
cards is deferred to sections 4, 5, and 6. Finally, the initialisation and operation of the Z-machine
are described.

2.1. CPU

The CPU is the spider in the web: it isconnected to memory,call stack,random number generator,
video card,and the V3+ sound card. The CPU reads instructions from memory,and then decodes
and executes them. It is possible to interrupt the CPU by giving the address of a routine (see 3.7)
to be executed. In this case control is passed to the interrupt routine, and the result of this routine
is returned to the caller. Note that the CPU does not contain a program counter or any registers;
these are found at the top of the call stack.

2.2. Call stack

The call stack is a stack of frames, which is unlimited in size. Each frame contains a program
counter (PC), up to 15 local variables and a routine stack, and also some administrative informa-
tion in V3+. On start-up a single frame is put on the call stack. When a routine is called a newly
created frame is pushed on top, passing control to the called routine. On a return instruction, the
top frame is removed and the previous frame comes on top again. Only the top frame can be ac-
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cessed and modified; it gives the current state of the Z-machine. A frame consistsof the following
elements:

• The PC contains a natural number, which is the memory address where the next Z-code
instruction is to be found. Note that this is not limited to the size of a word or longword.
This means that in principle memory can have any size (although there are reasons that limit
the size of memory in practice).

• The routine stack is a stack of words, which is unlimited in size. A word can be pushed
on top of the stack, or pulled off again. It is an error to pull a word from an empty routine
stack. A routine stack can only be used to store values within one (execution of a) routine;
in particular, it cannot be used to pass values from one routine to another.

• The local variables contain words. There are 0 to 15 local variables (numbered from 1
onwards), and this number can not be changed. It is an error to refer to a non-existing
local variable.

• In V3+, each frame also stores the way this routine was called: as a function, procedure, or
interrupt. (This is used on aret urn instruction; see 8.5.)

• In V5+, each frame also contains the number of values passed with the call that created this
frame. (This is used to implement thecheck_arg_count instruction; see 8.5.)

It is an error for any instruction to leave the call stack empty. Because of the way the Z-
machine works, this amounts to saying that it is an error for a return instruction to be encountered
in the ‘main routine.’

In V5+ a frame on the call stack can be tagged with a word, called the frame pointer; at
any time, all frame pointers of the call stack must be different. A frame pointer is created by the
catch instruction, and removed when its frame is removed from the call stack. Frame pointers
are used in the instructionscatch andthrow .

The call stack has a link to a ‘save file’outside the Z-machine. Through this link the current
contents of the call stack can be saved, and read back later (seesave andrestore in 8.13).

Note: Although in theory the call and routine stacks are unlimited,most emulatorswill
have to limit their lengths. As a minimum the present limit of ZIP is recommended,
which is as follows. With each frame we associate a ‘size’equal to the number of local
variables in it, plus the length of its routine stack, plus 4. The emulator should then
operate as specified as long as the total ‘size’ of the frames on the call stack remains
less than 1020.

2.3. Memory

The memory consists of an unlimited number of bytes, numbered by addresses from 0 onwards.
We will refer to a sequence of bytes (byte, word, etc.) stored from addressn upwards as “the …
atn”.

Z-programsuse a number of ways to refer to addresses;each is represented asa word. A byte
address isan unsigned word that issimply read asan address. A word address isan unsigned word
w that is read as the address2 ∗ w. (Note that word addresses are only used in the abbreviations
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table; see 3.2.) In order to be able to reference even higher addresses, the notion of a packed
address is introduced. This is a wordw that is read as an addressa using the following formula:

a =




2 ∗ w for V 1 − 3
4 ∗ w for V 4 − 5
4 ∗ w + 8 ∗ o for V 6 − 7
8 ∗ w for V 8

here, the offseto is the contents of the header word at $28 (for routines) or at $2A (for Z-strings).
Note that this means that (in V6-7) there are two different kinds of packed addresses, one for
routines and one for Z-strings.

On a signal from the CPU, a part of the memory beginning from address 0 is initialized
with a Z-program via a link to the outside world. The length of a Z-program is the number of
locations that are initialized. It is an error to reference a non-initialised byte of memory. From
now on, when we speak of ‘memory,’we mean ‘the initialized part of memory.’

Although not strictly necessary, the following limit is imposed on the length of a Z-
program:

V1-3: 128K
V4-5: 256K
V6-7: 576K
V8: 512K

It isunspecified what happenswhen a Z-program is run that exceeds this limit. It is recommended
that it is processed as usual.

Depending on the contents of the memory, its locations are divided into RAM, ROM, and
IROM (for Initialisable ROM). The contents of every location can be read, but only RAM may
be written to by Z-instructions. It is an error to write to ROM. IROM may be written to by the
CPU on special occasions (e.g., on start-up), but it is an error for a Z-instruction to directly write
to IROM.

The first 64 bytes of memory are called the header; this is a mix of RAM, ROM and IROM.
The meaning of the header information, and the types of its locations, are laid out in table 3 in
the appendix.

Note: To help disassemblers, it is strongly recommended that all unused bits and bytes
of a Z-program are set to 0. Note that this is mandatory for the header; see table 3 in
the appendix.

Memory is divided into two contiguous parts, which are known as dynamic and static
memory, respectively. (Dynamic memory is also known as the ‘save area.’) The byte address in
the header word at $0E gives the address of the first location of static memory. It is an error if
there are non-initialized locations before this one. Every non-header byte in dynamic memory
is RAM; static memory consists entirely of ROM.

It isunspecified what happens if dynamic memory is less than 64 bytes long. Recommended
behaviour is to behave as described, or else to display an error message and halt.

Note: Because of the Z-machine’s instruction set, above address $FFFF only strings
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and routines stored at packed addresses can be accessed by a Z-program. This means
that at most 64K is available for general data.

The memory, just as the call stack,has a link to the outside world that is used to read or write
the contents of dynamic memory. In V5+, there is a similar link to the save memory.

Finally, there is another way to divide memory into two contiguous parts: resident and
paged (or high) memory. This distinction has no effect on the behaviour of the Z-machine at all,
but can be used to speed up its emulation. It was made to help emulators on computer systems
that do not have enough memory to store an entire Z-program. The resident part of Z-machine
memory should be quickly accessible, for speed reasons; in practice, this means that this part
should always be in computer memory. For the paged part, speed is not that critical; in practice,
pieces of paged memory (‘pages’) can be read from disk when they are needed.

Paged memory begins at the byte address stored in the header word at $04. It is unspecified
what happens when paged memory begins in dynamic memory; it is recommended that paged
dynamic memory can be read and written just as resident dynamic memory. Note that most
existing emulators can not handle this situation.

2.4. I/O Card

The I/O card, which is connected to the CPU, handles all character based input and output of the
Z-machine. It reads input from the keyboard (and in V6 the optional mouse),or from a command
script; it can output to the video card, a game transcript, a command script, and memory. For this
reason it has access to the different fonts and styles. A detailed description of its operations is
deferred to the section 6.

2.5. Video card

The video card is placed between the I/O card and the screen,and its job is to show the text output
of a Z-program on the screen in windows. In V6 it also has access to data for showing pictures;
these are not stored anywhere in Z-machine memory, and the Z-machine neither knows nor cares
about the picture format that is used.

The Z-machine neither knows nor cares about the format of the picture data. Pictures
are just rectangles of units, and they are numbered with non-zero natural numbers. The video
card answers questions from the CPU about the height and width of the pictures it has access
to. A V6 Z-machine should set header bit $10-$11/3 correctly on start-up, to let the Z-program
know whether it can show pictures or not. It is unspecified what happens when a V6 machine
without picture capability encountersa picture instruction. Recommended behaviour is to ignore
the instruction.

The capabilities of the video card are described in detail in section 4. Because the video
card always handles one screen, in the rest of this document we will often ignore the distinction
between these two. Note however that the screen is not a part of the Z-machine, but just a rather
dumb output device that only knows how to show rectangles of (possibly coloured) characters or
pixels, and (in V6) can be asked about the displayed colours.

2.6. Random number generator

The random number generator is used to introduce a chance element in Z-programs. On request,
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it generates a number in the range from 1 ton inclusive, wheren is a given number between
1 and 32767 inclusive; see therandom instruction in 8.14. The generator is in one of two
modes: predictable or unpredictable. Initially, it is in unpredictable mode, which causes the
generated numbers to be really random and uniformly distributed. When putting the generator
in predictable mode, a ‘seed’ is supplied. In this case, for the same seed the same sequence of
requests is guaranteed to generate the same sequence of numbers.

Note: Z-programs should not rely too much on the randomness of the generated
numbers. Emulators should try hard to produce good random numbers; there is a case
known where a bad generator made a game unwinnable.

2.7. Sound Card

From V3 the Z-machine contains a sound card. This card has access to the sound data; these are
not stored anywhere in Z-machine memory,and the Z-machine neither knows nor cares about the
sound format that is used. A Z-program refers to sounds by numbers beginning from 1. Sounds 1
and 2 are a high-pitched and a low-pitched beep respectively. The other sounds (‘sound effects’)
are unspecified, and are generally emulator-dependent.

Header bits $10-$11/4 (V3), $10-$11/7 (V5+), and $01/5 (V6) indicate whether the
sound card can produce sound effects. These bits should be set on start-up, according to the
configuration of the Z-machine. The sound card should produce the sound effect that is asked
for, or a good substitute; if that is not possible the sound card should be silent, which in most
cases has the same effect as ignoring the sound instruction. (If a sound effect cannot be played,
a warning message might be displayed by the emulator.)

The sound card plays at most one sound effect at any given time, independently of the
operation of other parts of the Z-machine. A sound effect can be played at 8 volume levels, it
can (in V4+) be repeated 1to 254 times or indefinitely,and (in V5+) an interrupt can be generated
when playing has been completed. Beeps are played independently of sound effects. Initially
the sound card is silent.

2.8. Timer

From V4, a timer is added to the Z-machine. This makes it possible for the CPU to wait for a
given number of (real world) seconds in the range of 0.1 to 6553.5 seconds, with a resolution of
0.1 seconds.

2.9. Save memory

In V5+ the Z-machine optionally has a save memory, which can be used to store and restore
a snapshot of the dynamic memory and the call stack of the Z-machine. On a signal from the
CPU, the contents of dynamic memory and call stack are copied to save memory, or vice versa.
It is unspecified what the contents of the save memory are directly after start-up, a restart, or a
restore_undo instruction; arestore_undo instruction fails in these cases.

[TODO: Add something on multiple undo?]
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2.10. Mouse

A V6 Z-machine can optionally be connected to a mouse; if none is present at start-up, header
bit $10-$11/5 should be cleared. Mouse clicks are reported to a Z-program as special input
characters, the so-called ‘function keys’;see section 5.1.On a mouse click, the screen coordinates
of the mouse pointer are written in the first two words of the ‘extension table,’ (see 3.9). If the
Z-machine is connected to a mouse, this table must have at least two entries. The first of these
contains the mouse x coordinate, the second the y coordinate.

It is possible to constrain the mouse pointer to a given screen window, using the
mouse_window instruction; see 8.12. In this case all clicks outside this window are ignored.
Initially the mouse pointer is constrained to window 1.

2.11. Initialization

When the Z-machine is started or restarted, a number of initialisation steps are performed.

• On restart only, the current value of the ‘printer transcript bit’ (header bit $10-$11/0)
is remembered.

• The memory is initialized with a Z-program;on a restart, this is the same Z-program as used
on start-up.

• A number of bits and bytes in the header are written, depending on the capabilities of
this specific Z-machine. This includes most of the bits marked “IROM” in table 3 in the
appendix. On restart only, the ‘printer transcript bit’ is set the to the value remembered in
the first step.

• All components are initialized;e.g., the screen is cleared, the sound card is silenced, etc.

• The call stack is made to contain a single frame, containing in V1-5:

– a PC which is set to the byte address in the header word at $06;

– no local variables;

– an empty routine stack.

In V6 execution beginsat a routine, the packed routine addressof which is in the header
word at $06. The single start-up frame is now almost the same as the one created for a call
instruction using that address:

– a PC which is set to that address plus 1;

– a number of local variables which is found in the byte at that address, all initialized
to zero;

– an empty routine stack.

In V5+ it is unspecified what the number of passed values to this routine is set to; 0 is
the recommended value. Note that in V5+ it is not necessary to specify how this routine was
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called, as this fact is never used: a return instruction is illegal from the ‘main routine.’

After this, the Z-machine begins to execute Z-code.

2.12. Operation

While the Z-machine is running, the following steps are repeated until it is halted (i.e., a quit

instruction is carried out):

• If an interrupt has been generated by an outside event (i.e., a sound effect has finished), that
routine is called as an interrupt without passing it any values, and ignoring the returned
value. This step is then executed again.

• The Z-code instruction beginning at the PC address is read. (This excludes the so-called
string, result, and branch arguments.) Note that it is legal for a Z-code instruction to appear
in RAM; this makes self-modifying code possible.

• The PC is set to the address after the instruction.

• The instruction is carried out, possibly resulting in changes to the PC, or any other
writable locations.

It is an error to try to execute an instruction that is not recognized by the Z-machine which
is used. Still, after displaying a suitable message, an emulator might try to ignore the offending
instruction and continue execution. This is especially the case with unrecognized ‘extended
instructions’ (see section 7.1) which are probably post-Infocom extensions.

3. Data Structures

There are a number of regions in a Z-program containing information that is used in a special
way by the Z-machine. This section describes these data structures, beginning with those
concerning text.

3.1. Z-strings and Z-characters

A Z-string is a sequence of words that represents a piece of text. Text is in fact just a sequence
of output character numbers (see 5.1) to be printed in the current font and style.

Each word of a Z-string consists of an end marker (bit 15) and three Z-charactersof five bits
each (bits 14 to 10, bits 9 to 5, and bits 4 to 0). Only the last word of a Z-string has an end marker
of %1. In this way a Z-string is in fact a sequence of Z-characters. (Note that many Z-strings
stored in memory begin at packed string addresses, but this is not mandatory.)

Note that the concepts ‘Z-character’and ‘output character’must not be confused. Also note
that the term ‘word’ is used exclusively for a sequence of 16 bits.

A Z-character is a number in the range of 0 to 31. The meaning of a Z-character depends on
the current alphabet. There are three alphabets, for lower case (L),upper case (U)and punctuation
(P). The following table shows the built-in character set. A circumflex (^ ) indicates that this
Z-character has a special meaning that is described below. The other Z-characters are converted
to the ASCII-codes of the characters shown.
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          1    1    2    2    3 
0    5    0    5    0    5    0 

L  ^^^^^abcdefghijklmnopqrstuvwxyz

U  ^^^^^ABCDEFGHIJKLMNOPQRSTUVWXYZ

P  ^^^^^^0123456789.,!?_#’"/\<-:() (V1)
P  ^^^^^^^0123456789.,!?_#’"/\-:() (V2+)

As an example, Z-character 6 in alphabet L represents the output character 97, which is the
ASCII code for ‘a’. Note that Z-character 0 means output character 32 (an ASCII space) in
all alphabets.

Note that the distinction between the character shown in the above table and its ASCII-code
becomes important when using a non-ASCII font (see 5.2).

The special codes have the following meaning. In V1-2, characters 2 to 5 are used for
alphabet changes. In V1, character 1 means newline in all alphabets. In V2+, character 7 in
alphabet P means newline. In V2, character 1 is an abbreviation character. In V3+, characters 1
to 3 are abbreviation characters,and only characters 4 and 5 are used for alphabet changes. In all
versions, character 6 of alphabet P indicates that a literal output character is given.

Because the number of characters in a Z-string is always a multiple of 3, in some cases
extra characters have to be added – this is called ‘padding.’ For this purpose all alphabet change
characters can be used; conventionally character 5 is used, as this is also the pad character used
by encode_text . The use of character 5 is mandatory in padding entries in a sorted dictionary
(see 3.3).

In V5+ a Z-program can contain an alternative character set, which replaces (part of) the
built-in one described above. The word at $34 in the header contains either 0, or the byte address
where the alternative character set is stored. It consists of three sequences of 26 bytes, for
Z-characters 6 to 31 from alphabets L, U and P, respectively; each of these bytes is interpreted
as an output character. Characters 0 to 5, and characters 6 and 7 from alphabet P, have the same
meaning as for the built-in character set. (This means that the alternative values for characters
6 and 7 from alphabet P are ignored.) It strongly recommended that all output characters in an
alternative character set are different. [Question: Should this be mandatory?]

3.2. Converting a Z-string

This subsection describes how to convert a Z-string to a sequence of output characters. This is
done by taking one (or sometimes two or three) Z-characters at a time. During conversion two
alphabets are remembered, called the ‘current’and ‘lock’alphabets. The current alphabet is the
one in which the next Z-character must be interpreted,while the lock alphabet gives the long-term
interpretation. After converting one (or two or three) Z-characters that was not an alphabet
change, the current alphabet is set to the lock alphabet. At the beginning of converting a Z-string
both alphabets are L. (Note that the description below implies that in V3+ the lock alphabet is
always L.)The next paragraphsstate how to convert individual Z-characters: ordinary characters,
newlines, abbreviations, literal output characters and alphabet changes.

A Z-character that is not a special code in the current alphabet is converted to an output
character, using either the built-in or the alternative character set; see above.
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A newline Z-character (i.e., 1 in all alphabets in V1, or 7 in alphabet P in V2+) is simply
converted to output character 13,i.e., a newline.

An abbreviation character (i.e., 1 in V2, and also 2 and 3 in V3+, in all alphabets) is always
interpreted together with the next character. These characters represent an abbreviation,
which is stored as a Z-string. (Incomplete abbreviations are ignored.) Ifa is the abbreviation
character andb is the next character, then these point to abbreviation Eq(a-1)*32+b. A table of
abbreviations is stored in memory (usually in RAM) beginning at the byte address stored in the
header word at $18. This is a contiguous list of 32 (in V2) or 96 (in V3+) words, which are the
word addresses where the abbreviation Z-strings are stored. An abbreviation is converted to
whatever its Z-string converts to. It is unspecified what happens if an abbreviation Z-string itself
uses abbreviations; recommended behaviour is to behave as described above, and give an error
message if abbreviations are used recursively. [Question: [Nelson] says that an abbreviation
Z-string may not end with an incomplete multi-Z-character construction. I don’t see why not.]

Character 6 in alphabet P isalways interpreted with the next two Z-characters,and converted
to a single output character of 10 bits. (Incomplete literal output character constructions are
ignored.) This is done by taking the five bits of the first of these characters, followed by the five
bits of the second.

Alphabet changes are converted to nothing, but they can change the current and lock
alphabets. Their effects are given in the following table:

char. L U P
2,4 U P L
3,5 P L U

(Note that only 4 and 5 are alphabet changes in V3+.) This gives for the current alphabet and
for each character from 2 to 5 the alphabet that is changed to,i.e., the new current alphabet. If
the character is 4 or 5, in V1-2 the lock alphabet is also set to this alphabet; otherwise it remains
unchanged. Note that this means that the lock alphabet is always L under V3+. Note also that a
sequence of alphabet changes at the end of a Z-string has no effect.

Note: Because of differences between existing emulators, it is strongly recommended
that the writer of Z-strings avoids multiple ‘shift’ alphabet changes (V1-2: 2,3; V3+:
4,5) in a row, except for padding purposes (see above). Such a sequence is other-
wise useless, since it can be replaced with a single alphabet change having the same
effect.

[Question: For V3+ the behaviour described here differs a bit from what [ZIP] and [Frotz]
do and [Nelson] says, but it is what Paul David Doherty says Infocom interpreters do. In effect,
in V3+ ZIP and [Nelson] set the current alphabet to L before processing an alphabet character
in the way described above. This difference shows itself in some unlikely cases. An example
is a Z-string beginning with Z-characters 5, 5, 20. The described procedure converts this to ‘O’
(character 20 from the U alphabet), but ZIP gives ‘!’(from the P alphabet). On a related note, the
ITF interpreter generates ‘!’ for this sequence in V3+, but all following characters are interpreted
in the P alphabet too. This means it erroneously has a ‘shift lock’ in V3+.]
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3.3. Dictionaries

The main dictionary, which is pointed to by the byte address in the header word at $08, begins
with a header. This consists of the separators (a 1-1-table of input characters),an (unsigned)byte
representing the length of each entry, and a (signed) word representing the number of entries that
follow the header. Then follow the entries themselves.

It is an error for a dictionary to have an entry length of less than 4 (V1-3) or 6 (V4+). The
first 4 (V1-3) or 6 (V4+) bytes of an entry contain a Z-string (of 6 or 9 Z-characters), and the
Z-machine does not care about the contents of the other bytes. [Question: Should we demand
that the Z-strings are unique? Or perhaps only in the sorted case?] To be useful, the Z-string in
an entry must not use abbreviations or characters 6-31 from alphabet U, and use 5 as the padding
character; for an explanation, seeencode_text in 8.14.

The dictionary entries must be sorted on the Z-strings they contain, except as noted below.
The Z-stringsare compared in numerical order, regarding their 4 or 6 bytes as an unsigned integer.
This means that the order is more or less alphabetical for the built-in character set.

In V5+ there are instructions that can use an alternative dictionary which has the same
structure as the main one. In an alternative dictionary, however, it is legal to give a negative
number of entries, say−s. This means that there ares entries, but that they are unsorted. It is
an error for a dictionary with a positive number of entries to be unsorted. It is unspecified what
happens when the main dictionary is unsorted. Recommended behaviour is that it is used as
usual.

3.4. Objects, their attributes and properties

Simulation of a world using the Z-machine relies on objects. An object stores all relevant
information about a single entity in the simulated world. The number of objects is finite, but is
not stored explictitly in a Z-program. Objects can be changed (and even added or deleted) by
writing directly to the memory locations where they are stored – but this is not recommended.

Every object has a name, attributes, and properties. There is a fixed set of attributes. For
each object,each attribute is eithertrueor false.There is a fixed set of properties. For each object,
a property is either present on the object, and contains a sequence of data bytes; or it is absent.
For every property, there is a word that gives a default value; this is used when reading a property
which is not present on an object.

The objects are arranged as a collection of family trees. Every object has at most one parent,
and zero or more children (which are thus siblings of each other). Each object knows only three
of its relations: its parent, its first child, and its next sibling; or commonly: its parent, child,
and sibling.

The object tree must be consistent,i.e., the following must hold:

• Every object that has a (next) sibling also has a parent.

• Each object is the parent of the objects in the ‘sibling chain’ that begins with its (first) child,
and only of those. (This chain is understood to be empty if there is no (first) child; the object
is then the parent of no object at all.)

• No object occurs in the ‘sibling chain’ that begins with its own (next) sibling. (As above,
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this chain is empty if the object has no (next) sibling.)

It is an error to use an inconsistent object tree, but most emulators are probably not able to check
this properly. Note that the object tree is consistent if it is so initially, and only theremove_obj

and insert_obj instructions are used to change it. The emulator might show a warning
message if the object tree is initially inconsistent.

Note that recursive trees are not forbidden, because there exist Infocom games that pro-
duce them (although due to bugs). They can be avoided by following this additional consisten-
cy rule:

• No object occurs in the ‘parent chain’ that begins with its own parent. (As above, this chain
is empty if the object has no parent.)

This can be ensured if the object tree is initially consistent, and theinsert_obj instruction is
used carefully; see its description in section 8.

Note that Inform [Inform]usesan ‘aged’terminology: the first child of an object iscalled the
eldest, and the last of its children the youngest. This is a bit odd, sinceinsert_obj – the only
instruction to add children – adds an object as the first of the sibling chain; it seems reasonable
to refer to this newly added object as theyoungestchild.

3.5. Representing objects

Because the representation of objects differs between V1-3 and V4+, this subsection gives a
description for V1-3, with changes for V4+ put in parentheses.

Objects are numbered from 1, and ‘object number’0 is often used to mean ‘no such object
exists.’ Note that this is sometimes called ‘object 0.’ That is not done here, since this ‘object’ is
unlike all others: it has no name, no attributes, and no properties.

The number of objects is at most 255, an unsigned byte (65535, an unsigned word).
[Question: Frotz 2.01uses a maximum of 2000 objects. Where does this restriction come from?]
It is an error to reference a non-existing object, but most emulators do not check this. Attributes
are numbered from 0 to 31(47). Propertiesare numbered from 1to 31(63). Each propertypresent
on an object contains 1 to 8 (63) data bytes; this length can not be changed during execution of a
Z-program, except by directly writing the property lists – which is legal, but not recommended.

The byte address in the header word at $0A is either 0, and there are no objects; or it points
to the beginningof the object table.The object table consistsof two parts: first comesthe property
defaults table, and then the object entries. Each object entry stores its attributes and relations,
and a pointer to its property list; this stores the property information for the object, and also
its name.

If the Z-program has objects, it is mandatory that a property list be stored directly after
the last object entry. This requirement makes it possible to compute the number of objects.
[Question: Why should this be mandatory, and not a recommendation? Failing this condition
would simply mean that tools like ‘txd’ cannot compute the number of objects.] Note that
existing Infocom and Inform game files store all property lists there, and Inform even puts them
in object order.

Note: In theory the number of objects isnot fixed, since the memory locations where



- 16 -

they are stored can be arbitrarily manipulated by the Z-program. In practice most
emulators assume that this is not done, but a really friendly emulator might issue a
warning message if it is.

The property defaults table contains 31(63) words, giving the default property data for each
property. It is followed by the object entries, beginning from object 1. Each entry contains 4 (6)
attribute bytes, followed by three bytes (words) indicating the parent, sibling, and child objects,
and finally a word giving the byte address at which the object’s property list begins. The top bit
of the attribute bytes refers to attribute 0, the bottom bit to attribute 31(47). If an object number
in an entry is 0, this means that the object has no such relation.

A property list consists of this object’s name – which is a Z-string preceded by an unsigned
byte containing its length in words – a number of property entries,and a zero byte that terminates
the list. A property entry contains one (one or two) size byte(s), followed by 1 to 8 (63) bytes of
property data; the (first) size byte holds the number of data bytes minus 1 in the top 3 (2) bits, and
the property number in the bottom 5 (6) bits. (In V4+ there is one exception: if the top bit of the
first size byte is %1,i.e., the number of bytes would be either 3 or 4, there are two size bytes. The
second size byte contains the number of data bytes as its bottom 6 bits, and its top bit is %1; the
number of data bytes may not be 0. The use of bit 6 of a second size byte is unknown; Inform
always sets it to %0.) The entries in a property list must be sorted in order of descending property
number; it is an error for a property number to occur more than once in a property list. It is also
an error for property number 0 to occur.

3.6. Global variables

There are 240 global variables, numbered 0 to 239. As with the local variables, each global
variable contains a word. Unlike the local variables, the global variables are stored in memory
(usually in RAM), as 240 consecutive words beginning from the byte address found in the word
at $0C.

For V1-3 the first three global variables have a special meaning in constructing the status
bar; see section 4.

Note: In V1-3 global variable 0 contains the number of the object representing the
location where the player is. It is strongly recommended that global 0 is always used
in this way, if the Z-program has a notion of ‘current location.’ Similarly, if a score and
a number of turns (or a time in hours and minutes) is kept, it is strongly recommended
to store these in globals 1 and 2 respectively.

3.7. Routines

A routine is nothing more than a very simple header that is put before Z-code instructions, and
always begins at a packed routine address. The first (unsigned) byte of a routine indicates the
number of local variables the routine has. It is an error for this to be greater than 15. In V1-4, this
is followed by the same number of words, giving the default initial values for the local variables.
(Note that in V5+ a default initial value of zero is assumed.) Execution of the routine begins at
the address after this routine header.

A routine can be called in three different ways: as a function or procedure, using acall

instruction; and as an interrupt, on specific events, such as an input timing out, a sound effect
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finishing, and a ‘newline count’ reaching zero. Details aboutcall ing and ret urning from
routines can be found in 2.2 and 8.5. When a routine is called as an interrupt, in effect acall

instruction is executed, but the newly created call stack frame now stores that this was an
interrupt call.

[Question: A non-Infocom extension that could easily be implemented using interrupts is
an action to be taken when the screen size changes. A word in the extension table (see 3.9) could
be used to point to an interrupt routine to be called whenever the screen size is changed, zero
indicating that no interrupt routine is provided. If there are plans to introduce more interrupts, it
might be better to use an interrupt table, pointed to from the extension table.]

3.8. User stacks

User stacks are available in V6. A user stack is a stack of words that, unlike the routine stack,
is stored in memory. It consists of an unsigned word representing the number of words that can
still be pushed onto it (the stack pointer), followed by that many words (the free words), and after
that the words that are on the stack (beginning with the top element).

When the stack pointer is 0, it is impossible to push anything onto the stack. When a word is
pushed onto a user stack, it iswritten in the highest free word,and the stack pointer isdecremented
by one. When a word is pulled off, the stack pointer is incremented by one, and the contents of
the (now) highest free word is returned.

Note that there is no way to detect underflow (i.e., pulling off an empty stack) for user stacks:
a user stack is a bottomless pit. A Z-program must make its own arrangements to remember
where the bottom of the stack is located.

3.9. Extension table

The extension table is a 2-2-table beginning at the byte address stored in the header word at $36.
(If there is no extension table, this address is 0.) The first two words, if present, store the x and
y coordinates of the mouse pointer (see 2.10). The meaning of the other entries, if present, is
unspecified; they might be used for future Z-machine extensions.

4. The Video Card

To make interaction possible there must be a way to put data into the Z-machine, and get results
out of it. The center of interactivity is the screen, which is only accessible via the video card.
This section describes the operations that the video card can perform, and its initial state.

4.1. The screen

The screen that is connected to the video card is a rectangle of units, a unit being the smallest
addressable part of the screen. A unit is always indicated by its position relative to some origin,
as a pair(y, x). y gives the number of units minus 1 to do down from the origin;x gives the
number of columns minus 1 to go to the right. This means that the origin itself has coordinates
(1,1), relative to itself. All dimensions and distances on the screen are expressed in units, unless
otherwise stated.

Note that a unit usually contains a character or a pixel, but this is not specified. [Question:
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Nelson [Nelson, 8.4.2] says that a unit must contain a character in V1-4. This seems incorrect,
as it would make an emulator using a variable-width font impossible for these versions.]

The size of the screen is set at start-up, and can be changed at any time. It is unspecified
what the screen looks like after a screen size change; it is recommended that the screen is cleared
(using an EraseScreen operation). The screen can be set to be infinitely high; in this case it has no
bottom edge. [TODO:Add how the header bytes at $20 and $22 (in V4+), and the header words
at $24 and $26 (in V5+), should be set.] [Question: What does ‘number of lines’ mean when a
V4+ interpreter uses styles of different heights? And what does ‘number of characters per line’
mean when a V4+ interpreter uses a variable-width style?][Question: Is an infinite height legal in
all versions? What should the ‘screen height in units’ (header word $24) be in this case in V5+?
Or is that value ignored?]

The contents of the screen can only be written, not read, with one exception:at any time the
foreground colour of the unit at the current window’s cursor position (see below) can be read.
This is used by theset_colour instruction. The screen contents can only be changed by using
the operations of the video card.

4.2. Windows

The video card is used to access the screen in an orderly fashion. For this purpose it provides a
number of windows to which output can be sent. The state of the video card is completely deter-
mined by the properties of the windows, the current window, and the state of the screen cursor.

The number of windows is fixed: it is 1 in V1-2, 2 in V3-5, and 8 in V6; they are numbered
from 0 upwards. A window is a rectangle of screen units, with a location determined by its top
left corner and its vertical and horizontal size. To address a unit within a window, the top left
corner is used as the origin (1,1).

For every window the video card keeps an number of properties. Changing these doesn’t
change the contents of the screen; to do that, an output operation must be performed. The
properties include location and size, cursor position, buffer mode and other attributes, font, style
within that font, colours, etc. In principle each of these properties can be changed separately.

Note: The attributes and properties of windows should not be confused with those
of objects.

At any given time there is one window that is used for output operations; this is called the
‘current’or ‘selected’window.

At any given time either a ‘screen cursor’ is shown at the cursor position of the current
window, or there isn’t.

The following subsections describe the properties of the windows, the operations of the
video card, and its initial state.

4.3. Window properties

Each window has the following properties, which are all unsigned words:

0. Y location
1. X location
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These give the position of the top left corner of the window, in units relative to the top left
of the screen. It is legal for this position to be outside the screen. Only output to the visible
part of the window is shown; the rest is ignored.

2. Y size
3. X size

These give the height and width of the window in units. Again, it is legal if part of the
window is off the screen; see above.

4. Y cursor
5. X cursor

These give the position of this window’s cursor, in units relative to its top left corner. It is
legal for the cursor to be outside the window, but it is illegal to try to output something to it
in that case.

6. Left margin size
7. Right margin size

These give horizontalmargins that the text should be kept between, in units from the window
edge inwards. A value of 0 means that the margin coincides with the window edge.

8. Newline routine (packed routine address)
9. Newline countdown

See the description of the NewLine operation below.
10. Style within current font

The number of the style for the next output.
11. Foreground (first byte) and background (second byte) colours

The meaning of these colour numbers are:

2. black
3. red
4. green
5. yellow
6. blue
7. magenta
8. cyan
9. white

12. Font
The number of the font to be used for the next output.

13. Style height (first byte) and width (second byte)
The height of the style indicated by properties 10 and 12. This is the only property that is
not writable; it changes with properties 10 and 12.

14. Attributes
The bits of this word contain a number of attributes of the window; these are detailed
below.

15. Line count
[Question: What is the meaning of this property? How and when should it be changed?
Note that e.g. ‘Zork Zero’only sets this to -999.]

Property 14 of each window contains 16 attributes (numbered 0-15), which can be either
on or off. These are stored in the bits with the corresponding number, where %1 means that the
attribute is on. Only the meaning of window attributes 0 to 3 is specified:
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0. Is character wrapping on?
[Question: What is the exact meaning of this attribute?]

1. Is scrolling on?
This indicates whether it is allowed to scroll the contents of the window up to make room
for a new line.

2. Is output to this window transcripted?
This controls whether output to this window is to be sent to output stream 2.

3. Is the buffer mode on?
This bit indicates whether output to this window is sent directly to the screen (buffer mode
off) or is first buffered to avoid consecutive non-spaces being spread over two lines.

Only under V6 can all properties (except 13) be read and written. For earlier versions,some
are either ignored or cannot be changed during execution.

4.4. Operations

This subsection describes the output operations that can be performed on the video card. Only
by using these operations the contents of the screen can be changed.

• ShowStatusBar(s, a, b, flag) — Show the status bar with the given data. (Only used
in V1-3.)

The top lines of the screen are filled with a status bar containing the given data.s is a
sequence of output characters without newlines; this represents the name of the current
location. a andb are signed numbers representing either score and number of turns (if flag
is %0) or the time in hours and minutes (if %1).

The height of the status bar is unspecified, but must remain constant during execution
of a Z-program. Note that this height might be 0 units, in which case no status bar is
shown; it is also legal for the status bar to occupy more than one line, to accommodate
narrow screens.

The contents of the status bar are unspecified, but it show as much of the given data
as possible. The following describes the recommended format. It consists of one line, and
is printed in the inverse video style of the roman font (see section 5.2). On the left hand
side appears the name of the current location. If the name cannot be completely shown, an
initial part should be shown with an ellipsis (“…”) added. If flag is %0, on the right hand
side appears “Score:”, a , “Turns:”, b ; if %1, “Time:”, a , “:”, b . The rest of the status bar
is empty. It is allowed to display time in an a.m./p.m. notation (as ZIP and Frotz do) since
Infocom did this too. However, thisgives strange results for V3Z-programsnot set on Earth.
[TODO: Make this description more precise, and state 23 character limit for location name.
State that this is Infocom behaviour.]

Note that this operation is used at specific moments only, viz. while executing aread

or show_status instruction.

• ScrollWindow(w, y) — Scroll the contents of the given window up over the given distance,
filling with the background colour and moving the cursor also.

The contents of windoww are movedy units up, thus moving down ify is negative. The
units that scroll away are overwritten, the ‘new’ part is filled with the background colour.
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The cursor is moved the same way by addingy to the vertical cursor position.

Note: Note that the ITF emulator and some versions of ZIP erroneously fill with
the foreground colour if an inverse video style is selected for the window.

• ShowChar(w) — Show the given character description (with colours) at the cursor position
of the current window.

(See section 5 for more information on character descriptions.) Call the height of the
description (in units)h and its widthw. It is an error if the character doesn’t fit between the
cursor position and the right window edge. If it doesn’t fit between the cursor position and
the bottom window edge, and if the scrolling attribute is set, a ScrollWindow(n,m) operation
is performed, wheren is the current window, andm the number of units needed to fit the
description in. It is an error if the character still doesn’t fit.

The character description is now written to the screen with the given colours, taking
the cursor position as the upper left corner. Then the cursor is moved to the right byw.

• NewLine — In the current window, move the cursor to the left margin of the next line.

Move the cursor down the height of the style of the current window, and to its left margin.
If its newline countdown property is not zero, decrement it by one; if it then becomes zero,
call the newline routine as an interrupt without passing it any values, and ignoring the
return value.

Note that scrolling ishandled by ShowChar instead of NewLine. This isdone to handle
text lineswith fontsof different heights. Scrollingon a newlinewould scroll upby the height
of the then current style, but if higher characters follow an error would result. [TODO:
Change if all fonts have the same height.]

Note that strictly speaking NewLine is not an output operation,since it doesn’t alter the
contents of the screen. It was made into a separate operation because of its complexity.

• ShowPicture(p, y, x) — Show the given picture in the current window.

Show picturep in the current window with(y, x) as the top left corner. [Question: What
happens when the picture doesn’t fit?]

• ErasePicture(p, y, x) — Erase a rectangle of the size of the given picture in the current
window.

In the current window, fill a rectangle of the size of picturepwith (y,x) as the top left corner
with the background colour. [Question: See ShowPicture.]

• EraseWindow(w) — Erase the given window.

Fill the given window with itsbackground colour. In V1-4 the cursor is moved to the bottom
left of the window, in V5+ to the top left.

• EraseScreen — Erase the entire screen.

Fill the entire screen with the default background colour, which is found in the header byte
at $2C in V5+ and unspecified in V1-4. Nothing else happens.
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4.5. Initial state

When the video card is initialized (i.e., on start-up or restart), the screen is cleared, all window
attributes and properties are set to their initial values (see below), the buffer is cleared,ExtraNL

(see below) is set tofalse, window 0 is selected, and the screen cursor is turned on.

The following table gives the initial values of the attributes and properties for all versions,
and also states whether they can be changed during execution of a Z-program.

Table 1. Initial values for properties and attributes

V1-2 V3 V4 V5 V6
prop 0-5 D * D ** D ** D ** D

6 0 * 0 * 0 * 0 * 0
7 0 * 0 * 0 * 0 * 0
8 — — — — ?
9 0 * 0 * 0 * 0 * 0

10 0 * 0 * 0 ** 0 ** 0
11 U * U * U * H ** H
12 1 * 1 * 1 * 1 ** 1
13 U * U * U * U ** U
15

attr 1 0 * 0 * 0 * 0 * 0
2 1 * D * D * D * D
3 1 * D * D * D * D
4 1 * 1 * 1 ** D 1

Meaning of the symbols:
—: not used;
?: no default value;
D: different for different windows;
H: a default value from the header is used;
U: unspecified, i.e., emulator-dependent;
*: cannot be changed using Z-code instructions;
**: changes for all windows at the same time.

In all versions, initially window 0 is the only window that has the scroll and transcript
attributes set. For V1-5 this cannot be changed, but for V6 these can be toggled.

Buffer mode is always on for all windows in V1-3. In V4 it is initially on for both windows,
and is toggled for both at the same time. In V5 it is initially on and can be toggled for window
0, and always off for window 1. In V6 buffering is on by default for all windows. [Question: Is
this correct?]

In V1-4, and in V5+ when header bit $01/0 or $10-$11/6 is cleared, the colour of characters
on the screen is unspecified and cannot be changed. In all other cases the initial colours are
found in the header bytes at $2C and $2D. In V5 these can only be changed for both windows
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simultaneously, but in V6 each window has its own colours.

In V1-2 there is one window, which occupies the entire width of the screen. The lines of the
screen are divided into two regions: the status bar (see below) and the window. The dimensions
of the window cannot be changed.

In V3-5 there are two windows; window 0 is known as the ‘lower’ and window 1 as the
‘upper’ window. Both occupy the entire width of the screen. The lines of the screen are now
divided into two or three regions: the status bar (if present; see below), the upper window, and
the lower window. The upper window initially has zero height, and this can only be changed in
V3+ using thesplit_screen instruction. Note that if header bit $01/5 is cleared in V3, the
split_screen instruction is illegal, or in other words: the upper window is never shown.

The status bar is only present in V1-2, and in V3 when header bit $01/4 is cleared. Its
height is unspecified, but constant and non-zero (see the ShowStatusBar operation above for
more details).

A V6 Z-machine has 8 windows, which can each be located anywhere on the screen. It is
legal for a window to extend beyond the screen: everything written outside the screen is simply
ignored. Initially all windows have their top left corners at the top left corner of the screen;
window 0 occupies the entire screen, window 1spans the width of the screen and has zero height,
and all other windows have zero height and width. A status bar is never shown.

The initial cursor position for a window is its top left corner, except for window 0 in V1-4
where the cursor begins at the bottom left. Initially the screen cursor (at the cursor location of
the current window) is on.

Initially the roman style of the standard font is selected for every window (see section 5).
The height and width of this style determine the initial value of window property 13.

5. Characters, Fonts, And Styles

Interactive fiction revolves around text, and Z-machine text is divided into characters. This
section describes the legal character values, and what the output characters look like.

5.1. Characters

Input and output characters are represented by numbers from 0 to 65535, as indicated by the
following table. All numbers not in this table are illegal.

Table 2. Input and output characters

Number I/O Meaning
9 O paragraph indentation (V6 only)
11 O wide space (V6 only)
13 I/O newline
32-126 I/O ASCII characters, or other for a non-ASCII font
127 I delete
129-132 I cursor up, down, left, right
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133-144 I function keys F1-12
145-154 I keypad keys 0-9
155-163 I/O German special characters
164-251 I/O unspecified; reserved for other special characters
252 I in V6 only: menu selection mouse click
253 I in V6 only: double mouse click
254 I in V5: any mouse click; in V6: single mouse click
256-767 O unspecified
768-1023 O unspecified, but reserved by Graham Nelson
1024-65535 O unspecified

All numbers marked ‘I’or ‘I/O’are called ‘input characters,’and all marked ‘O’or ‘I/O’are
‘output characters.’

Standard extension: 0 (null) is an output-only, and 27 (escape) is an input-only character.

5.2. Styles and fonts

A style is a set of descriptions which determine what an output character should look like on the
screen. A font is a set of related styles. Fonts and their styles are accessed through the I/O card;
there is no way for a Z-program to access them directly. It is unspecified what happens when
fonts or stylesare changed during execution of a Z-program. Recommended behaviour is to reset
the screen, and use the new fonts from that time on; resetting the screen is obviously unnecessary
when the new characters have the same sizes as the old ones.

A character description occupies a rectangle of units, and says how the character should be
shown on the screen. This description refers only to two colours: foreground and background.
Note that a unit usually contains either a character or a pixel; see section 4 for details.

A style is a mapping from numbers to character descriptions, covering at least the numbers
32-126 (and in V6 also 9 and 11), and optionally more in the ranges 155-251 and 256-65535.
Note that these are the output characters except 13 (newline). In this section we will often use
‘character’ to mean either the character number or its description.

Note that there are three different ways for the Z-machine to produce output characters,
which are described elsewhere in this specification:

• in an alternative character set (8 bits,i.e., 0-255);

• as a literal character in a Z-string (10 bits,i.e., 0-1023);

• in a PRINT_CHAR instruction (16 bits,i.e., 0-65535). [Question: [Nelson]says characters
1024-65535 are not allowed. Is he correct? This seems to be an arbitrary restriction on the
print_char instruction.]

All characters within a style have the same height, but they need not have the same width.
The width of a style is defined to be the width of its character 48 (which is a ‘0’ in an ASCII font;
see below). A style is called ‘fixed-width’ if the width of every character in it is a multiple of
the width of its character 48; otherwise it is called ‘variable-width.’ Note that not all characters
in a fixed-width style need have the same width; an example are the two-character equivalents
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for accented German letters.

Styles are ordered in fonts, and numbered by non-negative integers. All styles in a font
consist of the same output characters. If set, the bottom bits of a style number give an indication
what the style looks like:

• bit 0: reverse video;

• bit 1: bold;

• bit 2: emphasis;

• bit 3: fixed-width.

All other bits are always %0. Style 0 is called ‘roman.’

A style is called a ‘base style’ for all styles whose numbers can be made by setting zero or
more bits to %1in the base style number. For example: style 5 (reverse video and emphasis) has
styles 0 (roman), 1 (reverse video), 4 (emphasis), and itself as its base styles; the roman style is a
base style for all styles. Note that the concept of a base style is introduced to cater for Z-machines
that do not have all styles available; see the description of theset_text_style instruction in
section 8.

In V1-3 a font consists of just one style (0,i.e. roman), making special effects impossible.
In V4+ bits 0, 1, and 3 of a style number may only be %1 if the relevant bits of the header byte
at $01 are set.

In V1-4 there is only one font, numbered 1and called the standard font. If (in V3) the roman
style of the standard font is fixed-width, header bit $01/6 should be cleared on start-up; otherwise
it should be set. In V5+ there can be more fonts, numbered from 1 upwards:

• 1: standard;

• 2: picture;

• 3: character graphics;

• 4: fixed-width.

The standard font must be present, all others are optional.

5.3. The character descriptions

What should the characters that the I/O card uses look like? The fonts and styles are not specified
in detail. Rather, some restrictions are given in this subsection.

The standard and fixed-width fonts are ASCII fonts. Characters 32 to 126 of all styles
in an ASCII font faithfully represent the corresponding ASCII characters, as shown in the
following table:
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0123456789ABCDEF0123456789ABCDEF

$20  !"#$%&’()*+,-./0123456789:;<=>?

$40 @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_

$60 ‘abcdefghijklmnopqrstuvwxyz{|}~

Note that character 32 ($20) is a space, and that character 127 ($7F) is not an output character.
An ASCII font may also have German characters numbered from 155 to 163. It is legal for these
characters to be represented by multi-character ASCII equivalents. Characters 164-252 of an
ASCII font are unspecified, but reserved for further specification. These characters might be
used for accented characters of languages other than German. All special characters are shown
in table 5 in the appendix. Standard extension: characters 164-223 are specified as additional
optional special characters; see also table 5 in the appendix.

[Question: I specify above that the multi-character equivalents are just alternative character
descriptions. Because character descriptionsare alwaysprinted as a whole, this implies that these
two-character sequences are never split over two lines. Most interpreters that use them, however,
will happily split them. Since this case rarely occurs in practice (only with words that don’t fit
between the margins), and since I feel that these combinations should never be split, I specify
things this way. I think it gives the most ‘natural’specification, too.]

The picture font is unspecified, because it was never used in the Infocom games; it is
recommended not to use it. The character graphics font should look like the (slightly varying
between platforms) one supplied with the Infocom game ‘Beyond Zork.’ In the fixed-width font
all styles must be fixed-width and have the same width. The fonts numbered from 5 upwards are
unspecified. [Question: Font 5 could be reserved for a Unicode or similar ASCII font, which
gives the ability to print all kinds of characters in all kinds of languages.]

Note: The behaviour of ’Beyond Zork’ story files w.r.t. character graphics deviates
from this specification. First, if the interpreter number (header byte at $1E) is 1, font
3 is always used, ignoring the return value ofset_font . Second, if the interpreter
number is 6 (IBM PC) or 8 (Commodore 64), then ‘Beyond Zork’assumes that output
characters in font 1are printed using the built-in font of these machines, instead of the
Z-machine font. This means that a Z-machine without a character graphics font should
never use interpreter numbers 1, 6, and 8. Alternatively, one could use interpreter
number 6 or 8, and use a font 1 that resembles the IBM PC or Commodore 64 graphics
font, respectively. (This is what ZIP does.)

Within a font, the roman style is the one that is initially used. Bold and emphasis styles
are appropriately modified versions of this one; emphasis is usually shown using underlining or
italics. A reverse video style is usually the same as one of its base styles, but with the foreground
and backgroud colours reversed. A fixed-width style is usually the same as one of its base styles
if that is fixed-width. Only if a non-roman style is completely the same as one of its base styles,
it is legal (but not mandatory) to use special colours or effects to indicate such characters on
the screen.

Characters 9, 11, and 32 are called spaces, and they should look like spaces appropriate for
their text style. (This means for instance that character 32 in a reverse video style uses only the
foreground colour.) Character 32 has the width of a normal space between words in a sentence.
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Character 11 is a wider space, such as commonly used after a period (‘.’) ending a sentence.
Character 9 is even wider, and is only used for paragraph indentation. Note that spaces are never
split over two lines, since character descriptions are always output as a whole.

[Question: A possible extension is to add a new output character (with a number less than
32?) that looks the same as 32 but is not a space. It can be used to ensure that two consecutive
words do appear on the same line.] [Question: Another possible extension is a hyphen that is
only printed at the end of a window line, and is otherwise ignored.]

Characters 768-1023 are unspecified in any font, but reserved for further specification by
Graham Nelson. These characters might be used as additional special codes for special effects.
[Question: Wouldn’t it be better to use unused output characters less than 32 for this? Or aren’t
these enough?]

Note: Authors of game-specific emulators are asked to use either output characters
256-767 or 1024-65535, or fonts 5 and higher, for their own special characters.

6. The I/O Card

The I/O card manages all character based input and output of the Z-machine. This includes input
from keyboard and mouse, and buffered output. Screen output is sent through the video card; all
other input and output is handled by the I/O card itself.

6.1. Output streams

All character based output is performed by sending output character numbers to output streams,
of which there are four:

• 1: screen;

• 2: transcript;

• 3: memory;

• 4: command script.

(Output streams 3 and 4 are only available in V3+.) At any given time, an output stream is either
open or closed. Anything sent to a closed output stream is simply ignored. There is no way for
a Z-program to find out which output streams are open.

Output to stream 1 (and maybe to stream 2, see below) is buffered if and only if the buffer
mode of the current window is on.

The following subsections describe for each output stream what happens with the characters
sent to them.

6.2. Output stream 1: the screen

Characters sent to stream 1 are to be displayed on the screen, using the video card. To make
word-wrap possible, an output buffer is used. All output is first stored in this buffer before it is
processed further. The buffer is a sequence of character descriptions with colours; first come
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spaces, then non-spaces. The width of the buffer is the sum of the widths of its elements. The
buffer is initially empty. If buffering is off for the current window, then the buffer is empty. Note
that the buffer is added to on outputting a non-newline to output stream 1, and cleared when the
buffer is flushed; these are the only ways to change the buffer.

During screen output sometimes an extra newline is generated to avoid crossing the right
margin. To record this the I/O card keeps a boolean called ExtraNL meaning ‘the last output
character on stream 1 was an extra newline generated by the output process.’ It is used to
determine the way to output character 9 in V6 (see below); and to correctly output a sequence
of non-spaces wider than a window line. ExtraNL is initially false, and is set to false when the
buffer is flushed.

‘Flushing the buffer’means that the following steps are executed:

IF width of buffer> distance from cursor to right margin
AND ExtraNL is false:

remove all spaces from buffer
do a NewLine
set ExtraNL totrue

WHILE buffer is not empty:
remove the first char. description from the buffer and call itc
WHILE width of c > distance from cursor to right margin:

do a NewLine
do a ShowChar(c)
set ExtraNL tofalse

Note that if buffering is on, the above process in effect replaces all spaces by a newline at the end
of a window line. [Question: As far as I can see ZIP and Frotz don’t do this, but instead remove
only the first space from the buffer. (Because of this, [Inform] includes a facility that replaces
two consecutive spaces by a single one.) Is the above specification the desired behaviour, or are
ZIP and Frotz correct?]

When output stream 1 is open and a character is sent to it, it must be shown in the current
window. Character 13 (newline) is output by flushing the buffer and performing a NewLine
operation. (Standard extension: character 0 (null) is ignored.) All other output characters force
a screen change as detailed below.

If in V6 character 9 is to be output,and the cursor is to the right of the left margin,or ExtraNL
is true, then character 32 is used instead.

Call c the description of the output character in the current font and style, with the
current colours. It is unspecified what happens when the character does not occur in that style;
recommended behaviour is to use a description representinga question mark (‘?’)with the current
style height in the current colours instead. The following steps are now executed:

IF c is a space AND buffer contains non-spaces:
flush the buffer

addc to buffer
IF buffering is off for the current window:

flush the buffer
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Non-standard extension used by [Frotz]: It is legal to add the clause “ORc is a hyphen” to the
condition of the last IF statement above.

Note: Note that some ports of the ITF interpreter (for V5) erroneously uses the buffer
mode for window 0 when writing to window 1. Because of these and other bugs, it is
recommended that buffering is turned off before writing to window 1 in V3-5.

6.3. Output stream 2: the transcript

Characters sent to stream 2 are sent directly to the outside world. This is intended as a transcript
of all output that the Z-program has produced. This specification prescribes nothing about the
transcipt;but it is recommended that it ‘looks like’the output shown on the screen through output
stream 1 and picture instructions. [Question: What about sound effects?] Formatting of the
transcript may use the buffer mode of the current window.

Note that the Z-machine may sent special messages to stream 2 on certain events,e.g., when
displaying a picture on the screen.

Output stream 2 is opened or closed as with theoutput_stream instruction when bit
$10-$11/0 is set or cleared.

6.4. Output stream 3: memory

Output characters sent to stream 3 are stored in memory, either in a one-line or multi-line format.
The memory addressaddr and the format are given with theoutput_stream instruction that
opens stream 3. [TODO: Memory contents fromaddr are unspecified while stream 3 is open.]

For the one-line format, the unsigned word ataddr is the number of characters that have
been output, and the bytes after that hold the characters themselves. A new character is stored
after the others, and the number of characters is incremented by 1.

For the multi-line format, a number of ‘lines’are stored fromaddr onwards, followed by a
zero word. Every ‘line’ is an unsigned word, followed by that many characters. A new character
is stored either after the last of the last ‘line’(as for the one-line format), or a new ‘line’ is created
with the new character as the first. Exception: a character 13 is not stored, and an empty new
‘line’ is created.

The decision whether to go to a new ’line’ depends on information given when the output
stream is opened: the text is justified

• as if it was printed to a given window (taking its then-current buffer mode, horizontal cursor
position, and margins into account); or

• as if it was printed to a window of a given width (taking the buffer mode of the then-current
window into account); thiswindow has the buffer mode of the then-current window,margins
coinciding with the window edges, and the cursor at the left window edge.

After opening the stream, changes to the windows’ properties or screen contents have no effect
on the way text is justified. [TODO: Make this unspecified]

An output character above 255 is either ignored, or replaced by a sequence of byte-valued
characters representing it in some way. In V6 the total width of the descriptions of the stored
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characters in memory is stored in the header word at $30; the descriptions used are the same
as would be shown on the screen, in the current font. [Question: Is this also correct for the
multi-line format? Or is the maximum width of all lines stored there? Or the width of the last
line?] [Question: The details of this above paragraph were invented by me, since [Nelson] is not
clear at this point.]

6.5. Output stream 4: the command script

This output stream is intended as a record of all user input to a Z-program. All input is sent
through a link to the outside world, and can be retrieved by the Z-machine via input stream 1; see
below. This output stream is special in two respects: it handles input characters (as opposed to
output characters),and, in V4+, it also handles time-out information. To be precise,all characters
and time-out information received in response toread andread_char instructions are sent to
this stream.

Note: Most existing emulators do not write time-out information to a command
script.

[Question: There are other factors determining the behaviour of a Z-program except user
input: mouse pointer locations, the numbers generated by the random number generator, the
interpreter number given by the emulator, finishing of sound effects, the availability of pictures
and fonts, etc. Should these be written to a command script too?]

6.6. Input streams

The input streams are

• 0: keyboard;

• 1: command script.

The first is connected to a keyboard, and in V6 an optional mouse; the second reads back
information previously written out on output stream 4; see above.

A Z-program has no way of knowing which input stream is used: the Z-machine (probably
instructed by the user in some way) may freely switch between the two. The only thing a
Z-program can do is to switch to one of these streams using theinput_stream instruction; but
nothing prevents the Z-machine from immediately switching back.

7. The Structure Of Instructions

A Z-code instruction is a sequence of bytes, describing an operation for the Z-machine to
perform. Most instructions contain operands. Some instructions are followed by one or more
extra arguments. These are not part of the instruction proper, but indicate what should happen
with the result of the operation; these argumentsare described in detail below. Note that the terms
‘operand’and ‘argument’are used consistently to stress the difference.
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7.1. The structure of an instruction

Instructions come in different formats, depending on the number of operands they take: short
(zero or one), long (two), variable (up to four), double variable (up to eight), and extended (up to
four). Double variable instructions are available in V4+, and extended ones in V5+.

Note that the adjective ‘variable’when applied to instructions has nothing to do with local
or global ‘variables’; the former refers to the varying number of operands of an instruction, the
latter to a location where a value can be stored.

Note that the ‘extended’ instructions look a lot like variable instructions; this form was
created for the V5+ Z-machines, because there were not enough instruction numbers left to
squeeze in all the new features.

An instruction consists of two parts: the opcode and the operands. The first one to three
bytes contain the opcode and the types of the operands. The following bytes contain the operands
themselves. Table 2 in the appendix gives a breakdown of instructionsaccording their ‘operation
byte,’i.e., the byte containing the opcode.

Opcodes consist of a kind and a number; they are denoted as KIND:n, where KIND is one
of 0OP, 1OP, 2OP, VAR and EXT, andn is the opcode number. Instructions of different formats
contain different kinds of opcode:

• short: 0OP or 1OP;

• long: 2OP;

• variable: 2OP or VAR;

• double variable: VAR;

• extended: EXT.

Each opcode has a symbolic name – a mnemonic – that describes its effect. Note that some
mnemonics in thisdocument differ from those used by [Nelson]and others;table 8 in the appendix
summarizes these.

There are three types of operand, which are often indicated by a pair of bits:

• %00: a word constant;

• %01: a byte constant;

• %10: a variable number (a byte).

The absence of an operand is often indicated by %11.

A variable number is a byte that indicates a certain variable. The meaning of a variable
number is:

• 0: the top of the routine stack;

• 1-15: the local variable with that number;

• 16-255: the global variable with that number minus 16.
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Writing to the variable with number 0 means to push a value onto the routine stack; reading this
variable means pulling a value off. If an instruction uses variable number 0 more than once, these
operands are processed from left to right. For example,

push ‘constant 5’
push ‘constant 7’
sub ‘variable number 0’ ‘variable number 0’<result>

and

sub ‘constant 7’ ‘constant 5’<result>

are completely equivalent.

At the risk of blurring an issue that might be perfectly clear to the reader,as an example here
are three different forms of thestore instruction. The instructionstore var a says to ‘store
the valuea in the variable with numbervar’ (see 8.2). Thus

store ‘byte constant 3’ ‘byte constant 18’

puts the number 18 in local variable 3 (i.e., the variable with number 3). Instead of putting a
constant such as 18 into this variable, we can also,e.g., copy the contents of global variable 2 to
it with

store ‘byte constant 3’ ‘variable number 18’ ;

note that number 18 indicates global variable 2. What happens if we

store ‘variable number 3’ ‘byte constant 18’?

Using the definition ofstore , this should store the number 18 in the variable with the number
that is stored in the variable with number 3. Thus if local variable 3 contains 0, this instruction
pushes the number 18 onto the routine stack. If local variable 3 contains 77, this instruction puts
the number 18 in global variable 61 (= 77 − 16).

7.2. Decoding an instruction

If (in V5+) the first byte of the instruction is $BE, it is an extended instruction. The second byte
contains the EXT opcode. Then follow the operand types (one byte)and the operands themselves,
in the same format as for variable instructions (discussed below). It is an error for an extended
instruction to occur in V1-4.

Otherwise, the instruction format depends on the top bits of the first byte:

• %0: long;

• %10: short;

• %11: (double) variable.

The first byte of a long instruction is of the form %0abxxxxx. Here, %xxxxxis the 2OP
opcode number, and %a and %b are abbreviated type-indicators for the two operands:
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• %0: a byte constant;

• %1: a variable number.

These correspond to the types %01and %10, respectively. The next two bytes of the instruction
contain the operands, first %a, then %b.

The first byte of a short instruction is of the form %10ttxxxx. Here, %tt is the type of the
operand (or %11 if absent), and %xxxx is the 1OP (or if the operand is absent: 0OP) opcode
number. If the operand is present, it follows the first byte.

The first byte of a variable instruction is of the form %11axxxxx(except for the two double
variable instructions, discussed below), where %xxxxxis the (2OP or VAR) opcode number. If
%a is %0 then this instruction contains a 2OP opcode; if %1, a VAR opcode. It is an error for
a variable instruction with a 2OP opcode not to have two operands, except when the opcode
is 2OP:$1 (i.e., the instruction isje ). The second byte is a type byte, and contains the type
information for the operands. It is divided into pairs of two bits, each indicating the type of an
operand, beginning with the top bits. The following bytes contain the operands in that order. A
%11 pair means ‘no operand’; it is an error if a %11 bit pair occurs before a non-%11pair.

There are two double variable instructions, viz. %11101100 ($EC, opcode VAR:$C) and
%11111010 ($FA,opcode VAR:$1A). Their structure is identical to that of variable instructions,
except that they do not have a type byte, but instead a type word.

7.3. String, result, and branch arguments

Some instructions are followed by one or more additional arguments. How these arguments
are handled is described below. After reading such an argument, the PC is set to the address
after it.

Some instructions (viz.print andprint_rtrue ($B2 and $B3)) have a string argument.
These instructions are followed by a Z-string.

Some instructions return a result. These instructions are followed by a single byte called a
result argument. This byte is the number of the variable where the result should be stored (i.e.,
it looks like an additional operand of type %10).

Some instructions require a jump (or branch) to be made to another part of the Z-program,
depending on the outcome of some test. These instructions are followed by one or two bytes
called a branch argument. Bit 7 of the first byte indicates when a branch occurs, a %0 meaning
that the branch logic is ‘reversed’: branch if the instruction doesn’t want to, don’t if it does. If
bit 6 is %1, the branch argument consists of a single byte and the branch offset is given by its
bottom 6 bits (unsigned,i.e., from 0 to 63). If bit 6 is %0, the branch argument consists of two
bytes, and the branch offset is given by the bottom 6 bits of the first byte followed by all bits of
the second (signed,i.e., from −8192 to 8191).

The following happens when a branch is to be made. If the branch offset is 0 or 1, then
instead of branching the instructionrfalse or rtrue , respectively, is carried out. Otherwise,
the branch is made by setting the PC to

Address after branch argument+ Branch offset− 2 .

Note that a branch argument, if present, is always the last of a sequence of arguments.
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8. A Catalogue Of Instructions

The last part of this document is perhaps the most difficult: it specifies the effect of all instruc-
tions. The difficulty lies in the special cases: what if an instruction occurs only a few times, or
never, in existing Infocom game files? And what to do with all kinds of overflow and underflow?
Most of the information stated below comes from [Nelson], sometimes supplemented by details
found in the source of [ZIP] and [Frotz].

8.1. The entries

Each entry below describes the effect of an opcode. The opcodes are grouped according to their
functionality;within each group they are roughly ordered by the version in which they first appear.
For reference, table 7 in the appendix lists all opcodes in numerical order.

An instruction is written as a mnemonic, possibly followed by the operands and ar-
guments:

MNEMONICoperands arguments— opcode, versions

Here,opcodeis denoted as KIND:n; versionsis the range of versions for which the instruction
is valid, “V1+” being the default. A list of optional operands is surrounded by square brackets
(‘[…]’); an initial part of this list must be present. (For example, ‘[a1 a2 a3]’ means that either
none, or justa1, or a1anda2, or all must be present.) It is an error for an instruction to have
more or less operands than stated. The arguments are zero or more of ‘<string>’, ‘<result>’, and
‘<branch>’, always in that order.

The opcode uniquely identifies the instruction format, except in the case of 2OP opcodes.
Every 2OP opcode can be used in a long or a variable instruction. However if the instruction is to
have a word constant operand,or if there are not exactly two operands, the long format obviously
cannot be used. Note that if an instruction with a 2OP opcode can be encoded both ways, the
long form is one byte shorter.

All operands are assumed to be unsigned numbers, unless stated otherwise. For some
operands, special names are used, sometimes adorned with a suffix. These indicate the kind of
operand that is expected there:

• s, t: a signed number.

• bit: either 0 or 1.

• byte: byte-valued,i.e., a value between 0 and 255.

• var: a variable number,i.e., 0 for the top of the routine stack, 1-15 for local, and 16-255 for
global variables (see section 7.1). It is an error if this operand is not byte-valued.

• baddr: a byte address.

• raddr: a packed address referring to a routine.

• saddr: a packed address referring to a string.

• obj: a legal object number.
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• attr: a legal attribute number.

• prop: a legal property number, or 0 for theget_next_prop instruction.

• window: a legal window number, or a special negative value. In the V4+erase_window

and the V6mouse_window instructions−1means the entire screen; in V6−2 alsomeansthe
entire screen for anerase_window . In V6 −3 is always interpreted as the current window.
An optional window operand defaults to the current window.

• time: any non-zero number, in tenths of seconds. It is unspecified what happens when this
is zero; recommended behaviour is to behave as if no time operand has been given.

• pic: a legal picture number. Note that the legality of picture numbers can be checked using
thepicture_data instruction.

It is an error if another value is given for one of the above operands.

Note: The above restrictions are often not reiterated in the instruction descriptions
below!

The phrase “The result is…” means that the stated value is stored in the variable given
as the result argument. In some descriptions ‘ST’ is used as an operand. This stands for the
top-of-routine-stack variable,i.e., the variable with number 0.

8.2. Reading and writing memory

load var <result>— 1OP:$E

The result is the value of the variable with numbervar.

store var a— 2OP:$D

Set the variable with numbervar to a.

loadw baddr n <result>— 2OP:$F

The result is the word atbaddr + 2 ∗ n.

storew baddr n a— VAR:$1

Storea in the word atbaddr + 2 ∗ n.

loadb baddr n <result>— 2OP:$10

The result is the byte atbaddr + n.

storeb baddr n byte— VAR:$2

Storebytein the byte atbaddr+n.

push a — VAR:$8

Pusha on top of the routine stack.

pull var — VAR:$9, V1-5
pull [baddr] <result> — VAR:$9, V6

Pull the top off the user stack beginning atbaddr, and put the result in the variable with
numbervar (V6: in the result variable). If no stack is given use the routine stack. In that
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case it is an error for the routine stack to be empty.

pop — 0OP:$9, V1-4

Remove the value on top of the routine stack. It is an error for the stack to be empty.

Note that this opcode is occupied bycatch in V5+.

scan_table a baddr n [byte] <result> <branch>— VAR:$17, V4+

Search for the byte or worda in a table that begins atbaddrand isn entries long, according
to the given formatbyte.

The top bit of the formatbyteis %0 to search for a byte, %1for a word; the remaining
7 bits give the (unsigned) length of an entry in bytes. The default format is $82, asking
to look for a word in a table of words. If it is a table of bytes, it is an error if the first
operand is not byte-valued. [Question: An alternative is to always fail the search, and give
a warning message.]

The byte (word)a is searched for among the first bytes (words) of all entries, in order.
If it is found, the result is the first address at which it occurs, and the branch is made; if not,
the result is 0, and no branch is made.

It is unspecified what happens when the entry-length is 0, or when it is 1and a word is
searched. Recommended behaviour is to proceed as described above. Since these cases are
propably bugs, a warning message should be given if possible.

copy_table baddr1 baddr2 s— VAR:$1D, V5+

If s is positive, copy a region ofsbytes beginning frombaddr1to the region ofs locations
beginning atbaddr2, such that afterwards the second region is equal to the initial state of
the first region. (This is important if the regions overlap.) Ifs is negative,−s bytes are
copied, and copying proceeds forwards. Exception: ifbaddr2is zero, then the first region
is zeroed.

push_stack a baddr <branch>— EXT:$18, V6

Pusha onto the user stack at addressbaddr if possible, and branch if successful.

pop_stack n [baddr] — EXT:$15, V6

Removen words from the top of the user stack beginning at addressbaddr. If no stack is
given, use the routine stack. In that case it is an error for the routine stack to contain less
thann words.

8.3. Arithmetic

add a b <result>— 2OP:$14

The result isa + b modulo $10000.

sub a b <result>— 2OP:$15

The result isa − b modulo $10000.

mul a b <result>— 2OP:$16

The result isa ∗ b modulo $10000.

div s t <result>— 2OP:$17
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The result is floor(s/t) modulo $10000. It is an error ift is 0. Note thatsandt are interpeted
as signed numbers.

mods t <result>— 2OP:$18

The result iss − t ∗ floor(s/t) modulo $10000. It is an error ift is 0. Note thats andt are
interpeted as signed numbers.

inc var — 1OP:$5

Increment the value of the variable with numbervar by 1, modulo $10000. Equivalent to

load var ST
add ST 1 ST
store var ST

dec var — 1OP:$6

Decrement the value of the variable with number var by 1, modulo $10000. Equivalent to

load var ST
sub ST 1 ST
store var ST

inc_jg var s <branch>— 2OP:$5

Equivalent to

inc var
jg var s <branch>

dec_jl var s <branch>— 2OP:$4

Equivalent to

dec var
jl var s <branch>

or a b <result>— 2OP:$8

The result is the bitwise ‘or’ofa andb.

and a b <result>— 2OP:$9

The result is the bitwise ‘and’ofa andb.

not a <result>— 1OP:$F, V1-4; VAR:$18, V5+

The result is the bitwise ‘not’ofa.

Note that the opcode 1OP:$F is occupied bycall_p0 in V5+.

log_shift a t <result>— EXT:$2, V5+

The result is floor(a ∗ t2 ) modulo $10000. Note thata is interpeted as an unsigned number.

art_shift s t <result>— EXT:$3, V5+

The result is floor(s ∗ t2 ) modulo $10000. Note thats is interpeted as a signed number.
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8.4. Comparisons and jumps

jz a <branch>— 1OP:$0

Branch ifa is 0. Equivalent to

je a 0 <branch>

je a [b1 b2 b3] <branch>— 2OP:$1

Branch ifa is equal to at least one of the other operands.

Note: Some emulators might not handle this instruction correctly if just one
operand is given; correct behaviour is to branchnot.

jl s t <branch>— 2OP:$2

Branch ifs < t. Note thatsandt are interpreted as signed numbers.

jg s t <branch>— 2OP:$3

Branch ifs > t. Note thatsandt are interpreted as signed numbers.

jin obj n <branch>— 2OP:$6

Branch ifn is the parent object ofobj, or if n is 0 and the object has no parent. Equivalent
to

get_parent obj ST
je STn <branch>

test a b <branch>— 2OP:$7

Branch if the ‘bitwise and’ofa andb is equal tob. Equivalent to

and a bST
je STb <branch>

jump s— 1OP:$C

Unconditional branch: set the PC to address after instruction+ s − 2. (This strongly
resembles the formula for branch arguments; see section 7.3.)

8.5. Call and return, throw and catch

call_f0 raddr <result>— 1OP:$8, V4+
call_p0 raddr — 1OP:$F, V5+
call_f1 raddr a1 <result>— 2OP:$19, V4+
call_p1 raddr a1— 2OP:$1A, V5+
call_fv raddr [a1 a2 a3] <result>— VAR:$0
call_pv raddr [a1 a2 a3]— VAR:$19, V5+
call_fd raddr [a1 a2 a3 a4 a5 a6 a7] <result>— VAR:$C, V4+
call_pd raddr [a1 a2 a3 a4 a5 a6 a7]— VAR:$1A, V5+

Call the given routine, passing it the given values. Exception: if raddr is 0, either the result
is 0 (if there is a result argument) or nothing happens.

Note that the last character of the mnemonic indicates the number of passed values,
wherev (for variable) means 0 to 3, andd (for double) means 0 to 7. The character before
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that indicates whether the instruction has a result argument (f for function) or not (p for
procedure). Note also that V1-3 have only one call instruction, viz.call_fv , and that the
call_p versions exist only in V5+.

The call is executed as follows. Letr be the address at which the routine starts (found
by ‘unpacking’ the packed routine addressraddr); let L be the number of local variables of
the called routine (found in the byte at addressr); and letn be the number of values that are
passed to the called routine (i.e., the number of operands of the instruction minus one). Ifn
> L, then readL for n in the following. (Note that this makes it legal to call a routine with

too many values; the extraneous values are simply ignored.) A new frame is pushed on top
of the call stack, with the following contents:

– The PC is set to the address of the first instruction of the routine, directly after the
routine header (i.e., to r + 2 ∗ L + 1 in V1-4, or r + 1 in V5+).

– The routine stack is empty.

– L local variables are created. Then lowest of these are set to the passed valuesa1, …,
an. The others are initialized to their default initial values. In V1-4, these are found in
theL words from addressr + 1; in V5+, they are 0.

– In V3+, the fact is stored that this routine is called as a function (for thecall_f

instructions) or as a procedure (for thecall_p variants).

– In V5+, the numbern is stored.

In this way control is passed to the called routine, until a return instruction is encountered.
Note that the PC in the previous frame now contains the address after the call instruction
(either pointing to its result argument or to the next instruction).

Note that opcode 1OP:$8 (forcall_f0 ) is illegal in V1-3;1OP:$F is occupied bynot

(instead ofcall_p0 ) in V1-4. [Question: Why wasn’t opcode 1OP:$8 used in V1-3?]

ret a — 1OP:$B

Return from the current routine with return valuea. The following steps are executed:

• Check the top frame of the call stack to see whether this routine was called as function,
procedure, or interrupt.

• Remove the top frame from the call stack. It is an error for the call stack to be
left empty.

• If the routine was called as an interrupt, return the valuea to the caller.

• Otherwise, if the routine was called as a function, the current PC is pointing to it: store
the return valuea there,moving the PC one byte on to the next instruction. Control has
now been passed back to the calling routine.

Note that the following instructions do aret implicitly: print_rtrue , ret_pulled ,
rfalse , rtrue , andthrow .

rtrue — 0OP:$0
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Equivalent toret 1.

rfalse — 0OP:$1

Equivalent toret 0.

ret_pulled — 0OP:$8

Equivalent toret ST.

check_arg_count n <branch>— VAR:$1F, V5+

Branch if the call instruction to the current routine passed at leastn values. (Remember
that the number of values passed to the current routine is stored in the top frame of the
call stack.)

Note that it is unspecified what happens when this instruction is encountered in the
‘main routine’; recommended behaviour is to branch only ifn is 0. (Note that ZIP crashes
instead.) See also sections 2.2 and 2.11.

catch <result> — 0OP:$9, V5+

Store a pointer to the frame currently on top of the call stack. Tag the top frame on the call
stack with a frame pointer not currently used, and return it as the result (see section 2.2).
This frame pointer can then be used by athrow instruction.

Note that thecatch instruction can be ‘nested’at most 65536 times, but to reach that
maximum a call stack of at least that many frames is needed.

Note that this opcode is occupied by POP in V1-4.

throw a fp— 2OP:$1C, V5+

Return with return value a from the routine that did the correspondingcatch ; this routine
is found using the frame pointerfp. fp must point to one of the frames currently on the call
stack (see section 2.2). The call stack is popped until that frame is on top. Then aret a
instruction is executed.

Note: throw ing the frame pointer of a call stack frame that has been popped
since itscatch leads to nasty bugs. If there currently is no frame with that
same frame pointer, the error can theoretically be caught by the emulator (but in
practice most do not). If there is one, the error goes unnoticed, leading to strange
behaviour later.

8.6. Objects, attributes, and properties

get_sibling obj <result> <branch>— 1OP:$1

The result is the (next) sibling object of the given object, or 0 if it doesn’t exist. Branch if
the result is not 0.

get_child obj <result> <branch>— 1OP:$2

The result is the (first) child object of the given object, or 0 if it doesn’t exist. Branch if the
result is not 0.

get_parent obj <result>— 1OP:$3

The result is the parent object of the given object, or 0 if it doesn’t exist. (Note that unlike
get_child andget_sibling this instruction has no branch argument.)
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remove_obj obj — 1OP:$9

Removeobj from its current location in the object tree; all its children move with it.

The given object is removed from between its siblings (closing the sibling chain again),
and is changed to have no parent and no siblings. Ifobj has no parent – and therefore no
siblings – nothing happens.

insert_obj obj1 obj2— 2OP:$E

Removeobj1 from its current location in the object tree, and insert it as the first child ofobj
2, before all other children. Allobj1’s children move with it.

Objectobj1 is first removed from its current location, as withremove_obj obj1. It is
then made the (first) child ofobj2, with the formerly first child as its (next) sibling.

Note that a consistent non-recursive object tree is made recursive by this instruction
if and only if obj1 occurs in the (finite) parent chain that begins withobj2. In this case the
emulator might print a warning message, since this is probably a bug.

test_attr obj attr <branch>— 2OP:$A

Branch if objectobj has attributeattr set.

set_attr obj attr — 2OP:$B

Set (i.e., make 1, ortrue) attributeattr on objectobj.

clear_attr obj attr — 2OP:$C

Clear (i.e., make 0, orfalse) attributeattr on objectobj.

put_prop obj prop a— VAR:$3

Set propertyprop on objectobj to a. The property must be present on the object. If the
property length is 1, thena must be byte-valued.

get_prop obj prop <result>— 2OP:$11

The result is the first word (if the property length is 2) or byte (if it is one) of propertyprop
on objectobj, if it is present. Otherwise the result is the default property word stored in the
property defaults table. The result is unspecified if the property is present but does not have
length 1 or 2.

get_prop_addr obj prop <result>— 2OP:$12

The result is the address where the propertypropof objectobj begins. The property must
be present on the object.

get_next_prop obj prop <result>— 2OP:$13

If prop is zero, the result is the number of the first (highest numbered) property on object
obj. Otherwise,propmust be present on this object, and the result is the number of its next
(lower numbered) property. In all cases, if no such property is present the result is 0.

get_prop_len baddr <result>— 1OP:$4

The result is the length (in bytes) of the property starting at addressbaddr. This is stored in
some bits of the byte atbaddr − 1:

• V1-3: the top 3 bits;
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• V4+, top bit is %0: bit 6;

• V4+, top bit is %1: the bottom 7 bits.

To compute the length, interpret these bits as an unsigned number, and (except in the third
case) add 1.

It is an error if an address is given where no property begins. Note that most emulators
(e.g., ZIP) do not check this.

8.7. Windows

get_wind_prop window p <result>— EXT:$13, V6

The result is the value of propertypof the givenwindow. It is an error if an illegal property
number is used.

put_wind_prop window p a— EXT:$19, V6

Propertyp of the givenwindow is set toa. It is an error if an illegal property number is
used. It is also an error if property number 13 is used. Note that nothing else happens, in
particular the output buffer is not flushed. It is recommended to use this instruction only for
properties 8, 9, and 15, and use the following instructions for the others:split_screen

(0-5), move_window (0,1), window_size (2,3), set_cursor (4,5), set_margins

(6,7),set_text_style (10),set_colour (11),set_font (12),buffer_mode (14),
window_style (14).

split_screen n — VAR:$A, V3+

Flush the buffer, and position windows 0 and 1 so that they tile the region below the status
bar (if present),with window 1occupying the uppernunits. (If this is not possible window 1
is made as large as possible, while window 0 gets height 0.) This is done by setting window
properties 0 to 3 of windows 0 and 1 accordingly. The cursor positions for windows 0 and
1 (properties 4 and 5) are changed too, such that they remain at the same location on the
screen. Exception: If, for windows 0 and 1, the cursor would end up outside the window,
the cursor is placed at the top left of the window.

[Question: I think the above is wrong, sincen is probably given in lines instead
of in units. If so: how to convert lines to units – use the height of the current style of
window 1?]

It is an error when this instruction is encountered in V3 and header bit $01/5
is cleared.

set_window window— VAR:$B, V3+

Flush the output buffer and makewindowthe currently selected window. When window 1
is selected in V3, it is cleared with an EraseWindow(1) operation; in V4-5 its cursor is set
to (1,1). Note that it is legal to select a window with zero size, although it is not possible to
print anything to it. It is an error to give a negative value forwindow, except−3 in V6, in
which case nothing happens.

set_cursor s x— VAR:$F, V4-5
set_cursor s x [window]— VAR:$F, V6

Flush the buffer and set the cursor for the givenwindow(i.e., window properties 4 and 5)
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at position(s, x). It is an error in V4-5 to use this instruction when window 0 is selected.
[Question: Is the window operand optional or not?]

Exception: The first argument can be negative. If it is−2 (and the second argument is
0), the screen cursor is turned on. If it is−1, it is turned off; the second argument is ignored
in that case.

get_cursor baddr— VAR:$10, V4+

Flush the buffer, then put theyandxcoordinatesof the current window’s cursor in the words
at addressesbaddrandbaddr + 2 respectively. [Question: Maybe 2 should be put in the
byte (or word?) atbaddr, and they andx coordinates at the next two words, but PDD says
not.][Question: Graham Nelson suggestsasan alternative to let the result of aget_cursor

be unspecified if the buffer is not empty. I think the above is a cleaner solution.]

buffer_mode bit — VAR:$12, V4+

Flush the output buffer and set the buffer mode (attribute 4) of both windows (V4), of
window 0 (V5), or of the current window (V6) tobit.

set_colour byte0 byte1— 2OP:$1B, V5+

Set the colour property (11) to256 ∗ byte0 + byte1 for both windows (V5) or the current
window (V6);the meaningof the colour values isgiven in section 4.3. It isan error if another
colour value is used. Exceptions: Three special colour values can be given, viz.

• 0: Don’t change the colour,i.e., use the current colour;

• 1: Set to the default colour in the header byte at $2C or $2D;

• 255: Set to the foreground colour of the unit at the current window’s cursor position.

[Question: Should the output buffer be flushed before changing colours? I think not.]

set_text_style n — VAR:$11, V4+

Set the text style (property 10) for all windows (V4-5) or for the current window (V6), to 0
if n is 0, and to current_text_style ‘bitwise or’n otherwise.

Note that also property 13 and the header words at $26 and $27 must be changed; these
store the size of the current style.

Note that the output buffer is not flushed.

set_font n <result>— EXT:$4, V5
set_font n [window] <result>— EXT:$4, V6

Set the font property (12) ton, if it is available; otherwise do nothing. In V5 the font is set
for all windows; in V6 it is set for the givenwindowonly. The return value is the previous
value of the font property, or 0 if the requested font was not available. [Question: Is the
window operand optional or not?] [Question: Is aset_text_style 0 also performed?]

Note that also property 13 and the header words at $26 and $27 must be changed; these
store the size of the current style.

Note that the output buffer is not flushed.

move_window window y x— EXT:$10, V6
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Flush the output buffer and set the coordinates of the top left of the givenwindow (i.e.,
properties 0 and 1) toy and x, respectively. [Question: What happens with the cursor
position? It should remain at the same relative or absolute position. In the latter case, if the
cursor would end up outside the window, the cursor should be placed at the top left corner
(cf. split_screen ).]

window_size window y x— EXT:$11, V6

Flush the output buffer and set the vertical and horizontal size of the givenwindow(i.e.,
properties 2 and 3) toyandx respectively. [Question: What happens if the cursor is outside
the resized window? I suggest setting it to the top left corner.]

set_margins xl xr [window] — EXT:$8, V6

Flush the output buffer and set the margin properties (6 and 7) of the givenwindowto xl
andxr respectively. [Question: And set the x coordinate of the cursor (property 1) toxl?
Graham Nelson says not.] [Question: Is the window operand optional or not?]

window_style window flags op— EXT:$12, V6

Set the attribute property (14) of the givenwindowto a new value, depending onop:

• 0:flags;

• 1: the ‘bitwise or’ofcurrentandflags;

• 2: the ‘bitwise and’ofcurrentwith the ‘bitwise not’ offlags;

• 3: the ‘bitwise exclusive or’ofcurrentandflags.

8.8. Input and output streams

output_stream s— VAR:$13, V3-4
output_stream s [baddr] — VAR:$13, V5
output_stream s [baddr w]— VAR:$13, V6

If s > 0 then open output streams; if s < 0 then close output stream− s. It is an error for
s to be zero, or an illegal output stream number. [Question: [Nelson] declares this to be
legal. Why?]

Only if s is 3, thebaddr operand must be given. This is the address where storage
begins. If the optionalw operand is not present, the one-line format is used; if it is, the
multi-line format. In the last case, ifw ≥ 0 then the properties of windoww is used for text
justification; if w < 0 then an imaginary window with width− w is used. See section 6.4
for further details.

input_stream n — VAR:$14, V3+

Switch to input streamn. It is an error to give an illegal input stream number.

8.9. Input

read baddr1 baddr2— VAR:$4, V1-3
read baddr1 baddr2 [time raddr]— VAR:$4, V4
read baddr1 baddr2 [time raddr] <result>— VAR:$4, V5+
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First refresh the statusbar. Then read a sequence of characters from the current input stream,
simultaneously displaying it on the screen, and optionally calling a ‘time-out routine’ at
intervals. Finally tokenise it using the main dictionary.

First, if a status bar is present, ashow_status instruction is performed. The
now-current state of the Z-machine and the screen (call itS) is remembered. Note that this
remembered state plays a crucial role in the explanation below.

A sequence of input characters is now constructed by reading the device associated
with the current input stream (i.e., the keyboard or a command script). How thisconstruction
is done is not specified, but it usually begins with the empty sequence, and it is legal to edit
the input sequence in any way imaginable (using,e.g., delete, insert, and cursor keys). It is
also legal to limit the input line to a certain length,e.g., to the length of the current window
line, or to the length of the input buffer (see below).

During the construction process, but only if output stream 1 is open, it is mandatory
show the sequence constructed thus far on the screen. To be precise, at any given time the
screen should look as if the current sequence was printed usingprint_char instructions
from stateS. (Note that theprint_char instructions are not actually performed, so that
only the screen changes. In particular, nothing is sent to any output stream.)

Construction ends when a so-called ‘terminating character’ is entered by the user.
Character 13 (newline) is always a terminating character. In V5+ the header word at $2E
contains either zero, or the byte address of a zero-terminated list of additional terminating
characters;an entryof 255in this table meansthat any input-only character (i.e.,any ‘function
key’) terminates input. (Input-only characters that are not terminating and have no special
meaning to the interpreter are simply ignored.) [Question: If the delete key is a terminating
character, and it is pressed during construction, one can use it (i) to edit the sequence under
construction (ii) as a terminating character. Option (iii) is to make it illegal for 127 to be a
terminating character. I prefer (ii).]

In V4+ it is possible to interrupt the construction process if it takes longer than a
given time. To achieve this, thetime and raddr operands must both be given. (It is an
error if only thetimeoperand is given.) In this case the following happens aftertime/10
seconds have elapsed. First the screen is reverted to stateS. Then the routine at the given
packed address is called as an interrupt, without passing it any values. If the return value
is zero, the remembered stateS is replaced by the then-current Z-machine and screen state,
and construction continues (with the input sequence being shown as before). If the return
value of the time-out routine is non-zero, the constructed sequence is made empty, and the
construction process is ended with 0 as the terminating character. [Question: Is it an error
for the time-out routine to return another value than 0 or 1?]

Note: Some versions of ZIP erroneously call the routine every time seconds, and
pass time to it.

After the construction process has terminated, the screen is reverted to stateS, and the
sequence of input characters is sent to all output streams. If the terminating character is 13,
it is also sent to all output streams.

The sequence of input characters (excluding the terminating character) is stored in the
buffer that begins at addressbaddr1, but with upper case letters converted to lower case.
Call the unsigned byte at that addressn. In V1-4, the characters are stored in the bytes from
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addressbaddr1+1upwards,and followed by a zero byte. In V5+, the buffer already contains
a sequence of characters, beginning at addressbaddr1 + 2, with the number of characters
stored as an unsigned byte atbaddr1+1. The sequence just read is stored after the characters
already present, and the total number of characters is stored in the byte atbaddr1 + 1. The
maximum number of characters that may be stored in the buffer isn − 1 (V1-4) orn (V5+).
It is an error to attempt to store more characters. (Note that in practice, the construction
process should be such that this limit cannot be exceeded.)

Finally, if baddr2 is not zero in V5+, the sequence stored in the buffer is tokenised, just
as if atokenise baddr1 baddr2instruction was used.

In V5+ the result is the terminating character.

Note that it is legal to execute aread instruction in any window.

read_char 1 [time raddr] <result>— VAR:$16, V4+

One input character is read from the current input stream, and is returned as the result. In
V4+ the timeandraddr operands may (both) be given, just as with theread instruction.
They are used in the same way: on a return value of 0 reading continues; otherwise the
instruction finishes without reading a character, and the result is 0. [Question: Should the
read character (and possible time-out information) be output to output stream 4?]

Note that the first operand must be 1. The meaning of this operand is not known.

8.10. Character based output

print_char n — VAR:$5

Output charactern to all output streams except 4. [Question: [Nelson] says characters
1024-65535 are not allowed. Is he correct? This seems to be an arbitrary restriction on the
print_char instruction.]

new_line — 0OP:$B

Equivalent toprint_char 13.

print <string> — 0OP:$2

Convert the Z-string given as the string argument to a sequence of output characters (see
section 3.2), and output this sequence as ifprint_char instructions were used.

print_rtrue <string> — 0OP:$3

Equivalent to

print <string>
new_line
rtrue

print_addr baddr— 1OP:$7

Like print , but using the Z-string beginning at addressbaddr.

print_paddr saddr— 1OP:$D

Like print , but using the Z-string beginning at the packed string addresssaddr.

print_num s— VAR:$6
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Converts to a list of output characters representing a signed decimal number, and output
these characters in sequence as with the PRINT_CHAR instruction. No leading or trailing
spaces are printed, and a sign is only printed if the number is negative.

print_obj obj — 1OP:$A

Like print , but using the name of objectobj stored as a Z-string in the header of its
property list.

print_table baddr x [y n]— VAR:$1E, V5+

Print a rectangle of output characters stored from address baddr on the screen, with width
x and heighty (default 1). The characters are printed usingprint_char , and inbetween
lines the cursor is moved to a new line usingset_cursor with appropriate arguments.
[Question: Should the cursor end up after the last character of the last line, or on the left
hand side of the rectangle on the line below it? Frotz does the former, but the latter might
be more appropriate, at least fory > 1. It might be best to leave this unspecified.] [Question:
Is it an error fory to be 0, or should nothing be done in that case? I prefer the latter.]

The characters to be printed are stored in the bytes beginning atbaddr. First comex
characters to be printed, thenn (default 0) characters to be ignored, againx to be printed,
etc.

print_form baddr— EXT:$1A, V6

Print a number of ‘lines’ stored in memory, in the same way as stored using output stream
3 (see section 6.4).

The ‘lines’ begin at addressbaddr, and are followed by a zero word. Every ‘line’
is an 2-1-table of output characters. For every line, these characters are output using
print_char , and at the end of each line anew_line is output.

scroll_window window s— EXT:$14, V6

Execute the ScrollWindow(window,s) operation. [Question: This moves the cursor also. Is
that correct?]

8.11. Miscellaneous screen output

erase_line — VAR:$E, V4-5
erase_line [n] — VAR:$E, V6

Erase a rectangle of the current window with the cursor position as its top left corner; use
the current background colour. [Question: Is this correct for all versions?] The height of
this rectangle (in units) is the height of the current style in V4-5, and 1 in V6. Its width is
n − 1 if n is greater than 1; otherwise it is the distance from the cursor position to the right
margin. n defaults to 1. [Question: Is the operand mandatory in V6? Is 0 an illegal value
for it?]

erase_window window— VAR:$D, V4+

If windowis not negative, perform an EraseWindow(window) operation. If−1: perform an
EraseScreen operation followed by asplit_screen 0 instruction. If−2 in V6: perform
an EraseScreen operation.

draw_picture pic [y x] — EXT:$5, V6
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Do a ShowPicture(pic,y,x) operation on the video card. Ify andx are not given, they default
to the cursor position of the current window. It is an error if onlyy is given.

erase_picture pic [y x] — EXT:$7, V6

Do an ErasePicture(pic,y,x) operation on the video card. Ifyandxare not given, they default
to the cursor position of the current window. It is an error if onlyy is given.

picture_data n baddr <branch>— EXT:$6, V6

If n is a legal picture number, store the height and width of that picture in two words at
addressbaddrand branch. Ifn is zero, store the highest legal picture number in the word
at baddr, and the release number of the picture file in the next word. It is an error ifn has
any other value. [Question: Should these be 2-2-tables? PDD says not.]

picture_table baddr— EXT:$1C, V6

Do nothing. This hints the Z-machine that some pictures will be shown soon, using a
2-2-table at addressbaddrwhich contains the picture numbers as unsigned numbers.

8.12. Sound, mouse, and menus

sound n [op vol raddr] — VAR:$15, V3+

This instruction has a complicated semantics, which depends on the sound numbern. If
this is 1or 2, a high-pitched or low-pitched beep is played, independently of running sound
effects; it is an error to give more operands. Ifn > 2 theopoperand must be present, and
lie between 1 and 4. This gives the action to be taken:

• 1, prepare: the sound effect will soon be started.

• 2, start: if the required sound effect is already running, change its repeats, volume,
and interrupt routine; otherwise stop the current sound effect, and (if it can be played)
start the required one, with the given repeats, volume, and interrupt routine. The high
byte of thevol operand is the number of repeats (default 0, always 0 in V3), the low
byte is the volume (must be 1-8 or 255, default 255). [Question: Is the default volume
correct?]‘0 repeats’really means ‘play once’; ‘255 repeats’means ‘repeat indefinitely’;
and ‘volume 255’means ‘the loudest possible.’ Note that the interrupt routine is only
called when the sound effect has been played completely the required number of times.
The routine is called without passing it any values, ignoring the return value.

• 3, stop: stop the current sound effect. The sound number is ignored.

• 4, finish with: the sound effect will not be used for some time.

It is legal forn to be zero. Thevol andraddr operands are only allowed whenn > 2 andop
= 2.

It is legal to postpone starting a new sound effect until the current one has ended, if no
input has been read from any input stream since the current sound effect has been started.
The interrupt routine for the current sound effect is not called in this case. (This is to cater
for “The Lurking Horror”s assumption about the low speed of its interpreter.)

Note that “The Lurking Horror” sometimes uses this instruction in a complicated and
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presumably buggy way.

read_mouse baddr— EXT:$16, V6

Read the current state of the mouse, and write them in four words atbaddr. The words
contain they andx coordinates, a button word, and a menu word. The button word contains
a %1 bit for every mouse button pressed, with bit 0 representing the rightmost button, bit 1
the next, etc. The high byte of the menu word is the menu number, the low byte is the item
number. [Question: Since the mouse state includes a menu choice, I presume that this state
is refreshed only at mouse clicks. Is that correct?]

mouse_window window— EXT:$17, V6

Restrict the mouse pointer to the given window, or remove the current restriction ifwindow
is −1; see section 2.10.

make_menu n baddr <branch>— EXT:$1B, V6

Create or replace the menu with numbern, or remove that menu ifbaddr is zero.

The menu is stored as a sequence of ASCII strings. The first string is the menu title,
the others are the menu entries. The word (byte?) atbaddr stores the number of strings,
and is followed by that many strings. Each string is an unsigned word (byte?) followed by
that many ASCII character bytes.

8.13. Save, restore, and undo

save <branch>— 0OP:$5, V1-3
save <result> — 0OP:$5, V4
save [baddr1 n baddr2] <result>— EXT:$0, V5+

Save the dynamic memory plus the call stack, or the part of memory beginning atbaddr1
of n bytes long, via a link to the outside world. (It is an error if only thebaddr1 argument
is present.) The optional 1-1-table of ASCII character bytes atbaddr2 gives a suggested
name for the location of the saved data.

In V1-3, if the save operation failed or on a succesful restore,execution continues after
thesave instruction; if the save operation succeeded the branch is made. In V4+ the result
is 0 for failure, 1 for success, and 2 for succesful restore, and execution always continues
after thesave instruction.

If the call stack is saved, it is illegal for it to contain interrupt frames. This implies that
it is illegal to use this instruction from within a routine called as an interrupt.

It is legal for the Z-machine to have a dialogue with the user about the location of the
saved data, and show it in window 0. [Question: Or should that be the current window?]

restore <branch>— 0OP:$6, V1-3
restore <result> — 0OP:$6, V4
restore [baddr1 n baddr2] <result>— EXT:$1, V5+

Restore the dynamic memory plus the call stack, or the part of memory beginning atbaddr1
of nbytes long, via a link from the outside world. (It is an error if only thebaddr1argument
is present.) The optional 1-1-table of ASCII character bytes atbaddr2 gives a suggested
name for the location of the restored data.
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Just as when the Z-machine is initialized, header bit $10-$11/0 is not changed.

If the restore operation succeeds and the call stack is restored (i.e., no operands are
given), execution continues after the correspondingsave instruction, in the restored envi-
ronment (and its result is 2). Otherwise, execution continues after thisrestore instruction;
the V4+ result is the number of bytes restored, or 0 if the restore failed.

Note that the V1-3 branch argument is ignored.

If the call stack is restored, it may not contain interrupt frames (seesave above).

It is legal for the Z-machine to have a dialogue with the user about the location of the
saved data, and show it in window 0. [Question: Or should that be the current window?]

save_undo <result> — EXT:$9, V5+

Like V4 save , but saving to the save memory instead of to the outside world. The result is
−1 if the Z-machine has no save memory. [TODO: Add something on multiple undo?]

Note that in V5+ opcode 0OP:$5 is illegal.

restore_undo <result> — EXT:$A, V5+

Like V4 restore , but restoring from the save memory instead of from the outside
world. (The result is 0 if the save memory is not initialized,i.e., if there was no previous
save_undo .) The result is−1 if the Z-machine has no save memory.

Note that in V5+ opcode 0OP:$6 is illegal.

8.14. Miscellaneous

nop — 0OP:$4

No OPeration,i.e., do nothing.

random s <result>— VAR:$7

If s > 0, the result is a random number between 1 ands, inclusive. If s < 0, the random
generator is seeded withs and the result is 0. Ifs is 0, all future random numbers will be
‘really random,’and the result is 0. See also section 2.6.

Note: Early ports of ZIP do not reseed the random generator whens is 0.

restart — 0OP:$7

Initialize the Z-machine, thereby restarting the original Z-program; see section 2.11 for a
description of what exactly happens.

quit — 0OP:$A

The Z-machine is halted.

show_status — 0OP:$C, V3

Refresh the status bar by performing a ShowStatusBar(s,a,b,flag) operation. Global variable
0 must contain a legal object number; the name of that object (i.e., the Z-string in the header
of its property list) is converted to a sequence of output characters and calleds; it is an error
if scontains a newline.aandbare the (signed) values stored in globals 1and 2 respectively.
In V3 flag is header bit $01/1; otherwise it is %0.

Note that this instruction is implicitly used in the V1-3 READ instruction.
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verify <branch>— 0OP:$D, V3+

Compute a checksum from the non-header bytes, and branch if this matches the checksum
in the header.

Let n be the number stored in the header word at $1A, andf be the ‘program length
scale factor’: 2 for V3, 4 for V4-5, and 8 for V6-8. This instruction sums (modulo $10000)
the bytes from addresses $40 upwards ton ∗ f − 1 inclusive. This sum is compared with the
header word at $1C, branching if equal. The sum is defined to be zero ifn ∗ f − 1 is less
than $40; this means that the branch is always made if the header words at $1A and $1C are
both zero, which is the case in early V3 Infocom games.

piracy <branch>— 0OP:$F, V5+

This is a conditional branch instruction,but the condition is unspecified. Originally this was
supposed to branch if the emulator thinks an official copy of the current Z-program is used.
Because most emulators probably have no means to check this, it is recommended that this
instruction should always branch.

tokenise baddr1 baddr2 [baddr3 bit]— VAR:$1B, V5+

Tokenise the input characters stored in the text buffer atbaddr1, into the parse buffer at
baddr2. If baddr3 is present and non-zero, use the dictionary at that address; otherwise use
the main dictionary.

The input characters are stored in the bytes from addressbaddr1 + 1 with a zero
terminator (V1-4), or from addressbaddr1+ 2 with the number of bytes in the byte atbaddr
+ 1 (V5+). Note that this is the format that is produced byread .

The text is divided into tokens. Division takes place at characters 32 (spaces) and at
the separator characters stored in the header of the dictionary; the former are ignored, the
latter are made into separate tokens. [Question: What happens if 32 is used as a separator?
I suggest it is made into a token just like any other separator.]As an example, if the comma
“,” is a separator character, the text fred,go fishing is divided into the four tokens “fred”,
“,”, “go”, and “fishing”. For each token the starting locationp (w.r.t. baddr1) and the
number of charactersn is remembered. Each token is converted into a Z-string, as with the
encode_text baddr1 n pinstruction. This Z-string is looked up in the dictionary, and the
address of its entry is remembered.

The first byte of the parse buffer gives the maximum number of tokens; it is an error
if the text buffer contains more tokens. The actual number of tokens is stored in the next
byte, and subsequently a 4-byte block follows for every token. A block consists of the byte
address of the dictionary entry (or zero if the token doesn’t occur in it); the lengthn of the
token (a byte); and the locationp of the token (also a byte). Exception: If thebit operand
is present and non-zero, 4 bytes are skipped for every token not in the dictionary (instead
of storing a 4-byte block). Note that this can be used to incrementally tokenise a text using
different dictionaries having the same separators.

Note that this instruction is used implicitly to do the lexical analysis forread in all
versions. That is the reason for mentioning V1-4 in the above description.

encode_text baddr1 n p baddr2— VAR:$1C, V5+

Create a Z-string that converts to as long an initial part of the given sequence of output
characters as possible. This sequence isn bytes long, and begins at addressbaddr1 + p; it
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may contain all output characters less than 256, except 13 (newline). The resulting Z-string
is stored from addressbaddr2; it must have the same structure as one in a dictionary: it is 4
(V1-3) or 6 (V4+) words long and padded out with Z- character 5. The encoding should use
the built-in or alternative character set as much as possible; it should not use abbreviations
or multiple shift Z-characters (V1-2: 2,3; V3+: 4,5). [Question: Did Infocom interpreters
really not use the latter? If they did, change this into a ’strong recommendation.’]Note that
there may be different Z-strings that encode the given output characters; in such a case it is
unspecified which is chosen. [Question: Or is this an error?]

Note that this instruction is used implicitly bytokenise , which is implicitly used by
read in all versions. That is the reason for mentioning V1-4 in the above description.

Miscellaneous Tables

Below, some tables are collected for easy reference. Most of the information in these tables is
copied from [Nelson].

1. The header

Table 3gives the meaning of all bits in the 64-byte header. All addressesare given ashexadecimal
numbers. The ‘Ver’ column gives the range of versions in which the header entry is used, with
1+ as the default. The ‘Mem’column gives the type of the locations, the default being ROM.

Table 3. The header

Addr Ver Mem Description
00 version number
01/0 — — [unused, maybe intended for reverse byte order]
01/1 3 status line type (0=score/turns, 1=hours:minutes)
01/2 3 [unknown, always set in V3]
01/3 3 IROM run program in censored mode?
01/4 3 IROM status line not available?
01/5 3 IROM upper window available?
01/6 3 IROM is the default font variable-width?
01/7 — — [unused by Infocom, used in Standard]
01/0 5+ IROM colours available?
01/1 4 IROM inverse video styles available?

5 IROM picture displaying available?
01/2 4+ IROM boldface styles available?
01/3 4+ IROM emphasis styles available?
01/4 4+ IROM fixed-width styles available?
01/5 6 IROM sound effects available?
01/6 — — [unused]
01/7 — — [unused by Infocom, used in Standard]
02-03 release number
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04-05 begin of paged memory (byte address)
06-07 1-5 first instruction (byte address)

6 first routine (packed routine address)
08-09 begin of dictionary (byte address)
0A-0B begin of object table (byte address)
0C-0D begin of global variables table (byte address)
0E-0F begin of static memory (byte address)
10-11/0 RAM set to turn transcripting on
10-11/1 3-4 RAM set to force printing in fixed-width style
10-11/2 6 RAM must status line be redrawn?
10-11/3 5+ IROM does program want to use pictures?
10-11/4 5+ IROM does program want to use the UNDO instruction?
10-11/5 5+ IROM does program want to use a mouse?
10-11/6 5+ IROM does program want to use colours?
10-11/7 5+ IROM does program want to use sound effects?
10-11/8 5+ IROM does program want to use menus?
10-11/9 — — [unused]
10-11/A ? IROM [maybe set on a transcription error; not in V4+]
10-11/B — — [unused]
10-11/C — — [unused]
10-11/D — — [unused]
10-11/E — — [unused]
10-11/F — — [unused]
12-17 2+ serial code (ASCII, usually a date YYMMDD)
18-19 2+ begin of abbreviations table (byte address)
1A-1B 3+ file length (divided by 2 (V1-3), 4 (V4-5), or 8 (V6-8))
1C-1D 3+ file checksum
1E 4+ IROM interpreter number (see below)
1F 4+ IROM interpreter version (V4-5: ASCII; V6: number)
20 4+ IROM screen height (lines)
21 4+ IROM screen width (characters)
22-23 5+ IROM screen width (units)
24-25 5+ IROM screen height (units)
26 5+ IROM height of current font&style (units)
27 5+ IROM width of current font&style (units)
28-29 6 routines offset (divided by 8)
2A-2B 6 string offset (divided by 8)
2C 5+ IROM default background colour number (2-9)
2D 5+ IROM default foreground colour number (2-9)
2E-2F 5+ begin of terminating char’s table (byte address)
30-31 6 IROM width of text sent to output stream 3 (units)
32-33 — — [unused by Infocom, used in Standard]
34-35 5+ begin of alternative char. set (byte address)
36-37 5+ begin of extension table (byte address)
38-3F 6 IROM login name of player (ASCII)
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The rest of this section describes the allowed values for the header entries. All bits and bytes
that are unused by a Z-program (e.g., because the entry is not valid for its version, or because the
program doesn’t need certain tables) must be 0.

At start-up or restart the Z-machine sets all header entries for its version marked ‘IROM’
(except the word at $30) to initial values depending on the configuration.

Bit $10-$11/0 is initialised to %0. The Z-program sets and clears this to open and close
output stream 2. This is also changed on anoutput_stream 2 or output_stream −2 in-
struction.

[Question: What does bit $10-$11/1 mean exactly?]

Bit $10-$11/2 is initialised to %0, and set by the Z-machine when it thinks the status line
on the screen needs to be redrawn. The Z-program is expected to detect this, do the redraw, and
clear the bit.

Bits $10-$11/3-8 should be set in a Z-program if the program wants to use these features.
On initialisation the Z-machine should clear the bits for features it cannot provide. [Question:
[Nelson] makes an exception for bit 6, which indicates colours. Why?]

It is not known what bit $10-$11/$A was used for. It is recommended that this bit is set to
zero at initialisation, and left alone.

The file length given in entry $1A-$1B need not be exactly the same as the length of the
Z-program, but it may also be less (even zero). In particular, the length of a Z-program is not
limited by the largest file length that can be stored here. The file checksum should be such that
theverify instruction succeeds.

The interpreter numbers ($1E) used by Infocom are listed in the following table.

Table 4. Interpreter numbers

No. Description
1 DECSystem-201

2 Apple ][e
3 Macintosh
4 Amiga
5 Atari ST
6 IBM PC
7 Commodore 128
8 Commodore 64
9 Apple ][c

10 Apple ][gs
11 Tandy Color

An interpreter should choose a number most suitable for the machine it runs on; this might imply
choosing a new number above 11. Most ports of the ITF interpreter use 2; most ports of ZIP

1This was Infocom’s own mainframe.
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use 6. (Note that the behaviour of ‘Beyond Zork’w.r.t. character graphics in fact depends on the
interpreter number; see section 5.3 for more information.)

[Question: To what values are $20 and $21 to be set, if a unit represents,e.g., a pixel?]

The width and height of the current font and style are set to that of the initial font and style
of the initial window, and kept up-to-date.

The default colours ($2C-$2D) must only be set when the Z-machine can handle colours.

The user name ($38-$3F) is best ignored. Note that $3C-$3F is interpreted differently in
the Standard extension described below.

Standard extension:As a non-Infocom extension, Graham Nelson proposes to use the
following hitherto unused header entries:

Table 5. The Standard header extensions

Addr Ver Mem Description
01/7 4+ IROM input time-out available?
32-33 IROM interpreter revision number (unsigned, unsigned)
3C-3F IROM Inform compiler version (ASCII,e.g., “6.01”)

[Question: It would be more consistent to make $01/7 mean ‘input time-outnot available,’
wouldn’t it? Also, I think things such as the Inform compiler version are better placed in the
‘extension table’ (see 3.9).]

The Z-machine writes its revision number into $32-$33 on initialisation. (Note that this
makes the revision number of all Infocom interpreters 0.0.) This can be used by a Z-program to
check which features it can expect.

2. The instructions by operation byte

This table gives a breakdown of instructionsw.r.t. their ‘operation byte,’i.e., the byte that contains
the opcode number. This is either the first byte, or the second in case of an extended instruction.
Note that the opcode number can be computed by subtracting the first number in the operation
byte range from the operation byte.

Table 6. The instructions by operation byte

Operation byte Opcode Remarks
$00-$1F 2OP:$0-$1F Both operands are byte constants
$20-$3F 2OP:$0-$1F Operands are byte constant, variable number
$40-$5F 2OP:$0-$1F Operands are variable number, byte constant
$60-$7F 2OP:$0-$1F Both operands are variable numbers
$80-$8F 1OP:$0-$F Operand is word constant
$90-$9F 1OP:$0-$F Operand is byte constant
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$A0-$AF 1OP:$0-$F Operand is variable number
$B0-$BF except $BE 0OP:$0-$F $BE indicates extended instruction
$C0-$DF 2OP:$0-$1F Variable instruction format
$E0-$FF VAR:$0-$1F
$00-$FF after $BE EXT:$0-$FF

3. The instructions by opcode

The following table gives the instruction corresponding with each opcode.

The version column says for which versions the opcode is valid; the default value is 1+. If
different from the lowest of these, a number between parentheses gives the first version in which
this opcode is actually used; a “(–)” means that it is not found in any existing Infocom story file.
A “—” means that this opcode is not used in any version.

The last column gives the mnemonical notation of the instruction and its arguments,
identical to that used in section 8.

Table 7. Instructions by opcode

Opcode Version Mnemonic, operands and arguments
0OP:$0 rtrue

0OP:$1 rfalse

0OP:$2 print <string>
0OP:$3 print_rtrue <string>
0OP:$4 (–) nop

0OP:$5 1-3 save <branch>
4 save <result>

0OP:$6 1-3 restore <branch>
4 restore <result>

0OP:$7 restart

0OP:$8 ret_pulled

0OP:$9 1-4 pop

5+ (–) catch <result>
0OP:$A quit

0OP:$B new_line

0OP:$C 3 show_status

0OP:$D 3+ verify <branch>
0OP:$E — [the first byte of an extended instruction in V5+]
0OP:$F 5+ (–) piracy <branch>

1OP:$0 jz a <branch>
1OP:$1 get_sibling obj <result> <branch>
1OP:$2 get_child obj <result> <branch>
1OP:$3 get_parent obj <result>
1OP:$4 get_prop_len baddr <result>
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1OP:$5 inc var
1OP:$6 dec var
1OP:$7 print_addr baddr
1OP:$8 4 call_f0 raddr <result>
1OP:$9 remove_obj obj
1OP:$A print_obj obj
1OP:$B ret a
1OP:$C jump s
1OP:$D print_paddr saddr
1OP:$E load var <result>
1OP:$F 1-4 (4) not a <result>

5+ call_p0 raddr

2OP:$0 —
2OP:$1 je a [b1 b2 b3] <branch>
2OP:$2 jl s t <branch>
2OP:$3 jg s t <branch>
2OP:$4 dec_jl var s <branch>
2OP:$5 inc_jg var t <branch>
2OP:$6 jin obj n <branch>
2OP:$7 test a b <branch>
2OP:$8 or a b <result>
2OP:$9 and a b <result>
2OP:$A test_attr obj attr <branch>
2OP:$B set_attr obj attr
2OP:$C clear_attr obj attr
2OP:$D store var a
2OP:$E insert_obj obj1 obj2
2OP:$F loadw baddr n <result>
2OP:$10 loadb baddr n <result>
2OP:$11 get_prop obj prop <result>
2OP:$12 get_prop_addr obj prop <result>
2OP:$13 get_next_prop obj prop <result>
2OP:$14 add a b <result>
2OP:$15 sub a b <result>
2OP:$16 mul a b <result>
2OP:$17 div a b <result>
2OP:$18 moda b <result>
2OP:$19 4+ call_f1 raddr a1 <result>
2OP:$1A 5+ call_p1 raddr a1
2OP:$1B 5+ set_colour f b
2OP:$1C 5+ (–) throw a fp
2OP:$1D —
2OP:$1E —
2OP:$1F —
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VAR:$0 call_fv raddr [a1 a2 a3] <result>
VAR:$1 storew baddr n a
VAR:$2 storeb baddr n byte
VAR:$3 put_prop obj prop a
VAR:$4 1-3 read baddr1 baddr2

4 read baddr1 baddr2 [time raddr]
5+ read baddr1 baddr2 [time raddr] <result>

VAR:$5 print_char n
VAR:$6 print_num s
VAR:$7 random s <result>
VAR:$8 push a
VAR:$9 1-5 pull var

6+ (–) pull [baddr] var
VAR:$A 3+ split_screen n
VAR:$B 3+ set_window window
VAR:$C 4+ call_fd raddr [a1 a2 a3 a4 a5 a6 a7] <result>
VAR:$D 4+ erase_window window
VAR:$E 4-5 erase_line

6 erase_line [n]
VAR:$F 4-5 set_cursor s x

6 set_cursor s x [window]
VAR:$10 4+ (–) get_cursor baddr
VAR:$11 4+ set_text_style n
VAR:$12 4+ buffer_mode bit
VAR:$13 3-4 output_stream s

5 output_stream s [baddr]
6 output_stream s [baddr w]

VAR:$14 3+ input_stream n
VAR:$15 3+ sound n [op time raddr]
VAR:$16 4+ read_char 1 [time raddr] <result>
VAR:$17 4+ scan_table a baddr n [byte] <result> <branch>
VAR:$18 5+ (–) not a <result>
VAR:$19 5+ call_pv raddr [a1 a2 a3]
VAR:$1A 5+ call_pd raddr [a1 a2 a3 a4 a5 a6 a7]
VAR:$1B 5+ tokenise baddr1 baddr2 [baddr3 bit]
VAR:$1C 5+ encode_text baddr1 p n baddr2
VAR:$1D 5+ copy_table baddr1 baddr2 a
VAR:$1E 5+ print_table baddr x [y n]
VAR:$1F 5+ check_arg_count n <branch>

EXT:$0 5+ save [baddr1 n baddr2] <result>
EXT:$1 5+ restore [baddr1 n baddr2] <result>
EXT:$2 5+ log_shift a s <result>
EXT:$3 5+ (–) art_shift a s <result>
EXT:$4 5 set_font n <result>

6 set_font n [window] <result>
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EXT:$5 6 draw_picture pic [y x]
EXT:$6 6 picture_data pic baddr <branch>
EXT:$7 6 erase_picture pic [y x]
EXT:$8 6 set_margins xl xr window
EXT:$9 5+ save_undo <result>
EXT:$A 5+ restore_undo <result>
EXT:$B —
EXT:$C —
EXT:$D —
EXT:$E —
EXT:$F —
EXT:$10 6 move_window window y x
EXT:$11 6 window_size window y x
EXT:$12 6 window_style window flags op
EXT:$13 6 get_wind_prop window p <result>
EXT:$14 6 scroll_window window s
EXT:$15 6 pop_stack n [baddr]
EXT:$16 6 read_mouse baddr
EXT:$17 6 mouse_window window
EXT:$18 6 push_stack a baddr <branch>
EXT:$19 6 put_wind_prop window p a
EXT:$1A 6 print_form baddr
EXT:$1B 6 make_menu n baddr <branch>
EXT:$1C 6 picture_table baddr
EXT:$1D —

… …
EXT:$FF —

4. Equivalent mnemonics

This table contains mnemonics used in a number of sources, and their equivalent in this
document.1

Table 8. Equivalent mnemonics

Mnemonic Equiv. to Remarks
aread read Inform name for V5+read
beep sound Inform name forsound without operands
call call_fv Inform name for V1-3call_fv
call_1n call_p0
call_1s call_f0
call_2n call_p1

1It is tempting to change more mnemonics to better reflect the operations; I try to resist as long as possible. New
mnemonics should be easy to understand for someone familiar with old ones.
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call_2s call_f1
call_vn call_pv
call_vs call_fv
call_vn2 call_pd
call_vs2 call_fd
dec_chk dec_jl
icall call_fv Inform name for an ‘indirect call’
inc_chk inc_jg
print_ret print_rtrue
ret_popped ret_pulled
sound_effect sound Inform name forsound with operands
split_window split_screen
sread read Inform name for V1-4read
vje je Inform name for variable instr. form

5. Special characters

This table describes what characters 155-223 should look like in an ASCII font. Note that
characters 164-223 are Standard extensions.

[TODO: Insert table of German characters 155-163, and Standard 0.2 (plus Z-letter #1)
characters 164-223; also include suggested multi-character equivalents.]
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Index

$, 5
$$, 5
%, 5
n/m, 5
abbreviations table, 13
add instruction, 36, 37
address

byte, 6
packed address, 7
word, 6

and instruction, 37, 38
art_shift instruction, 37
bit, 4

bottom or top, 4
buffer_mode instruction, 42, 43
buffer mode window attribute, 20
byte, 4
byte-valued, 5
call instruction, 16, 17
call_f0 instruction, 38
call_f1 instruction, 38
call_fd instruction, 38
call_fv instruction, 38
call_p0 instruction, 37, 38
call_p1 instruction, 38
call_pd instruction, 38
call_pv instruction, 38
call stack, 5–6

frame pointer, 6
length, 6

catch instruction, 6, 36, 40
character set

alternative, 12
built-in, 11

character wrapping window attribute, 20
check_arg_count instruction, 6, 40
clear_attr instruction, 41
colours, 19
copy_table instruction, 36
CPU, 5
cursor,seescreen cursoror window cursor
dec instruction, 37
dec_jl instruction, 37
dictionary, 14

alternative, 14
main, 14

div instruction, 36
draw_picture instruction, 47
emulators, 2
encode_text instruction, 12, 14, 51
erase_line instruction, 47
erase_picture instruction, 48
erase_window instruction, 35, 47
ErasePicture operation, 21
EraseScreen operation, 21
EraseWindow operation, 21
error, 4
extension table, 10, 17
floor, 5
frame,seecall stack
function, 6, 16
function keys, 10
get_child instruction, 40
get_cursor instruction, 43
get_next_prop instruction, 35, 41
get_parent instruction, 38, 40
get_prop instruction, 41
get_prop_addr instruction, 41
get_prop_len instruction, 41
get_sibling instruction, 40
get_wind_prop instruction, 42
global variables, 16
Interactive Fiction, 3
illegal, 4
inc instruction, 37
inc_jg instruction, 37
Infocom, 2, 3
Inform, 3
input_stream instruction, 30, 44
insert_obj instruction, 15, 41
integer, 4
Interactive Fiction, 2
interpreters,seeemulators
interrupt, 6, 11, 16

newline, 19, 21
I/O card, 8
je instruction, 33, 38, 38
jg instruction, 37, 38
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jin instruction, 38
jl instruction, 37, 38
jump instruction, 38
jz instruction, 38
legal, 4
load instruction, 35, 37
loadb instruction, 35
loadw instruction, 35
local variables, 5, 6, 16
log_shift instruction, 37
make_menu instruction, 49
margins,seewindow margins
memory, 6–8

dynamic, 7
header, 7
RAM, ROM, and IROM, 7
residentvs. paged, 8
static, 7

mod instruction, 37
modulo, 5
mouse, 10
mouse_window instruction, 10, 35, 49
move_window instruction, 42, 43
mul instruction, 36
natural number, 4
new_line instruction, 46, 47
NewLine operation, 21
newline countdown,seeinterrupt, newline
newline routine,seeinterrupt, newline
nop instruction, 50
not instruction, 37, 38
object, 14–16

attributes, 14
child, 14
name, 14, 16
parent, 14
properties, 14, 16
sibling, 14
table, 15

or instruction, 37
output_stream instruction, 29, 44, 44, 54
PC,seeprogram counter
picture_data instruction, 35, 48
picture_table instruction, 48
pictures, 8

showing and erasing, 21

piracy instruction, 51
pop instruction, 36
pop_stack instruction, 36
print instruction, 33, 46, 46, 47
print_addr instruction, 46
print_char instruction, 24, 45, 45, 46, 46

, 47
print_form instruction, 47
print_num instruction, 46
print_obj instruction, 47
print_paddr instruction, 46
print_rtrue instruction, 33, 39, 46
print_table instruction, 47
procedure, 6, 16
program counter, 5, 6
property defaults table, 15
pull instruction, 35
push instruction, 35
push_stack instruction, 36
put_prop instruction, 41
put_wind_prop instruction, 42
quit instruction, 11, 50
random instruction, 9, 50
random number generator, 8–9
read instruction, 20, 30, 44, 45, 46, 51
read_char instruction, 30, 46
read_mouse instruction, 49
remove_obj instruction, 15, 41
restart instruction, 50
restore instruction, 6, 49, 49, 50
restore_undo instruction, 9, 50
ret instruction, 6, 17, 39, 40
ret_pulled instruction, 39, 40
rfalse instruction, 33, 39, 40
routine, 16–17

main, 6
routine stack, 5, 6
rtrue instruction, 33, 39, 39, 46
save instruction, 6, 49, 49, 49, 50
save_undo instruction, 50
save area,seememory, dynamic
save file, 6
save memory, 8, 9
scan_table instruction, 36
screen, 8, 17–18

cursor, 18
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erasing, 21
reading from, 18

scroll_window instruction, 47
scrolling window attribute, 20
ScrollWindow operation, 20
separator characters, 14
set_attr instruction, 41
set_colour instruction, 18, 42, 43
set_cursor instruction, 42, 47
set_font instruction, 26, 42, 43
set_margins instruction, 42, 44
set_text_style instruction, 25, 42, 43
set_window instruction, 42
show_status instruction, 20, 45, 50
ShowChar operation, 21
ShowPicture operation, 21
ShowStatusBar operation, 20
signed number, 4
sound instruction, 48
sound card, 9
split_screen instruction, 23, 42, 42, 44

, 47
stack

call,seecall stack
routine,seeroutine stack
user,seeuser stack

status bar, 16, 20
status line,seestatus bar
store instruction, 32, 35, 37
storeb instruction, 35
storew instruction, 35
sub instruction, 36, 37
m-n-table, 5
test instruction, 38
test_attr instruction, 41
text adventures,seeInteractive Fiction
throw instruction, 6, 39, 40
timer, 9
tokenise instruction, 45, 51
transcripting window attribute, 20
unsigned number, 4
unspecified, 4
user stack, 17
verify instruction, 3, 51, 54
video card, 8

initial state, 22–23

operations, 20–21
window, 18

attributes, 19–20
colours, 19
current, 18
current font size, 19
cursor, 19
erasing, 21
font, 19
line count, 19
location, 18
margins, 19
properties, 18–20
size, 19
style, 19

window_size instruction, 42, 44
window_style instruction, 42, 44
word, 4
Z-character, 11
Z-code, 2, 3

unknown instruction, 11
Z-machine

code,seeZ-code
compiler,seeInform
emulators,seeemulators
extended versions, 3
initialization, 10–11
interpreters,seeemulators
mailing list, 3
operation, 11
program,seeZ-program, 3
Standard, 3
versions, 3

Z-program, 3
length, 7

Z-string, 11


