Rogue Redux – a tool for learning about adult interactive fiction.

Draft 1.1 – 7/24/99

Congratulations. If you’ve received this, then you have a copy of my code Rogue Redux. Rogue Redux is a micro-game designed to help new authors learn how to handle the xactor.t library that supports the game. xactor.t in turn is derived from the MMX library by d <musubnu@newsguy.com> and Scarlett Herring.

We’re going to mention some things here, things you can do to the code (some will bust the code. Lord knows I’ve done that enough :>). Others will add enhanced functionality.

Others, hopefully, will add some appreciation of what TADS can do.

Overall Design

The flow of commands in xactor is a little (well a lot) confusing and after a lot of thought, it’s probably needless. This is the way commands flow in Tabitha and our Me.

If I issue the command “lick pussy” then my command is sent (eventually) to Tabitha’s pussypart (wife_pussy). The pussypart handles the command with the verDoLick and doLick methods that it inherits from the class LickPart. In LickPart, doLick messages are handled with a sequence of msg_ commands, the two most important of which are:

· msg_lick(actor)

· msg_lick_again(actor)

So all the user has to do in pussypart are populate the messages themselves.

It grows more complicated if you say, “Tabitha, rub my cock”. Then the message goes to Tabitha and is processed by her actorAction method (inherited from Xactor) to see if it’s ok. If it’s ok, then Tabitha issues a command to the ‘Me’ bodyparts (the penispart). Now Me parts also have their own verDoTouch and doTouch methods to direct messages and all, but they direct these commands back to the actor who asked them. As a consequence, your various ‘Me’ instances won’t have much sexual text (except for masturbatory text directed back to self) and your Xactresses and Xactors will have a lot of text, both for themselves and for the Me.

Now this isn’t really necessary. All the sexual text related to the Me char could be pointed back to the Me char. But then, you would have constructs like:

msg_lick(actor) =

{

if (actor = Tabitha) {

// Tabitha licks me text

}

else if (actor = Jessamyn) {

// Jessmyn licks me text

}

}

inside your Me.

Adding a new BodyPart

Q: I want to write a girl who gets horny when her ankles are kissed. She has this snake tattoo there and she has this snake fetish, so she also likes it when a cock is rubbed on her ankles too. How do I do that?

Well first you would need to add an AnklesPart. Since she likes having her ankles kissed, the part needs to be a LickPart. Hence:

class AnklesPart : LickPart

 noun = 'ankles'

 sdesc = "ankles"

 isplural = true

 adesc = "a pair of ankles"

 ndesc = "A pair of ankles."

;

Now because she gets really excited when she gets kissed there, we make the excitement levels associated with kissing her ankles pretty high:

class AnklesPart : LickPart

 noun = 'ankles'

 sdesc = "ankles"

 isplural = true

 adesc = "a pair of ankles"

 ndesc = "A pair of ankles."

 kiss_naked_required = true

 excite_kiss_owner = 60

 excite_kiss = 60

;

Clothes get involved too. We’ll make the assumption that pants and dresses don’t cover an AnklesPart but that socks do. So we make a sockstype:

class sockstype : Xclothing

coverList = [FeetPart AnklesPart]

coverLevel = 4

;

and we also make a shoestype, for continuity.

class shoestype : Xclothing

coverList = [FeetPart]

coverLevel = 4

;

Now to deal with rubbing a cock on an ankle. We need to modify the RubVerb:

modify RubVerb

 ioAction(onPrep) = ‘RubOn’

;

In the instance of the AnklesPart itself (we’ll call it girl_ankles), you’ll need to add

verIoRubOn(actor) and ioRubOn(actor, dobj) methods, and to the penispart of the Me, you’ll need to add verDoRubOn(actor, iobj) and doRubOn(actor, iobj) methods. We’re assuming this is a singular kind of excitement, so only that girl has these kinky ankle fetishes.

Adding a Verb

Ok, if you’ve been playing the game and looking at code, you’ve seen a ton of verDoAction and doAction commands littered in bodyparts. These are at the heart of the TADS verbal system. You can’t add these actions without a verb. If you wanted to be able to frottage someone (i.e. rub your cock along the crack of a woman’s ass (no anal penetration) until you come) you would first have to write the verb:

FrottageVerb : deepverb

verb = ‘frottage’

sdesc = “frottage”

allok = nil

doAction = ‘Frottage’

;

Next, to parts that might be aware of it (Tabitha’s ass) you might wish to add the lines:

verDoFrottage(actor) =

{

if (self.clothed)

“You can\’t rub your cock into her ass while she’s wearing stuff”;

if (parserGetMe().clothed)

“You need to get those clothes off, bub”;

}

doFrottage(actor) =

{

“Your cock sinks into the shallow cleft of Tabitha’s soft ass. You rub slowly, up and down, as her rump feels so good, so soft and smooth. “;

}

Of course, you might want to go to the trouble of copying TouchPart and then using it as a template to write up a FrottagePart. Would be fun, in any event.

Adding doors

Doors are a pain in the ass. If you really want doors, look carefully at Kevin Forchione’s code ‘doorItem.t’ or his comprehensive package ‘inform.t’. Using doorItem, then adding a door to the front of Tabitha’s house is a snap.

Q: I’ve added doorItem.t and yet the code still doesn’t work.

Be sure that in commonInit you’ve added the line:

createMultiloc();

Q: what does a doorItem door look like?

Well, a good one for this grid would be:

front_door : doorItem

 foundIn = [startroom bedroom]

 noun = 'door'

 adjective = 'front'

 sdesc = "front door"

 isopen = nil

;

Q: I’ve looked at the door I created and the only desc for it is ‘it’s open’ or ‘it’s closed’

Yep, yep yep. To add an ldesc you’ll need to hack Kevin’s code, or resort to coding the

clunky two item doors that are standard in TADS.

Q: Why would you ever code one of the two item doors?

You would code one if the door description were important, or if you wanted to add other functional code to the door (knock commands), or if some item were mounted on the door (say a peephole that lets you watch others) that you wanted your character to use. Getting both sides of the door synchronized is however, tedious programming.

Hiding Stuff

This is extremely well covered in adv.t, which I recommend you read carefully and often. In short, you have three kinds of hiders, an underHider, a behindHider, and a searchHider. These are classes you add to some item you wish to hide things with. Then, the hidden item should inherit the class hiddenItem and instead of a location, it should have an underLoc, a behindLoc, or a searchLoc respectively. When you perform the necessary verb on the right location (e.g. “look under bed”), the item is placed in your inventory. Any other kind of response requires overriding the verb and writing your own routine.

Q: What would it take to have a hidden path in the bushes that you can find and maybe later enter, to find say, a place where people are peeking at Tabitha (and maybe left photos behind)?

Good question. One way would be to add verDoSearch and doSearch methods to the bushes. Make a path but don’t name it ‘path’. Name it something bizarre, like ‘xzyzy’.

When the search is made and successful, use the addword function to add the noun ‘path’ to the path object. To the path object, you can add ‘verDoEnter/doEnter’ methods to make it possible to head deeper into the bushes (down the path). Be sure to say as well doSynonym(‘Enter’)=’Board’, so you don’t have to write separate doBoard methods.

To make sure your path, a fixed item, doesn’t appear on any examine all lists, check out the code on ftp://ftp.gmd.de/if-archive/programming/tads/ called notall.t

Another method, equally possible, is to hide the path object in a location that can’t be

reached and move it into the proper grid location (but not the Me char) when the doSearch method is activated, using say, path.moveInto(startroom).

FAQ – Frequently asked questions:

1. What’s TADS?

It stands for Text Authoring and Development System. To work with this library, you will need the following:

ftp://ftp.gmd.de/if-archive/programming/tads/executables/htads_authkit_250.exe

2. How do I learn TADS?

Simple: practice, practice, practice. Write code, change things, see how it works when you do.

3. Can you explain each line of code enough so that a newbie can understand?

That would be nice, I’m not sure I’m the best for teaching TADS to a total beginner. There is a tutorial at ftp.gmd.de, and the help in TADS 2.5 points to it. I’d suggest you work through the TADS tutorial first before using this material. You’ll be much happier if you do.

4. Why bodyparts? Why not just a single actor? It’s so much simpler.

Because in TADS, objects are associated with nouns, and having an object for each bodypart makes text like ‘kiss lips’ possible. Actor-only games are what I like to call ‘Girlfriend Susan’ games, if you get my drift.

5. Why clothing support? Why can’t we just use something like clothing.t?

Because the built-in clothing support doesn’t understand bodyparts. Also, neither clothing.t or the standard clothingItem supports a layering scheme, which means even if you made a pair of panties and a par of pants using those tools, you could:

· look at the woman’s pussy through the clothing.

· look at the woman’s panties through her pants.

· remove her panties through her pants.

So, given the above, if you’re going to have bodyparts, you must have a bodyparts aware clothing library. If you’re going to the trouble of writing a clothing library, you might as well write a good one, hence, layering support.

6. What’s this property kiss_last about? Shouldn’t it start at 0 rather than –99?

The property kiss_last in LickPart isn’t really a counter of kisses. It’s tracking time to make sure that you get the appropriate message msg_kiss or msg_kiss_again. And since the way it tracks time is through assignment from global.turnsofar, it can have a valid runtime value of 0. (You can be at 0 turns!) Hence, when initializing it, they used a negative value.

7. Why is it that in the daemons for excitement, they tend to take the excitement variable to 0?

Because if you stop fooling around with a girl, she calms down. If you didn’t, you could arouse a girl, drop her, go eat a sandwich, call your buddies, play a round of golf and she would be as hot for you then as when you left.

8. I want to add NPC-NPC sex support to my Xactor.

It’s already built-in to all of the routines outside of the spank routines. See that passing parameter actor to all the message commands? It’s easy enough to add:

msg_fuck(actor) = {

if (actor = parserGetMe()) {

// some sexual text here

}

else if (actor = Pia) {

// more sexual text here

}

else if (actor = Alicia) {

// more sexual text here

}

}

9. How does the ‘strip’ command work?
It works by using the undress method of Me. Saying ‘strip’ without any objects activates the action(actor) method of strip, which calls a method (undress) that searches the contents list of Me and removes all the Xclothing found there.

10. There is some unused code in Tabitha.t. How did that happen?
That’s an artifact of writing Rogue Cop. Initially I was considering having the Rogue make her interested by showing her something. Once interested, she could be undressed, and at the time was considering allowing people to unbutton her blouse and play with her that way. That possibility was dropped once I decided she liked to be played with forcefully, but the unused coding elements remained there. If you add some mechanism to make her interested (perhaps by showing her photos found in the woods behind the bushes), then that code becomes reachable and you have some neat things to add to the minigame!

