
ALAN
Adventure Language Manual

version 2.6

Contents 3

Alan version 2.6 1995-12-18

1 INTRODUCTION ... 7

2 TUTORIAL .. 9

2.1 What is an Adventure? ..9

2.2 Elements of Adventures ...10

2.3 Alan Fundamentals ..11
2.3.1 The Map ..11
2.3.2 The Objects ...11
2.3.3 The Verbs ...12
2.3.4 The Actors ..12

2.4 Alan Language Description ...12
2.4.1 The LOCATION ..13
2.4.2 The OBJECT ..14
2.4.3 The ACTOR ...16
2.4.4 The VERB ..16
2.4.5 The SYNTAX ...19

3 THE LANGUAGE .. 21

3.1 An Adventure ..21

3.2 Options ...21

3.3 Default Attributes ...23

3.4 Synonyms ...24

3.5 Messages ..25

3.6 Syntax Definitions ...25

3.7 Verbs ..27
3.7.1 Verb Alternative ...29
3.7.2 Verb Qualification ..29

3.8 Locations ...31

3.9 Objects ...33

3.10 Containers ...36

3.11 Events ...38

3.12 Actors ...38

3.13 Rules ...41

3.14 Start section ...41

3.15 Statements ...42
3.15.1 Output Statements ..42
3.15.2 Special Statements ..43
3.15.3 Manipulation Statements ..45
3.15.4 Event Statements ..46
3.15.5 Assignment Statements ..47
3.15.6 If Statement ..48
3.15.7 Actor Statements ..48

4 Contents

1995-12-18 Alan version 2.6

3.16 WHERE specifications ...48

3.17 WHAT specifications ..49

3.18 Expressions ..50
3.18.1 Types of expressions ..50
3.18.2 Logical expressions ..51
3.18.3 The whereabouts of an entity ..51
3.18.4 Binary and Relational operators ...51
3.18.5 The value of Attributes ...52
3.18.6 Literal values ..52
3.18.7 Aggregates ..52

4 LEXICAL DEFINITIONS 55

4.1 Comments ..55

4.2 Identifiers and Names ..55

4.3 Numbers ..56

4.4 Strings ..56

4.5 Files ..57

5 EXECUTION OF AN ADVENTURE 59

5.1 A Turn of Events ...59

5.2 Player Input ...59

5.3 Run-time Contexts ..60

5.4 Moving Actors ...61

6 HINTS AND TIPS ... 63

6.1 Use of Attributes ...63

6.2 Descriptions ...64

6.3 Common Verbs ...65

6.4 Doors ..65

6.5 Containers ...66

6.6 Imaginary Objects ..67

6.7 Actors ...68

6.8 Distant Events ...70

6.9 Questions and Answers ..70

6.10 Structure ..71

6.11 Debugging ..71

7 ADVENTURE CONSTRUCTION 75

7.1 Getting an Idea ..75

Contents 5

Alan version 2.6 1995-12-18

7.2 Elaborating the Story ...75

7.3 Implementing it ...76

7.4 Polishing the Adventure ...76

A Appendix: RUN-TIME MESSAGES 77

A.1 System Errors ...77

A.2 Input Responses ..78

A.3 Message Identifiers ...81

B Appendix: ALAN LANGUAGE GRAMMAR 85

C Appendix: COMPILER ERROR MESSAGES 93

D Appendix: HOW TO USE THE SYSTEM 101

D.1 Compiling ..101

D.2 Compiler Switches ..101

D.3 Running the Adventure ..102

D.4 Interpreter Switches ...102

E Appendix: SYSTEM DETAILS 103

E.1 Amiga ...103

E.2 Unix ..103

E.3 MS-DOS and OS/2 ..104

E.4 Portability of Games ...104

F Appendix: DIFFERENCES BETWEEN VER-
SIONS 105

G Appendix: FUTURE DEVELOPMENTS 109

H Appendix: REFERENCES 111

I Appendix: EXAMPLE ADVENTURE 115

J Appendix: COPYING CONDITIONS 119

J.1 Documentation ..119

J.2 Executables ..119

J.3 Source ..119

J.4 Examples ..120

J.5 Versions, compatibility and support120

J.6 Distribution ...120

J.7 Executive Summary ..120

Alan Adventure Language Manual 7

1995-12-18 Alan version 2.6

1 INTRODUCTION

Text adventures or, using a more appropriate term, interactive fiction is a form
of computer game which has many things in common with fiction in book
form, role-playing games and puzzle-solving. To create a high quality inter-
active fiction game, you need to be more of an author than a games program-
mer.

Alan is a special purpose computer language specifically designed to make it
very easy to create such adventure games without any programming skills.

The main principle of the design of the language is simplicity. That is, to make
it very easy to do normal things, but also allow more complex things using
more complex language constructs. This means that wherever a construct is
optional, the system supplies some sensible default instead.

The Alan language has been designed by the author and a very good friend
during several years of incremental improvement. This means that the lan-
guage has a sound foundation, based on practical use, a concept forgotten in
many software projects today. Tools develop and are made sharper and more
powerful as usage is intensified, the problem domain more and more under-
stood and the requirements increased to tackle new aspects of the problem.

This, we believe, is how software tools must be developed to give the support
intended. Therefore Alan and its support system will also develop further.
This version is, however, a complete and powerful tool as it stands.

8 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Alan Adventure Language Manual 9

1995-12-18 Alan version 2.6

2 TUTORIAL

2.1 What is an Adventure?

As long as man has been around there has been stories, fairy tales and fanta-
sies. In early days the stories were told by story tellers to silent and astonished
audiences. After Gutenberg, the stories were printed and the readers partook
in the fantasies of the author. In our days, passive viewers are fed from the sil-
ver screen or through the tube.

In our century, at last, there has evolved a way for the “audience” to take part
in the story themselves. It started in the forties and fifties and continued to de-
velop into the games today known as Dungeon and Dragons, Tunnels and
Trolls, etc. Games where a game leader designs the story, but the players de-
cide (and perform) the actions of the characters in the story.

These games, of course, have a computerized counterpart.

The games are played interacting with the computer. The program describes
a scene or situation (usually in text, but pictures are more and more frequently
used), the player decides on some action and gives orders to the computer to
carry out his wishes. Usually there are objects to manipulate, traps to negoti-
ate and puzzles to solve, the object being to find the hidden treasures or save
the world.

This form of games was started by Crowther & Woods in the late sixties when
they designed the famousColossal Cave Adventure now available on many
mainframe computer systems. Inspired by this, Lebling et.al. (then at MIT)
took a giant step forward in adventuring by creating the Great Underground
Empire and making it available for venturing Adventurers in the game Dun-
geon. This game contained a much more developed story and could handle
much more complex commands.

Later, Dave Lebling & Co started Infocom, a company where they continued
to develop their technique, first withZork I, II andIII (the first a reimplemen-
tation of Dungeon, the others equally successful sequels). Since then a host of
games has been released (Starcross, Witness, Enchanter are some of the
names that come to mind). Infocom today only exists as a label with Media-
genic, the original authors scattered, but the Infocom games are still among
the best available today.

Other companies have followed in Infocom’s footsteps and a handful of them
seem to make a living out of creating adventure games.

There have been many attempts to use computer graphics to display the sur-
roundings and objects in adventure games. Some of the more successful are
the Sierra OnLine games (notably theLeisure Suit Larry and theKings Quest
series) which have mouse oriented moves but also allows single line text com-
mands, games from ICOM Simulations (DejaVu andThe Uninvited) which
are purely graphics games with mouse and icon interfaces. Other manufactur-
ers have tried to use (some times optional) pictures to accompany the text, for

10 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

example Magnetic Scrolls games (e.g.the Pawn), which shift the picture au-
tomatically as you move around using the normal directional commands.

A large number of so called Arcade Adventures are also available but they are
always more Arcade than Adventure and do not belong in this discussion.

The Alan Adventure Language is designed to aid construction of pure text ad-
ventures or, in the words of Infocom, interactive fiction. Possibly, in future
versions sound and graphics functions may be available.

2.2 Elements of Adventures

The success of all Infocom games can probably be attributed to three distinc-
tive features. First, they all have a ‘believable’ and consistent plot, which is
flavoured with humour and wittiness. Second, the descriptions are extensive
and give a lot of atmosphere to the game. Third, the command handler recog-
nizes and understands a large vocabulary and complex input. Add to this the
worlds best graphics device (the human brain) and you are unbeatable!

Looking at Adventures in more detail, one sees some common features. There
is, of course, a world or universe (called the map) where the Adventure is tak-
ing place. Although you can move around quite freely there are usually some
problems getting into certain parts of the world (like locked doors, no air to
breathe or even finding the entrance).

The size of the map ranges from hundreds of locations (like in some of the In-
focom games) to just two or three (some of the Scott Adams games are very
compact and very difficult).

Then, there are the objects in the game. These range from your tools, like
lamps and shovels, to immaterial things like a hole in the ground, in short, an-
ything you can manipulate. Ideally everything that is mentioned in a descrip-
tion should be an object, but this is normally impossible because of storage
limits (and perhaps the stamina of the games designer!).

Most objects have uses. A key is easy to guess how to use, but what about the
velvet pillow? Red herring objects are also common in adventuring.

The player must be able to express his wishes. Natural language commands,
advocated in many advertisements, are probably overkill since most players
do not wish to wear their fingers out typing full sentences, but single verb-ob-
ject input is not sufficient for a good game either. The player must be able to
say things like

> take all except the blue vase

or

> put the ring and the bag in the box

Alan Adventure Language Manual 11

1995-12-18 Alan version 2.6

2.3 Alan Fundamentals

The Alan Adventure Language is a high level computer language designed to
make it easy to create text Adventures. The Alan system handles all the tire-
some tasks and supplies reasonable defaults so you can concentrate on the
plot, the puzzles, the objects and the map.

There are no variables, subroutines or other traditional programming con-
structs in Alan because Alan is not aprogramming language. Instead Alan
takes a descriptive view of the concepts of adventure authoring. The Alan lan-
guage contains construct to make it possible for the author to describe the var-
ious features of these concepts. By describing for example how the locations
in the adventure are connected you have described the geography in which the
story will take place. Much of what should be described is in terms of text that
should be output to make the player experience the story that you have de-
signed.

Another fundament of Alan is that the execution of an adventure is event driv-
en. This means that the things happening in the adventure are triggered by one
thing only, namely the input of a player command. This command is analysed
according to the allowed syntax and transformed into execution of verbs or
movements which in turn executes other part of the description in the Alan
source. After a player turn other actors can move and scheduled events can be
run, then the player takes another turn.

2.3.1 The Map

In Alan, the map is a number of locations connected (or not!) by any number
of exits. A location has a description that is presented to the player when it is
entered. A location may also have a number of exits stating in which direction
the exit is and to which location it leads. Alan places no restrictions on the lay-
out of the map, any topology is legal. Note, however, that since exits are one-
way, an explicit declaration of a backward path (if such is desired) must be
made.

2.3.2 The Objects

The other vital entity in Alan is the object. Most Alan objects are things that
in real life would be objects too, like a knife or a key. In addition, other things
that should be manipulable by the player, e.g. parts of the scenery, must be
declared as an object. For example if you require the player to ‘whistle the
melody’, then the melody must be an Alan object.

Objects, like locations, have a description that is presented when they are en-
countered during the game.

Every object may also have a set of properties, like eatable and movable,
which may be changed during the execution of an Alan program. Most object
would probably not be eatable so there is also a mechanism for giving default
properties to objects.

12 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Some verbs have special meaning or effects when applied to a certain object.
These verbs and their effects are also declared within the object.

2.3.3 The Verbs

Verbs are imperative statements input by the player to command some action.
These must also be declared in an Alan adventure, either in an object (as de-
scribed above) or as a general (global) verb that describes the effects of the
verb when applied to any object or for verbs to which no object may be given.

To make it possible for the player to input more complex commands a means
to specify the syntax for a verb is also available. Using this verbs can also be
made to operate on literals (strings and integers) giving the player the possi-
bility to input things like

> write "Merry Christmas, Mr. Lawrence" on the xmas card

2.3.4 The Actors

An extra thrill and dimension are additional characters in the game. These are
called actors and have a life of their own. For each move the player makes
these programmed characters also get a turn to do their thing. An actor may
be a thief running around and stealing your collected treasures, a dragon
guarding the entrance to its lair and so on.

One of the interesting things about playing adventure games with actors is to
figure out how to interact with and influence the other characters.

2.4 Alan Language Description

Alan is an Adventure language, i.e. a language designed to make it easy to
write Adventures. This means that the Alan language must reflect the various
entities encountered when creating an Adventure plot.

The first step after having come up with a plot for your Adventure is to draw
a map of the world where the Adventure is taking place. For this purpose the
LOCATION construct is provided.

Next step is to introduce tools, weapons and other manipulable objects. Here
theOBJECT construct is used.

Then you need words to command action. The language construct to supply
these with is theVERB. You may also define more complex types of player
input using theSYNTAX construct.

Additionally, you may also want other characters and creatures in your adven-
ture. For this theACTOR construct is provided.

Alan Adventure Language Manual 13

1995-12-18 Alan version 2.6

2.4.1 The LOCATION

The scene for your Adventure is a series of “rooms” or, rather, locations. They
are connected by paths that lead from one location to another, making it pos-
sible for the hero to travel through the world of your design, exploring it and
solving the puzzles.

What is necessary to describe a location? Every location (orLOCATION,
when we are referring to the Alan language construct) must have a name. This
is so that you, the designer, may refer to thatLOCATION easily, instead of
having to remember a magic number for eachLOCATION.

Unless you provide other means for transportation from aLOCATION, you
should also describe in which directions there are exits and to whichLOCA-
TIONs they lead.

In fact, this is all that is really necessary in aLOCATION, so lets look at an
example (you would probably like to try this out, referring to appendix E,
SYSTEM DETAILS, on page 103 for instructions for your particular system).

LOCATION Kitchen
EXIT east TO hallway.

END Kitchen.

LOCATION Hallway
EXIT west TO kitchen

END Hallway.

START AT Kitchen.

This is a complete Alan Adventure (although very primitive). As you see, eve-
ry Alan construct ends with a period (’.’) and there is also a “START AT”
sentence at the end, indicating in which location to put the hero when the
game starts.

Run this little Alan source through the Alan Compiler (see appendix D,HOW
TO USE THE SYSTEM, on page 101 and appendix E,SYSTEM DETAILS, on
page 103) and try the Adventure. After starting the Adventure, two lines will
be shown on your screen. The first line will contain “Kitchen” and the second
a “>”, which is the prompt for the player to input a command. Now try typing
“east”. The word “Hallway” and the prompt will appear. Typing “west” will
take you back to “Kitchen” again.

We see that the name of aLOCATION is automatically used as a description
shown when that room is entered. We also see that the words used in the
EXIT -parts are translated by Alan into directional commands that are usable
by the player.

You should remember that exits are strictly one-way. AnEXIT from aLO-
CATION to another does not automatically imply the opposite path. Thus one
must explicitly declare the path back, in the definition of the otherLOCA-
TION.

14 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

But just the name of the location is not much of a description. So in order to
provide the “purple prose” descriptions often found in high-class Adventures
there is an optionalDESCRIPTION-clause in theLOCATION. Let us de-
scribe the Hallway.

LOCATION Hallway
DESCRIPTION

"In front of you is a long hallway. In one end
is the front door, in the other a doorway. From
the smell of things the doorway leads to the
Kitchen."

EXIT west TO Kitchen.
END Hallway.

We introduce another feature in this example, namely the text enclosed in
double quotation marks (’"’) which is called a STRING or, when used on its
own like this, an output statement. When executed this string will be present-
ed to the player and formatted to suit the format of his screen.

Invent a description for the Kitchen, enter it in the Alan source and run the
changed adventure. You notice, of course, that the text in the output state-
ments is reformatted during output to suit your screen, in order to make room
for as much text as possible. Note also that you do not have to worry about
this at all - in your source file you may format the text any way you like.

This type of output statement is just one of the statements in the Alan Lan-
guage, and we will see more of them later.

It is also possible to have conditions and statements in theEXIT -clauses of a
LOCATION to restrict the access to the next location or to describe what hap-
pens during this movement.

EXIT west To Kitchen
CHECK kitchen_door IS open

ELSE "The door is closed."
DOES

"As you enter the kitchen the smell of
something burning is getting stronger."

END EXIT west.

2.4.2 The OBJECT

Another essential feature in Alan is theOBJECT. Like theLOCATION, the
OBJECT is a means to describe the “physical” world where your Adventure
is taking place. Most objects are probably used to provide puzzles, like closed
doors, keys and so on, but other objects should be promoted toOBJECTs too.
A large number of objects that can be examined and manipulated makes a
game so much more enjoyable.

OBJECTs, likeLOCATIONs, have names and descriptions, so you might
guess the general structure of anOBJECT.

OBJECT door AT Hallway
IS closed.
DESCRIPTION

Alan Adventure Language Manual 15

1995-12-18 Alan version 2.6

"The door to the kitchen is a sliding door."
IF door IS closed THEN

"It is closed."
ELSE

"It is open."
END IF.

END OBJECT door.

An OBJECT may initially be located at a particularLOCATION (although ob-
jects do not have to start at a particular place in which case they are not present
in the game until located at some place where the player may lay his hands on
them). This is indicated by theAT-clause, in this case telling us that the door
is initially located in the Hallway.

In addition,OBJECTs may have attributes indicating the state of certain prop-
erties of the object. In this example with a door, theIS closed part indi-
cates that theOBJECT door should initially have the attributeclosed set to
TRUE (i.e. the door is initially closed). The opposite would be indicated with
a NOT, (i.e.IS NOT closed).

Alternatively, attributes may be numeric (e.g.HAS weight 5) or be of
string type (e.gHAS inscription "Kilroy was here").

We also introduce another Alan statement, theIF statement. TheIF state-
ment allows you to select which statements to execute according to some con-
dition. In the example, theclosed attribute of the door selects which de-
scription to show. There are further variations of expressions and the IF state-
ment, but we will come back to these later (Expressions on page 50 andIf
Statement on page 48).

Instead let’s look at some other statements in relation toOBJECTs.

The attributes of anOBJECT must, of course, be changeable, and this is done
with theMAKE statement or theSET statement. For example if the door
should be opened (the player having said “open door”, perhaps) this could be
performed by

MAKE door NOT closed.

or closed (i.e. setting theclosed attribute toTRUE again) by

MAKE door closed.

TheSET statement changes numeric or string attributes, for example

SET level OF bottle TO 4.

AnotherOBJECT manipulating statement is theLOCATE statement. This is
the statement to use when moving objects from one location to another. Open-
ing a lid might cause a previously hidden object to fall to the floor, something
that could be performed by moving the object from a limboLOCATION to the
current one with

LOCATE treasure HERE.

16 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Or to a particular place with

LOCATE vase AT hallway.

2.4.3 The ACTOR

TheACTOR is used to populate the adventure with other creatures. They
might be pirates or monsters, but the thing they have in common is that they
move around and perform various actions more or less in the same way as the
player does.

An ACTOR may have aDESCRIPTION and attributes likeOBJECTs and
LOCATIONs. AnACTOR performs his movements by following scripts, each
having a number of steps. Each step corresponds to one player move.

ACTOR charlie_chaplin NAME Charlie Chaplin
SCRIPT 1

STEP
LOCATE ACTOR AT outside_house.

STEP
LOCATE ACTOR AT hallway.
USE SCRIPT 1.

END ACTOR charlie_chaplin.

2.4.4 The VERB

TheVERB is the construct that implements the effects of an action requested
by the player.VERBs may be global, local to a particularLOCATION or asso-
ciated with anOBJECT. We will look at the implications of various combina-
tions of these in the next few sections.

To implement aVERB you need a name for it (which is also the default word
the player should input to request that action). You must also decide which
effects this verb should have under various circumstances.

If we want to implement theVERB open for the door we could use the fol-
lowing code

VERB open
DOES

MAKE door NOT closed.
END VERB open.

This implementation makes direct references to the door, so to make the verb
more general it would instead need to reference the object the player men-
tioned in his command (seeThe SYNTAX on page 19 for a discussion on this).
In this case the attributeclosed must also be available for all objects (by
making it a default object attribute (seeDefault Attributes on page 23).

Of course, there are also conditions that have to be checked before we could
execute this code (perhaps to see if it was possible to open the object!). There-
foreVERBs may haveCHECKs.

Alan Adventure Language Manual 17

1995-12-18 Alan version 2.6

Checking Things

In order to assert that the correct conditions are fulfilled before aVERB is ac-
tually executed theVERB has an optionalCHECK part.

VERB open
CHECK OBJECT IS openable

ELSE "You can’t open the $o."
DOES

MAKE OBJECT NOT closed.
END VERB open.

This is a more probable definition of the openVERB than the previous one.
What it means is that before the statements afterDOES are executed, the con-
dition afterCHECK must be checked (that the object indicated by the player is
really openable). If the condition isTRUE then the requirements are fulfilled
and the body of theVERB may be executed. If this is not the case, theELSE
part is executed instead (normally some error message).

A CHECK may have multiple conditions as the following code shows:

VERB take
CHECK OBJECT takeable

ELSE "You can’t take that."
AND OBJECT NOT IN inventory

ELSE "You already have it."
DOES

LOCATE OBJECT IN inventory.
END VERB take.

Here we encounter a variation on theLOCATE statement - the capability to
place an object inside a container.

Global, Local and Objective VERBs

VERBs may be defined on three levels.

• Globally. These are always used, no matter in what location the
player currently is, or what object he is trying to manipulate.

• Locally (within a particularLOCATION). A localVERB is only
considered when the player issues theVERB at a particularLO-
CATION.

• Within an object. When the player tries to manipulate the object
within which theVERB is defined, theVERB definition in that
OBJECT is executed.

A VERB may be defined on all three levels (as well as in otherLOCATIONs
andOBJECTs of course), and may haveCHECKs in all instances. The impli-
cation is that allCHECKs must be passed before any execution and if they all
do pass the verb bodies (DOES parts) are executed. The order is global/local/
object.

18 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

An example:

VERB throw
CHECK OBJECT IN inventory ...
DOES

LOCATE OBJECT HERE.
END VERB throw.
LOCATION dark_place

VERB throw
CHECK "Too dark to aim."

END VERB.
END LOCATION dark_place.
OBJECT vase

VERB throw
DOES

"The vase breaks."
LOCATE vase AT limbo.

END VERB throw.
END OBJECT vase.

TheCHECK without a condition indark_place is called unconditional and
is alwaysFALSE (i.e. it will always fall out as if theCHECK had failed).

Now assume the player is carrying the vase atdark_place . He says

> throw vase

So we have aVERB globally as well as locally and in the mentioned object.
TheCHECKs are examined in the following order:

• OBJECT IN inventory? (in the globalVERB)

• unconditional (in theLOCATION)

• None (in theOBJECT)

We fall out already in theLOCATION (player receiving the response “Too
dark to aim.”) so the third (empty)CHECK is never tested. Now the player
tries the same thing atbright_place where there is no restriction on
throwing (no localVERB “throw”).

This time there is no localVERB so we skip that level and get theCHECKs

• OBJECT IN inventory? (in the globalVERB)

• None (in theOBJECT)

Each is tried in turn and none fail, so we can go ahead and execute. This is
done in the same order, i.e.

• LOCATE OBJECT HERE (in the globalVERB)

• nothing (in theLOCATION)

• ’’The vase breaks...’’ (in theOBJECT)

Alan Adventure Language Manual 19

1995-12-18 Alan version 2.6

Note:You can never destroy anOBJECT or remove it from the
game. Instead, you will probably need a limbo location, i.e. a lo-
cation that is not connected to any of the others and may thus be
used as a storage for destroyed objects and other things the player
is not supposed to see.

2.4.5 The SYNTAX

Normally a verb acts on one object or actor, henceforth called a parameter.
This means that the format of player input normally is something like

> take vase

This form, or syntax, is the default form when you don’t specify anything else.
The default syntax might thus be described as

SYNTAX
? = ? (object)

WHERE object ISA OBJECT.

where the question marks are replaced by the name of the verb.

But in order to allow different and more complex player input theSYNTAX
construct is supplied.

TheSYNTAX construct is a way to describe the words and parameters the
player may use in order to execute a particular verb (its global and more spe-
cialised parts). Below is the syntax forput_in , the verb to put something in-
side a container.

SYNTAX
put_in = ’put’ (obj) ’in’ (cont).

This syntax defines theput_in verb to be executed when the player has in-
put the word ‘put’ followed by a reference to an object or actor (a parameter
namedobj), followed by the word ‘in’ followed by a reference to a second
parameter (the container), as in

> put the green pearl in the black box

This will bind the parameterobj to the object that represents the green pearl
and the parametercont to the black box. It is also possible to restrict the
types of the parameters:

SYNTAX
put_in = ’put’ (obj) ’in’ (cont)

WHERE obj ISA OBJECT
ELSE "You can’t put that into anything."

AND cont ISA CONTAINER OBJECT
ELSE "Nothing fits inside that."

This restricts the parameterobj to being an object (as opposed to an actor for
example) and the parametercont to a container object (an object with the
container property).

20 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

The parameters are used as normal identifiers in the Alan source, provided
they are defined in the current context, i.e. they can only be used in the bodies
of the verb (see alsoRun-time Contexts on page 60 for a detailed discussion).

TheSYNTAX construct generalises the verb execution order described previ-
ously from execution of verbs in one object, to verb bodies in all the parame-
ters. In the example above, verb bodies in both the object or actor referenced
asobj andcont (the green pearl and the black box) are executed (if present
in their declarations).

Another use for theSYNTAX is to define the syntax for simple verbs such as
quit , score etc. They also need aSYNTAX definition as they do not fit into
the default verb/object format. An example would be

SYNTAX q = ’quit’.

But for simple verb/object forms noSYNTAX is actually necessary.

Note:In expressions,OBJECT always refers to the first parame-
ter. This makes it consistent with the default syntax of verb/object
(and also with the definition ofOBJECT in version 1).

Alan Adventure Language Manual 21

1995-12-18 Alan version 2.6

3 THE LANGUAGE

This chapter describes the Alan language in detail. For each construct the syn-
tax is given in the form of BNF productions. A description of this notation
may be found in appendix B,ALAN LANGUAGE GRAMMAR, on page 85.
The numbering of rules is also the same as in that appendix.

3.1 An Adventure

 adventure = optional_options units start
 ;

An adventure starts with an optionaloptions section and then a set of
units .

 9. units = unit
 10. ! units unit
 ;

 11. unit = object_default
 12. ! location_default
 13. ! actor_default
 14. ! messages
 15. ! rule
 16. ! synonyms
 17. ! syntax
 18. ! verb
 19. ! location
 20. ! object
 21. ! container
 22. ! actor
 23. ! event
 ;

The major part of the adventure is composed of units which are rules, syno-
nyms, syntax definitions, verbs, locations, objects, containers, actors and
events that can be declared in any order. Any combination and number are al-
lowed. Also default attributes for objects, locations and actors may be de-
clared in any number of places.

149. start = 'START' where '.' optional_statements
 ;

The adventure source text must end with a start section. It indicates where the
hero is when the game starts and can be used to set things up, welcome the
player and so on. The start section is mandatory.

START AT bedroom.
SCHEDULE alarm_clock AFTER 2.
"Slowly you come to your senses, your numb limbs
 starting to feel the blood flowing through them..."

3.2 Options

 2. optional_options =
 3. ! 'OPTIONS' options
 ;

 4. options = option
 5. ! options option

22 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

 ;

 6. option = ID '.'
 7. ! ID ID '.'
 8. ! ID INTEGER '.'
 ;

Options define things concerning the overall behaviour of the generated Alan
adventure. An option is for example written either as

LANGUAGE Swedish.

(for multiple-valued options) or

PACK.
NOPACK.

 (for boolean options).

The options are

The Language option specifies in which language the adventure is intended to
be played, and selects different default message texts. Alan is primarily de-
signed for adventures in the English language, but it is also possible to write
adventures in other languages. To make this possible, the default messages
output by the interpreter may be generated in different languages.

The Alan compiler and interpreter will always allow multinational 8-bit char-
acters as input and the default messages is generated for 8-bit character sets,
internally representing national characters according to the ISO multinational
character set (ISO8859-1) requiring 8 bits. On output this is converted to the
native character set of the machine (whenever possible) which means that
portability between platforms should be good even for text containing non-
ASCII characters.

Width specifies how long the lines the interpreter outputs should be (format-
ting is automatic!). The Length option will instruct the interpreter to how
many lines to show on the screen without any player interaction (<More>).

a. Other non-English languages may be supported in the future depending on
demand.

Option name Values Default

Language English
Swedisha

English

Width 24-255 80

Length 5-255 24

Pack Boolean Off

Debug Boolean Off

Alan Adventure Language Manual 23

1995-12-18 Alan version 2.6

Note:In some environments the Width and Length options may
be overridden by the current values of the screen or window if the
operating system can supply them.

The Pack option will cause the compiler to compress the texts to occupy less
space. As a bonus this also makes it impossible for the player to cheat by
dumping the adventure text data file. As a drawback it does make execution
of the adventure a bit slower (quite noticeable on some smaller computers).

In order to allow debugging of the generated adventure (seeDebugging on
page 71), the debug option must be turned on. This may also be performed us-
ing the debug compiler flag (see also appendix D.2,Compiler Switches, on
page 101).

3.3 Default Attributes

 24. location_default = 'LOCATION' 'ATTRIBUTES' attributes
 ;

 25. object_default = 'OBJECT' 'ATTRIBUTES' attributes
 ;

 26. actor_default = 'ACTOR' 'ATTRIBUTES' attributes
 ;

 27. attributes = attribute '.'
 28. ! attributes attribute '.'
 ;

 29. attribute = ID
 30. ! 'NOT' ID
 31. ! ID optional_minus INTEGER
 32. ! ID STRING
 ;

An attribute is a definition of a property of either an object, an actor or a lo-
cation. An attribute can be boolean (having the value TRUE or FALSE), nu-
meric or of string type. The type of an attribute is inferred from the type of its
initial value. Attributes that every object, actor or location has by default
should be declared in theOBJECT/ACTOR/LOCATION ATTRIBUTES
sections. An boolean attribute is declared either as

attribute_name.
NOT attribute_name.

or as

attribute_name INTEGER.

for boolean and numeric attributes, respectively or as a string typed attribute
by

attribute_name STRING.

For example

ACTOR ATTRIBUTES
NOT hungry.
weight 50.

24 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Note that string valued attributes are mainly intended for saving string param-
eters from the player input, like in

> scribble "Kilroy was here" on the wall

It is not intended for keeping long strings of descriptions, especially not as de-
fault attributes as they (in the current implementation) require much space and
takes long time to initialise when starting the game.

Any number of default attributes sections are allowed. This makes it possible
to group verb declarations (see below) and the declaration of the default at-
tributes that particular verb requires.

3.4 Synonyms

 33. synonyms = 'SYNONYMS' synonym_list
 ;

 34. synonym_list = synonym
 35. ! synonym_list synonym
 ;

 36. synonym = id_list '=' ID '.'
 ;

Synonyms declarewords that, when used as player input, are interchangeable
at all times. The word on the right hand side of the equal sign must be a word
defined elsewhere in the adventure source, such as an object name (a noun) or
a direction. The list of words on the left hand side are new words (NOT de-
fined elsewhere) that always will be replaced by the word on the left in the
player input.

SYNONYMS
’i’, ’invent’ = ’inventory’.
’q’ = ’quit’.

When defining synonyms remember that this only defines playerwords that
are interchangeable. Defining synonyms for verb names etc. will not always
give you the result that you expect. For example

SYNONYMS
’examine’ = look_at.

SYNTAX
look_at = ’look’ ’at’ (obj).

VERB look_at ...

This will result in the compiler issuing an error message indicating that the
synonym word ’look_at’ is not defined. This is because the SYNTAX (se be-
low) defined theverb look_at to have the specified syntax (including the play-
er words ’look’ and ’at’), the player word ’look_at’ is not defined, which is as
well as the player would not be able to input a word with an underscore (see
Player Input on page 59).

Alan Adventure Language Manual 25

1995-12-18 Alan version 2.6

3.5 Messages

 37. messages = 'MESSAGE' message_list
 ;

 38. message_list = message
 39. ! message_list message
 ;

 40. message = ID ':' STRING
 ;

The Alan system has a number of standard messages built in. These messages
are presented to the player in various situations, both normal and otherwise.
An example is the following:

> go north
You can’t go that way.

The response "You can’t go that way." is a typical example of such system
messages (see also appendix C,COMPILER ERROR MESSAGES, on page
93).

 To make the user dialogue more adapted to the settings you select Alan al-
lows you to define your own versions of the messages. The syntax to do that
is shown above, and below is an example:

:
MESSAGE

NOWAY: "There is no exit in that direction."
:

If the above is used in the source for same game as the previous example, it
would instead look like:

> go north
There is no exit in that direction.

The standard message is replaced by the contents of the string in the defini-
tion. For a complete list of all the identifiers of messages and their use see ap-
pendix A,RUN-TIME MESSAGES, on page 77.

3.6 Syntax Definitions

 41. syntax = 'SYNTAX' syntax_list
 ;

 42. syntax_list = syntax_item
 43. ! syntax_list syntax_item
 ;

 44. syntax_item = ID '=' syntax_elements optional_class_restrictions
 ;

 45. syntax_elements = syntax_element
 46. ! syntax_elements syntax_element
 ;

 47. syntax_element = ID
 48. ! '(' ID ')' optional_multiple_indicator
 ;

26 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

 49. optional_multiple_indicator =
 50. ! '*'
 ;

The syntax construct is used to specify the structure of the input from the play-
er. Eachsyntax_item defines the syntax for oneVERB. The effects are de-
clared using theVERB construct (seeVerbs below).

The syntax is defined as a number of elements each being either a player word
or the name of a parameter (an identifier enclosed in parenthesis). The
optional_multiple_indicator (an‘*’) may be used to indicate
that this parameter can reference a set of objects or actors (for example by the
player usingall or concatenating a number of parameters using a conjunc-
tion like and).

SYNTAX
take = ’take’ (obj)*.
drop = ’drop’ (obj).

This shows the syntax definitions for the verbstake anddrop , take also
allowing multiple objects. This would allow inputs like

> take everything except the pillow
> drop the vase

but not

> drop the shovel and the bucket

For more information on player inputs refer toPlayer Input on page 59.

 51. optional_class_restrictions = '.'
 52. ! 'WHERE' class_restrictions
 ;

 53. class_restrictions = class_restriction
 54. ! class_restrictions 'AND' class_restriction
 ;

 55. class_restriction = ID 'ISA' classes 'ELSE' statements
 ;

 56. classes = class_identifier
 57. ! classes 'OR' class_identifier
 ;

 58. class_identifier = 'OBJECT'
 59. ! 'ACTOR'
 60. ! 'CONTAINER'
 61. ! 'INTEGER'
 62. ! 'STRING'
 63. ! 'CONTAINER' 'OBJECT'
 64. ! 'CONTAINER' 'ACTOR'
 ;

To restrict the types of entities the player may refer to in the place of a param-
eter its class may be defined by usingelement_classes . Each parameter
may be restricted to refer only to certain kinds (classes) of entities: objects,
objects with the container property, actors, numeric literals, string literals or
a combination of these. The statements following theELSE will be executed
if that restriction is not met, i.e. if the player made a reference to an entity not
in the specified class or classes. The default isOBJECT, i.e. if no

Alan Adventure Language Manual 27

1995-12-18 Alan version 2.6

element_classes are supplied for that parameter identifier the player
may only refer to objects at that position in his input.

The following example describes the syntax for a verb which only allows OB-
JECTs as its parameters (this is however also the default, see below).

SYNTAX
take = ’take’ (obj)

WHERE obj ISA OBJECT
ELSE "You can’t take that."

The classes defined for a parameter are also used by the compiler to analyse
statements and expressions in which that parameter occurs to ensure that the
entity referenced is guaranteed to have the properties required during run-
time. A parameter identifier defined usingISA OBJECT may for example
not be used in aLIST statement as this requires the entity to have the contain-
er property (ISA CONTAINER would of course restrict the entities to only
those entities that are containers and would do the trick). As there are a
number of kinds of entities that can have the container property it is possible
to restrict parameters to only those objects that are containers (CONTAINER
OBJECT), those actors that are containers (CONTAINER ACTOR), or that it
need just have the container property. The last case will not allow access to
attributes of the parameter, as you can not be sure what type it is.

If no SYNTAX is defined for aVERB at all, that is equivalent to specifying

SYNTAX ? = ? (object).

The question marks represents the name of theVERB. This means that normal
verb/object type ofVERBs by default have the correct syntax and may only
refer to objects. It also implies that the default name for the single parameter
is OBJECT (seeWHAT specifications on page 49 for the implications of this).

Note:Following this default mechanism all verbs that has no cor-
responding syntax declaration will be assumed to require an ob-
ject as parameter. This means that simple ‘verb-only’VERBs
must be declared using a syntax likeq = ’q’ to make it possible
to input a single verb word. It also means that verbs that have no
SYNTAX will only accepts OBJECTs, not ACTORs for exam-
ple.

3.7 Verbs

 67. verb = verb_header verb_body verb_tail
 ;

 68. verb_header = 'VERB' id_list
 ;

 69. verb_body = simple_verb_body
 70. ! verb_alternatives
 ;

 74. simple_verb_body = optional_checks optional_does
 ;

 75. verb_tail = 'END' 'VERB' optional_id '.'

28 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

A verb declaration specifies the effects of something the player does (com-
mands using a syntactically legal input). Verbs can be declared globally, at a
location or inside an object or actor.

The identifiers in theid_list will by default also be the player words that
can be used to invoke the verb. If a SYNTAX is declared for the VERB, the
identifiers in theid_list will not normally be accessible to the player, in-
stead the sequence of words and parameters specified in the SYNTAX must
be used.

Checks
 76. optional_checks =
 77. ! 'CHECK' statements
 78. ! 'CHECK' check_list
 ;

 79. check_list = check
 80. ! check_list 'AND' check
 ;

 81. check = expression 'ELSE' statements
 ;

To decide if the action is at all possible to carry out, theCHECKs are executed.
First the global checks are tried, then the checks in the verb declaration at the
current location and finally the checks declared for the verb in the objects or
actors bound to the parameters (if any).

Note:The verb need not be declared in all of these places.

If no expression is specified for a check, the check will always fail, an uncon-
ditional check. This is useful for preventing certain actions at specific loca-
tions for example.

LOCATION l
VERB jump

CHECK "You can’t do that here."
END VERB jump.

END LOCATION l.

If any check should fail, the execution of the current verb is interrupted and
the statements following the failing check are executed. The user (player) is
then prompted for another command.

Does-clause
 82. optional_does =
 83. ! 'DOES' optional_qual statements
 ;

If all checks succeed theDOES-part(s) of theVERB will be carried out. The
order is normally to first execute the body any global declaration, then the
body in the verb declaration for the current location. Finally each parameter
is examined to find any declarations of theVERB inside what it refers to, those
verb bodies are then executed in the order in which the parameters occurred
in the syntax declaration. This is the most natural order and covers most cases
but in some infrequent situations another order may be necessary. By using
the qualifiersBEFORE/AFTER/ONLY the author can decide which verb

Alan Adventure Language Manual 29

1995-12-18 Alan version 2.6

bodies will be executed and in which order (see section 3.7.2 below for de-
tails).

VERB take
CHECK obj NOT IN inventory

ELSE "You already have that."
DOES

LOCATE obj IN inventory.
END VERB take.

3.7.1 Verb Alternative

 71. verb_alternatives = verb_alternative
 72. ! verb_alternatives verb_alternative
 ;

 73. verb_alternative = 'WHEN' ID simple_verb_body

When aVERB is declared inside anOBJECT, verb_alternatives are
allowed. These alternatives are used in conjunction with theSYNTAX decla-
ration defined below in the following way. When a player inputs a command
each parameter in the syntax (see above) is bound to an actual object or actor
or receives the value of a literal, depending on the specified syntax. To find
out which verbCHECKs to test and verb bodies to execute the parameters are
examined in turn according to the algorithm described inVerb Qualification
below. Each object may then have a different verb body, depending on at
which position it occurred (to which parameter it was bound).

For example with the syntax definition

SYNTAX break_with = ’break’ (o) ’with’ (w).

theVERB body forbreak_with to execute for thedelicate_vase
probably would differ if it occurs as the direct object (o), or if it occurs as the
indirect object (w). For each such parameter in the syntax you may define dif-
ferent actions by supplying averb_alternative for each parameter
identifier. The verb declaration could look like

OBJECT feather
VERB break_with

WHEN o DOES
"The feather is even more flat than before."
MAKE feather flat.

WHEN w DOES
"There is nothing much that you can break with a

feather!"
END VERB break_with.

END OBJECT feather.

3.7.2 Verb Qualification

234. optional_qual =
235. ! 'BEFORE'
236. ! 'AFTER'
237. ! 'ONLY'
 ;

30 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

The order in which the different verb definitions are executed is normally
from the outside in, i.e. the global definition is executed first if a global defi-
nition exists, then any possible definition of this verb in the current location.
Lastly, the verb bodies in the parameters (in the order they appeared in the
syntax definition) on which the verb was applied (if any) is examined to find
and execute their verb definitions.

In most circumstances this is the most logical order, but if another order is re-
quired the verb qualifiersAFTER, BEFORE andONLY may be used to alter
this behaviour. The qualifiers alter the order of execution and a strict defini-
tion of this is described below.

First, the verb in the last parameter (if any) is investigated and, if this defini-
tion had theBEFORE or ONLY qualifier it is executed. If the qualifier was
ONLY the execution is also aborted at this stage and no more verb definitions
are examined, otherwise the other parameters are examined in the same way.

In the next step, the current location is examined and, if it contained a verb
definition with aBEFORE or ONLY qualifier, that definition is now executed
(and if it wasONLY, execution is aborted). As a result aBEFORE qualifier in
the verb definition in an object will supersede anONLY qualifier in the loca-
tion.

At this stage, allBEFORE andONLY qualifiers are handled appropriately
since the global definition is now in turn anyway. This leaves the definitions
without any qualifier or with theAFTER qualifier. The global definition is ex-
amined and if it did not have theAFTER specification, it is executed (if it had
aONLY qualifier execution is stopped after executing it). Any definition of the
verb in the current location is again examined and, if it did not have theAF-
TER qualifier, it is executed. What remains is to execute the verb definition in
the parameters if they have not been executed already, and to execute the lo-
cation definition and the global definition (in that order) if they where de-
clared with theAFTER qualifier.

So in short (with global definitions being the outermost and the definition in
the entity bound to the last syntax parameter the innermost):

• From the outside in, find anyBEFORE or ONLY definitions and
execute them (stop ifONLY found).

• From the inside out, execute any definitions not already executed
and not declared with theAFTER qualifier.

• Execute the remaining verb definitions (those with anAFTER
qualifier) from the outside in.

The normal order of execution is represented by the second item in the above
list.

The qualifiers are a powerful but confusing concept. The normal order of ex-
ecution is usually appropriate and only in special cases should qualifiers be
used. When they are needed, you will find that one qualifier at the correct def-
inition will normally do the trick. The above algorithm is used to get a strict

Alan Adventure Language Manual 31

1995-12-18 Alan version 2.6

definition of the execution order. It is not expected that this complex behav-
iour will be needed in practice.

Note:All checks for aVERB will always be run in global-loca-
tion-parameter order regardless of anyBEFORE/AFTER/ONLY
qualifiers.

An example of the use of qualifiers is to ensure that only the verb body within
the object is executed:

OBJECT bomb
VERB take

DOES ONLY
"Your curious fingering at the intricate

mechanism sets it of. BOOOM!"
QUIT.

END VERB examine.
END OBJECT bomb.

3.8 Locations

 84. location = location_header location_body location_tail
 ;

 85. location_header = 'LOCATION' ID optional_name
 ;

 86. location_body = optional_attributes optional_description optional_does
 optional_exits optional_verbs
 ;

 87. location_tail = 'END' 'LOCATION' optional_id '.'
 ;

A location is a declaration of a place (a “room”) in the game that (normally)
can be visited by the player, have objects lying around, etc.

Identifier and Name
114. optional_name =
115. ! 'NAME' ids
 ;

TheID is the identifier used by the author throughout the source when refer-
ring to this location. By default, this will also be the name of the location writ-
ten out to the player, but by using theNAME clause you can give a different
name to the location when presenting it to the player (seeObjects on page 33
andIdentifiers and Names on page 55).

Attributes
 27. attributes = attribute '.'
 28. ! attributes attribute '.'
 ;

 29. attribute = ID
 30. ! 'NOT' ID
 31. ! ID optional_minus INTEGER
 32. ! ID STRING
 ;

32 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

A location can have attributes (seeDefault Attributes on page 23). These can
be local attributes available only for this location or override declared default
attributes.

Description
107. optional_description =
108. ! description
 ;

109. description = 'DESCRIPTION'
110. ! 'DESCRIPTION' statements

The statements in theDESCRIPTION clause should print a description of the
location. These statements are executed when the hero enters the location or
when executing aLOOK statement. See alsoSpecial Statements on page 43,
concerning theVISITS statement.

Does-clause
 82. optional_does =
 83. ! 'DOES' optional_qual statements
 ;

The optionalDOES clause contains statements performed whenany actor en-
ters the room (is located there). An example usage of this would be if there
was a weak bridge that only allows a certain total weight before it collapsed.
TheDOES clause of that location could contain checks for this which would
be executed whenever any actor enters that location, not only the hero.

Exits
 88. optional_exits =
 89. ! optional_exits exit
 ;

 90. exit = 'EXIT' id_list 'TO' ID optional_exit_body '.'
 ;

 91. optional_exit_body =
 92. ! optional_checks optional_does 'END' 'EXIT'
 optional_id
 ;

To build a world of locations, these must be connected. This is done by using
exits. An exit consist of anid_list , all of which are considered directional
words, i.e. when input by the player, they will move him to the location iden-
tified by theID . It is possible to customize the exit usingCHECKs (seeVerbs
on page 27 for a definition), that must be satisfied to allow passage through
the exit, and statements that will be executed when the player passes through.

Note:If there exist an exit from one location to another, there will
NOT automatically be an exit in the opposite direction!

Two interconnected locations might be declared like:

LOCATION east_end NAME ’East End of Hall’
DESCRIPTION

"This is the east end of a vast hall. Far away to the
west you can see the west end."

EXIT w TO west_end.

Alan Adventure Language Manual 33

1995-12-18 Alan version 2.6

END LOCATION east_end.
LOCATION west_end NAME ’West End of Hall’

DESCRIPTION
"From this western end of the large hall it is almost

impossible to discern the opposite end to the
east."

EXIT e TO east_end.
END LOCATION west_end.

Local verbs may also be declared in aLOCATION. SeeVerbs on page 27 for
a description of this.

3.9 Objects

 93. object = object_header object_body object_tail
 ;

 94. object_header = 'OBJECT' ID optional_name optional_where
 ;

 95. object_tail = 'END' 'OBJECT' optional_id '.'
 ;

 96. object_body = optional_properties optional_attributes
 optional_descriptions optional_verbs
 ;

 97. optional_attributes =
 98. ! optional_attributes is attributes
 ;

 99. is = 'IS'
100. ! 'ARE'
101. ! 'HAS'
 ;

102. optional_descriptions =
103. ! optional_descriptions
 article_or_mentioned_or_description
 ;

104. article_or_mentioned_or_description = article
105. ! description
106. ! mentioned
 ;

107. optional_description =
108. ! description
 ;

Objects are all the things that can be manipulated by the player. They can be
picked up, examined and thrown away (if the author has allowed it). They will
usually be described when the player enter a location containing objects.

As for locations, theID is the name you use to refer to this object. It is also
the default name for what is presented to the player and what he has to use
when referring to the object.

Name
114. optional_name =
115. ! 'NAME' ids
 ;

By using theNAME clause you can give the object an other name, e.g.

34 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

OBJECT chair3 NAME little wooden chair

In this example the word “chair” is a noun and “little” and “wooden” would
be adjectives. When the player refers to the object with the author name
chair3 , he may use just “chair” if it is the only object with “chair” as its
noun at the current location, or he may distinguish between multiple chairs by
also giving one or more adjectives to pin down the chair he wanted.

Note:If the NAME clause is used the namechair3 is not availa-
ble to the player.

Initial location
217. optional_where =
218. ! where
 ;

219. where = 'HERE'
220. ! 'NEARBY'
221. ! 'AT' what
222. ! 'IN' what
 ;

It is possible to set the initial location of an object by using an optionalwhere
clause. If no such clause is used the object will not be present in the game until
it is moved somewhere by aLOCATE statement. Only theAT what andIN
what forms are allowed when describing an initial location of an object.

OBJECT chest AT tresury
IS NOT open.
DESCRIPTION

"On the floor there is a heavy golden chest. Its sides
and top are completely encrusted with jewels."

MENTIONED
IF chest IS open THEN

"open"
END IF.
"heavy jewel encrusted chest"

VERB open ...
:

END OBJECT chest.

Properties
116. optional_properties =
117. ! 'CONTAINER' container_body
 ;

An object can also be a container. This is declared by means of theCON-
TAINER property clause, which looks like an ordinary container declaration
(seeContainers on page 36).

OBJECT chest
CONTAINER

LIMITS ...
HEADER ...

DESCRIPTION ...
:

END OBJECT chest.

Alan Adventure Language Manual 35

1995-12-18 Alan version 2.6

Attributes
 27. attributes = attribute '.'
 28. ! attributes attribute '.'
 ;

 29. attribute = ID
 30. ! 'NOT' ID
 31. ! ID optional_minus INTEGER
 32. ! ID STRING
 ;

An object can have attributes (seeDefault Attributes on page 23). These can
be local attributes or override values of declared default attributes.

Article
111. article = 'ARTICLE'
112. ! 'ARTICLE' statements
 ;

The optional article can be used to define the indefinite article that should be
placed before the object name in e.g. inventory listings and when presenting
objects that have noDESCRIPTION clause. For example

OBJECT owl
ARTICLE "an"

:

would result in things like

There is an owl here.
You are carrying an owl.

The article is not used when mentioning the object when acting on multiple
objects:

> take everything
(owl) Taken.

Note:The default article, "a" (if using english), is used for objects
that have noARTICLE declared.

For objects that should not have any article, like ’some money’, anARTICLE
clause containing no statements must be used:

OBJECT money NAME some money
ARTICLE

:

This will lead to:

There is some money here.

instead of

There is a some money here.

36 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Mentioned
113. mentioned = 'MENTIONED' statements
 ;

The optionalMENTIONED clause gives a short form for this object given
when mentioned e.g. in listings of containers or when theALL form is used.
If no MENTIONED clause is present an appropriate default message, con-
structed from the object name, is supplied by the system.

> take all
(little black book) OK!
(green pearl) OK!

TheMENTIONED clause is also used when describing objects that have no
DESCRIPTION, by inserting the article (see above) and the short description
in a default message. In the following example output the article is underlined
and the short description is emphasised, the rest is the default message tem-
plates.

There is a little black book , a green pearl and an owl
here.

The same principle is used when constructing lists of objects in container con-
tents lists.

Description
109. description = 'DESCRIPTION'
110. ! 'DESCRIPTION' statements
 ;

Objects can of course have descriptions, statements describing the object.
This description will normally be printed when the player enters the location
where the object currently is. It will also be given as a result of theDE-
SCRIBE statement, and indirectly by executing aLOOK statement at the lo-
cation where the object is. If theDESCRIPTION clause is missing the Alan
system will supply a default description such as “There is a round ball here.”.
If there is aDESCRIPTION clause but it contains no statements the object
will be ‘invisible’, i.e. no description of it will printed. This can be useful for
objects already described by the location description, or of objects with par-
ticular properties.

Verbs

As for locations, local verbs can be declared inside an object. The verb decla-
rations inside objects is only used when that verb is applied to the object. See
Verbs on page 27 for details on verb declaration and usage.

3.10 Containers

118. container = container_header container_body container_tail
 ;

119. container_header = 'CONTAINER' ID
 ;

Alan Adventure Language Manual 37

1995-12-18 Alan version 2.6

120. container_body = optional_limits optional_header optional_empty
 ;

121. container_tail = 'END' 'CONTAINER' optional_id '.'
 ;

A container is something that can contain objects. A container can either be
an object itself (in which case it is declared as an object with theCONTAINER
property, seeObjects on page 33) or be a pure container. A container that is
not an object canNOT be manipulated directly by the player. It can, however,
be manipulated indirectly, if the author has supplied some verbs to do this,
such astake anddrop , which usually are implemented to manipulate the
inventory container. The inventory, i.e the container for everything the hero
is carrying, is the most common example of an pure container. The inventory
is implicitly declared, so that it exists and can be used for common purposes.
It can however be redeclared if required, for example to provide limits and a
different header. Its default declaration is

CONTAINER inventory
LIMITS
HEADER

END CONTAINER inventory.

Limits
122. optional_limits =
123. ! 'LIMITS' limits
 ;

112. limits = limit
113. ! limits limit
 ;

114. limit = limit_attribute 'THEN' statements
 ;

115. limit_attribute = attribute
116. ! 'COUNT' INTEGER
 ;

TheLIMITS clause put limitations on what and how much can be put in the
container. If any of these limits are exceeded when trying to locate anything
inside the container, the statements in the correspondingTHEN-part will be
executed and the players turn aborted. In fact these checks are performed as a
consequence of the execution of aLOCATE statement (not actually the player
placing anything inside the container). This means that the execution of a se-
quence of statements can actually be interrupted by these limitations.

The specification of an attribute, which must be a numeric default attribute,
implies that the sum of this attribute of all objects in the container can not ex-
ceed the value specified. The special attributeCOUNT is also allowed and in-
dicates a limitation on the number of objects allowed.

Header and Else
129. optional_header =
130. ! 'HEADER' statements
 ;

131. optional_empty =
132. ! 'ELSE' statements
 ;

38 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

HEADER is used when the contents of the container are listed. It is intended
to produce something like

"The box contains"

or

"You are carrying"

TheELSE-part is used instead of the header if the container is empty.

CONTAINER inventory
LIMITS

weight 50 THEN "You can not lift that much."
HEADER

"You are carrying"
ELSE

"You are not carrying anything."
END CONTAINER inventory.

If LIMITS or HEADER is missing the Alan system supplies the default of no
limits, and the messages “The $o contains” and “The $o is empty.” respective-
ly.

3.11 Events

133. event = event_header statements event_tail
 ;

134. event_header = 'EVENT' ID
 ;

135. event_tail = 'END' 'EVENT' optional_id '.'
 ;

An event is a sequence of statements executed at some location at a specified
time. It can e.g. be used to create an explosion where the bomb is three moves
from now or to let the ceiling of the cave fall down in five moves.

EVENT nearby_explosion
"Somewhere in the distance there is an explosion."
MAKE bomb gone_off.
SCHEDULE small_avalanche AFTER 2.

END EVENT.

Events may be scheduled and cancelled with theSCHEDULE andCANCEL
statements (seeEvent Statements on page 46).

3.12 Actors

136. actor = actor_header actor_body actor_tail
 ;

137. actor_header = 'ACTOR' ID optional_name optional_where
 ;

138. actor_body = optional_properties optional_attributes
 optional_description optional_verbs optional_actor_script

Alan Adventure Language Manual 39

1995-12-18 Alan version 2.6

 ;

139. actor_tail = 'END' 'ACTOR' optional_id '.'

An actor is something that seems to live its own life in the game. The author
refers to the actor by using theID , and it is also the default name presented to
the player.

Name
114. optional_name =
115. ! 'NAME' ids
 ;

By means of theNAME clause, a different name can be assigned to the actor
in the same way as for an object (seeObjects on page 33).

Container property
116. optional_properties =
117. ! 'CONTAINER' container_body
 ;

118. container = container_header container_body container_tail
 ;

The optional property (CONTAINER) clause may be used to indicate that this
actor can be used as a container, i.e it may contain things, thereby implying
that the actor is carrying the things contained. This is analogous to objects
having the container property (seeObjects on page 33).

Attributes
 27. attributes = attribute '.'
 28. ! attributes attribute '.'
 ;

 29. attribute = ID
 30. ! 'NOT' ID
 31. ! ID optional_minus INTEGER
 32. ! ID STRING
 ;

An actor can have attributes (seeDefault Attributes on page 23). These can be
local attributes or override values of declared default attributes.

ACTOR kirk NAME Captain Kirk AT control_room
HAS health 25.
CONTAINER

HEADER "Kirk is carrying"
ELSE "Captain Kirk is not carrying anything."

DESCRIPTION
"Your superior, Captain Kirk, is in the room."

END ACTOR kirk.

Description
optional_description =
108. ! description
 ;

109. description = 'DESCRIPTION'
110. ! 'DESCRIPTION' statements
 ;

40 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

In theDESCRIPTION clause, a description of this actor can be given. The
statements describing the actor will be executed when the player enters a lo-
cation where the actor currently is. This description will also be given as a re-
sult of theDESCRIBE statement. An exception is if the actor is currently ex-
ecuting a script for which there is a separate description (see below).

Script
140. optional_actor_script =
141. ! optional_actor_script script
 ;

142. script = 'SCRIPT' INTEGER '.' optional_description step_list
 ;

TheSCRIPT is the actor’s way of performing things. In a way it corresponds
to what the hero is ordered to do by the player’s typed-in commands.

Every script has a number to identify it. A script is selected by theUSE state-
ment. When a script is started it will continue until it reaches the end or an-
otherUSE statement is executed for this actor.

The optional description allowed in the beginning of a script is used instead
of the general description (in the beginning of the actor declaration) whenever
the actor is executing that particular script. If it is not present the general de-
scription is used.

ACTOR george NAME George Formby
DESCRIPTION

"George Formby is here."
SCRIPT 1.

DESCRIPTION
"George Formby is here cleaning windows."

STEP
...

SCRIPT 2.
DESCRIPTION

"George Formby is tuning his ukelele."
STEP

...
...

Steps
143. step_list = step
144. ! step_list step
 ;

145. step = 'STEP' statements
146. ! 'STEP' 'AFTER' INTEGER statements
147. ! 'STEP' 'WAIT' 'UNTIL' expression statements
 ;

A script is divided into steps. Each step contains statements representing what
the actor will do in what corresponds to one player move. A step can be de-
fined to be executed immediately next move, to wait a number of moves be-
fore it is executed or even to wait for a special situation (condition) to arise.

For example

Alan Adventure Language Manual 41

1995-12-18 Alan version 2.6

STEP WAIT UNTIL HERO HERE
"From the shadows a waiter emerges: $p’-Bonjour,
monsieur’, he says."

When an actor has executed the last step of the current script, it will do noth-
ing more until the nextUSE statement is executed for this actor (the actor will
be “dead”, but still present at the location where it was). If this is not what is
wanted, it is recommended to end each script with a newUSE statement.

The Hero

There is one very special actor, the hero, which is the player. This actor is nor-
mally implicitly declared, but possible to redeclare. One situation when this
is required is if you like to have attributes on the hero, such as “sleepy” or
“hungry”. Then a declaration like the following is possible:

ACTOR hero NAME me
 IS NOT hungry.
 VERB examine DOES
 IF hero IS hungry THEN
 "Examining yourself reveals a poor, hungry soul."
 ELSE
 "You find nothing but a poor beggar."
 END IF.
 END VERB examine.
END ACTOR hero.

3.13 Rules

148. rule = 'WHEN' expression '=>' statements
 ;

A rule is an arbitrary expression, which, when true, results in execution of the
given statements. Rules can be used to make things happen when certain sit-
uations arise, such as starting an actor when the hero enters the cave.

WHEN hero AT cave AND monster NOT active =>
USE SCRIPT 3 FOR monster.

The rules are tested after each actor, including the player, has made his move
and after each event that is executed. Rules can be considered to be executed
at the location where the last activity (actor move or event) was performed
(see alsoA Turn of Events on page 59). This is important to consider especial-
ly concerningWHERE specifications (see page 48).

3.14 Start section

149. start = 'START' where '.' optional_statements
 ;

The start section defines where the player (the hero) will be at the start of the
game. This must be a location. Optionally this may be followed by statements
to be executed at the beginning of the game, such as hello-messages or short
instructions as well as starting any actors and scheduling events.

42 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

3.15 Statements

150. optional_statements =
151. ! statements
 ;

152. statements = statement
153. ! statements statement
 ;

154. statement = output_statement
155. ! special_statement
156. ! manipulation_statement
157. ! event_statement
158. ! assignment_statement
159. ! actor_statement
160. ! if_statement
 ;

3.15.1 Output Statements

161. output_statement = STRING
162. ! 'DESCRIBE' what '.'
163. ! 'SAY' expression '.'
164. ! 'LIST' what '.'
 ;

An output statement is in the simplest case just a string, i.e. any text, possibly
stretching over multiple lines, surrounded by double quotes. Whenever it is
executed, the string will be printed on the terminal with the following excep-
tion: if an output statement is executed at a location in the game where the
hero not presently is the output will not be shown. This can be used in the fol-
lowing way in a script for the actorcharlie_chaplin :

"Charlie Chaplin leaves the house through the front door."
LOCATE charlie_chaplin AT outside_house.
"Charlie Chaplin comes out from the nearest house."

If the hero is inside the house or out in the street he will now get different
views of the situation.

There are some character combinations that have special meaning for the
printout:

$l The name of the current location
$v The verb the player used (the first word)
$p New paragraph (one empty line)
$n New line
$i Indent on a new line
$t Insert a tabulation
$$ Do not insert a space
$a The name of the actor that is executing
$o The current object (first parameter)
$<n> The parameter with number <n> (<n> is a digit)

Note:The$a , $o and$<n> formats must be used with care as
they are not checked at compile time, e.g. you can use "$o" in a
context where no parameter is defined which would lead to a run-
time error. To avoid any run-time problems use theSAY statement
with the parameter name. The use of$a , $o and$<n> formats
may not be forward compatible.

Alan Adventure Language Manual 43

1995-12-18 Alan version 2.6

Describe

TheDESCRIBE statement executes the description part for an actor, an object
or a location. If no such description exists a default description, such as

"There is a $o here."

is used instead. If the object has the container property aLIST statement is
also executed for that object automatically (see below).

If a DESCRIBE statement is used for an object in the description part of a lo-
cation, the system will recognise this and make sure that the object is not de-
scribed more than once during the execution of aLOOK statement or when the
hero enters that location. This makes it possible to use objects as parts of a lo-
cation and embedding their description at the correct place in the longer de-
scription of the location.

"This office is dusty and probably hasn’t been used for
many years."

DESCRIBE desk.

Say

TheSAY statement will output a short description of what is referred to by the
what part. If that refers to an entity (aLOCATION, OBJECT or ACTOR) it
will print the name of that entity or execute itsMENTIONED clause if one is
available. If it refers to an attribute it will print its value (integer or string). Pa-
rameter names are also allowed in theSAY statement, which, of course will
result in a short description of the entity to which it is bound, or a printing of
the literal (if the parameter was aSTRING or INTEGER parameter).

IF contents OF bottle > 0 THEN
"In the bottle there is still"
SAY contents OF bottle.
"litres of water left."

ELSE
"The bottle is empty."

END IF.

List

TheLIST statement lists all objects in a container together with the header as
specified for the container. If the container is empty the statements in the emp-
ty clause of the container is executed instead.

"The chest is heavy."
IF chest IS open THEN

LIST chest.
END IF.

3.15.2 Special Statements

165. special_statement = 'QUIT' '.'
166. ! 'LOOK' '.'

44 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

167. ! 'SAVE' '.'
168. ! 'RESTORE' '.'
169. ! 'SCORE' optional_integer '.'
170. ! 'VISITS' INTEGER '.'
171. ! 'SYSTEM' STRING '.'
 ;

Quit

QUIT prints a restart question and if affirmative restarts the game, if not im-
mediately leaves the game. Any scoring or other printouts has to be made ex-
plicitly before executing theQUIT statement.

Look

LOOK describes the current location and what it contains. TheDESCRIP-
TION part for the location is executed, which may include describing objects
or actors by executingDESCRIBE statements. Then objects and actors that
has not already been described will be described.

Save and Restore

SAVE saves the game on a file for later use withRESTORE. Both save and
restore asks for a file name to use for storing and restoring.

If the player should be shown the current surroundings after aRESTORE, you
will have to implement a player verb like

VERB oops
DOES

RESTORE.
LOOK.

END VERB oops.

Score

SCORE is a way of rewarding the player by giving points for certain actions.
This is done by the statement

SCOREpoints .

for example

SCORE 25.

The first time every such statement is executed the points given are added to
the players current score.SCORE without any arguments prints a message in-
dicating the current accumulated score.

Note:TheSCORE statements assumes a simple model of scoring;
a number of actions is necessary to complete the game and all
those are necessary to achieve the maximum number of points.
For adventures having a more complex and varied scoring system
(particularly if the game can be successfully finished without per-

Alan Adventure Language Manual 45

1995-12-18 Alan version 2.6

forming all scoring actions or in multiple ways) manual scoring
should instead be implemented using attributes (e.g on the player)
andSET andIF statements.

Visits

TheVISITS statement changes the number of times a location can be visited
before the long description is presented again:

VISITS count .

The value of the argument (count) controls the number of visits to a partic-
ular location between full descriptions. The default setting (0) indicates that
every time a particular location is visited its full description will be shown
(which can also be expressed as: the full description willnot be shown 0 times
in between). Thus, a setting of 1 (one) would give a full description every oth-
er time the same location is visited. So

VISITS 0.

will always show long descriptions (this is also the initial setting).

Note:The familiar VERBOSE, BREIF etc. commands can be im-
itated using different values in the VISITS statement.

3.15.3 Manipulation Statements

172. manipulation_statement = 'EMPTY' what optional_where '.'
173. ! 'LOCATE' what where '.'
 ;

Locate

TheLOCATE statement is a way of transferring objects and actors. When ex-
ecuted, the indicated object or actor will be placed at the location given. For
a description on how to specify where, seeWHERE specifications on page 48.
When an actor is located at a new location theDOES clause of that location is
always executed.

One special case of theLOCATE statement is when the predefined actorHERO
is located somewhere. This is analogous to what happens when the player
types in a direction, i.e. the player is located at the appropriate location. Under
particular circumstances, you may want to locate the player at a different lo-
cation as a side effect of another action. For example:

EVENT explosion
"Suddenly the door seems to bulge outwards, it bursts
open throwing rocks and splinters everywhere. The
impact of the explosion literally throws you back
out in the hallway."
LOCATE HERO AT hallway.

END EVENT explosion.

46 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

In this case the new location will be described and theDOES clause of that
location executed.

Another special case is when locating something inside a container. TheLO-
CATE statement will then cause the execution of the limits of that container,
and if any of the limits are exceeded the complete player turn is aborted im-
mediately, resulting in that no more statements are executed. So if a player
command should result in the location of an object inside a container, a good
thing is to place theLOCATE statement as early as possible, as this enforces
the limit checks in the beginning of this player turn.

Empty

TheEMPTY statement locates all objects in the given container (or object or
actor with theCONTAINER property) at a certain place. The meaning of the
where part is as forLOCATE.

EMPTY inventory HERE.
"You seem to have lost most of your possessions. Well,

you can’t have everything."
LOCATE hero AT restart_point.

3.15.4 Event Statements

174. event_statement = 'CANCEL' ID '.'
175. ! 'SCHEDULE' ID optional_where 'AFTER' INTEGER '.'
 ;

There are two statements to schedule and cancel events. The identifier must
refer to an event.

Schedule

SCHEDULE event means that the given event will occur at the indicated loca-
tion in the number of moves given. This can be zero moves, i.e.AFTER 0
means that the event will occur now (during this player turn). If no location is
specified,HERE is assumed, i.e. it will be executed at the current location, the
location where the statement itself was executed at.

The semantics of specifying a location (where) asAT id , where the identi-
fier represents an object or an actor, is that wherever that object or actor is
when the event occurs, the event will be executed at that place.

Executing a secondSCHEDULE statement for the same event before it has oc-
curred will reschedule the event to the new time.

Cancel

CANCEL will remove the event referenced from the queue of scheduled
events.

EVENT ticking
"Tick..."

Alan Adventure Language Manual 47

1995-12-18 Alan version 2.6

IF timer OF bomb = 0 THEN
SCEHDULE explosion AFTER 1.

ELSE
DECREASE timer OF bomb.
SCHEDULE ticking AFTER 1.

END IF.
END EVENT ticking.

VERB defuse
DOES

CANCEL ticking.
CANCEL explosion.
"Phuuui! That was close."

END VERB defues.

START AT office.
"The bomb is ticking..."
SCHEDULE ticking AFTER 1.

3.15.5 Assignment Statements

176. assignment_statement = 'MAKE' what something '.'
177. ! 'INCREASE' attribute_reference optional_by_clause
 '.'
178. ! 'DECREASE' attribute_reference optional_by_clause
 '.'
179. ! 'SET' attribute_reference 'TO' expression '.'
 ;

180. optional_by_clause =
181. ! 'BY' expression
 ;

There are a number of statements for changing values of attributes.

Make

TheMAKE statement is used to set or reset boolean attributes.

MAKE door open.

Increase and Decrease

TheINCREASE andDECREASE statements modifies the values of numeric
attributes by increasing or decreasing them by the value of the expression giv-
en in the optionalBY clause. If noBY clause is specified the attributes are
changed by 1 (one).

INCREASE level OF bottle BY contents OF mug.
DECREASE lives OF HERO.

Set

TheSET statement is used when assigning values to numerical or string val-
ued attributes.

SET mood OF king_tut TO 3.
SET hour OF clock TO hour OF clock + 1.

48 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

3.15.6 If Statement

182. if_statement = 'IF' expression 'THEN' statements optional_elsif_list
 optional_else_part 'END' 'IF' '.'
 ;

183. optional_elsif_list =
184. ! elsif_list
 ;

185. elsif_list = 'ELSIF' expression 'THEN' statements
186. ! elsif_list 'ELSIF' expression 'THEN' statements
 ;

187. optional_else_part =
188. ! 'ELSE' statements
 ;

TheIF statement is essential for being able to vary the output and otherwise
change the activities in the game. The expression is evaluated (seeExpres-
sions below) and if it evaluates totrue , the statements following theTHEN
are executed, otherwise the expressions in any followingELSIF clauses are
evaluated (in order) and the statements following the first expression that re-
sults in a true value is executed. If none of the expressions in theELSIF
clauses evaluated to true, or there are noELSIF clauses, the statements fol-
lowing theELSE are executed. TheELSE clause is also optional.

IF minute OF clock = 59 THEN
SET minute OF clock TO 0.
INCREASE hour OF clock.

ELSE
INCREASE minute OF clock.

END IF.

3.15.7 Actor Statements

189. actor_statement = 'USE' 'SCRIPT' INTEGER optional_for_actor '.'
 ;

190. optional_for_actor =
191. ! 'FOR' ID
 ;

TheUSE statement starts execution of a given script for a given actor. It is
possible to leave out theFOR id -part when writing code within a certain
actor; in this case the actor that the code is in is assumed.

USE SCRIPT 4 FOR george.

3.16 WHERE specifications

219. where = 'HERE'
220. ! 'NEARBY'
221. ! 'AT' what
222. ! 'IN' what
 ;

Many constructs in the Alan language require a specification of where the
construct should operate. The general intention of awhere specification is to
return a location. The meaning of the constructs above are as follows

Alan Adventure Language Manual 49

1995-12-18 Alan version 2.6

• HERE is the location where the current activity is performed. Nor-
mally this mean where the hero is, but if the expression is evalu-
ated in an event scheduled at a particular place, that place is
HERE, and the same applies to activities performed by other ac-
tors and for expressions within rules. Note that this is equivalent
to AT LOCATION.

• NEARBY means any adjacent location, adjacent meaning that
there exists an exit from the other location toHERE (note that the
direction is fromNEARBY to HERE).

• AT what means at the location of the entity referenced by the
what specification (seeWHAT specifications on page 49).

• IN what must refer a container and the expression refers to in-
side of that container.

Note:Not all kinds ofwhere specifications are meaningful in all
constructs requiring awhere specification. An example is
NEARBY which, of course, is not allowed in aLOCATE statement
as this needs a definite location to locate to, andNEARBY is not
specific. Instead,NEARBY is useful inIF statements to see if the
monster is somewhere near.

3.17 WHAT specifications

Constructs in the grammar for the Alan language often refer to some entity de-
fined in the Alan source. This is generally called a what specification, as it
specifies what the construct refers to. The what specification may have the
following forms

213. what = 'OBJECT'
214. ! 'LOCATION'
215. ! 'ACTOR'
216. ! ID
 ;

OBJECT refers to the first parameter, i.e. the first object or actor referred to
by the player in the input as described by the syntax. Normally this is intended
for use with verbs relying on the default syntax handling; for verbs where a
SYNTAX construct is specified the identifiers for the parameters should be
used instead (the use of syntax declarations is strongly advised).

Note:If OBJECT is used in an expression no compile time checks
can be made on class restrictions which might lead to run-time er-
rors when referring the first parameter. The use ofOBJECT in ex-
pressions might not be forward compatible.

ACTOR is always set to the actor currently active and this also applies to ex-
pressions and statements within rules as these are run once for each actor.

LOCATION is the current location, i.e. the location where the current activity
is performed. This is normally the location where the hero is, but may also be

50 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

where an event is executed or where the actor currently executing (other than
the hero) is.

An identifier, id , refers to the entity with that name, or a syntax parameter
with that name. A syntax parameter may have the same name as an entity de-
clared elsewhere in the source in which case the parameter overrides the en-
tity.

Note:Not all kinds ofwhat specifications are meaningful in all
contexts. For example it is not possible to useLOCATION (nor an
identifier referring to a location) as thewhat -part of aLOCATE
statement.

3.18 Expressions

The grammar for Alan also refers toexpression . This is a generic name
for a number of constructs yielding a value.

192. expression = term
193. ! expression 'OR' term
 ;

194. term = factor
195. ! term 'AND' factor
 ;

196. factor = primary
197. ! primary optional_not where
198. ! primary binop primary
199. ! primary optional_not relop primary
200. ! primary is something
 ;

201. primary = optional_minus INTEGER
202. ! STRING
203. ! what
204. ! 'SCORE'
205. ! aggregate where
206. ! '(' expression ')'
207. ! attribute_reference
208. ! 'RANDOM' INTEGER 'TO' INTEGER
 ;

3.18.1 Types of expressions

Expressions are needed e.g. inIF andSET statements. TheIF statement re-
quires a boolean expression, i.e. an expression yielding a true or false value,
while theSET statement needs a numeric or a string value. Some types of ex-
pressions return a value referring to an entity (an object, an actor or a location)
in the Alan source as is, for example, the case with an identifier bound to a
parameter allowing actors or objects. So, the possible types of expressions in
Alan are

• integers

• strings

• boolean

Alan Adventure Language Manual 51

1995-12-18 Alan version 2.6

• entities

3.18.2 Logical expressions

TheAND andOR operators are standard binary boolean operators.AND has
higher priority, but parenthesis may be used to change the order of evaluation.

IF kalif HERE AND mood OF sultan IS 0 THEN ...

3.18.3 The whereabouts of an entity

The expression primary optional_not where is used to test if a
particular entity as specified bywhat is (or is not) at the place indicated by
the where , as in

IF bottle IN inventory THEN ...

or

IF HERO NEARBY THEN ...

3.18.4 Binary and Relational operators

223. binop = '+'
224. ! '-'
225. ! '*'
226. ! '/'
 ;

227. relop = '<>'
228. ! '='
229. ! '=='
230. ! '>='
231. ! '<='
232. ! '>'
233. ! '<'
 ;

All binary operators (plus, minus, multiplication, division and the relational
operators) may be used on integer expressions. A comparison between ex-
pressions may be negated by using an optionalNOT.

IF temperature OF oven NOT > 100 THEN

Comparing two string expression using the binary operator‘= ’ will make a
case insensitive comparison, i.e. it will return a true value if the strings are the
same without considering the case of the characters. The special identity op-
erator, ‘==’, only works on strings and compares the strings for an exact
match (i.e. considering character case).

Two identifiers referring to entities may be compared with the‘=’ and‘<>’
operators, and may be used to test if a parameter refers to a particular entity
or the same as another parameter. For example

SYNTAX put_in = ’put’ (o) ’in’ (c)
WHERE c ISA CONTAINER

ELSE "You can’t put anything in the $2"

52 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

VERB put_in
CHECK o <> c

ELSE "That would be a good trick if you could do it!!"
DOES ...

Relational operations are not allowed on entities or strings, nor is it possible
to compare values of different types.

3.18.5 The value of Attributes

The expression primary is something is used to test the setting of
boolean attributes of the entity referred to bysomething . For example

IF bottle IS empty THEN ...

To get the value of a numeric or string attribute the expression ID ‘OF’
what is used.

IF s = password OF terminal THEN ...

3.18.6 Literal values

A single integer (e.g. 42) is of course a numeric expression.

The expressionRANDOM integer TO integer is also a numeric value
which is randomly selected between and including the two integers.

SET eyes OF first_die TO RANDOM 1 TO 6.

A string can be used in expressions and then represents a string value, e.g.

SET password OF terminal TO "xyzzy".

3.18.7 Aggregates

209. aggregate = 'COUNT'
210. ! 'SUM' 'OF' ID
211. ! 'MAX' 'OF' ID
 ;

Aggregates are functions to calculate values from sets of other values.

COUNT counts the number of objects at the specified place, e.g.

"You are carrying"
SAY COUNT IN inventory.
"things."

TheSUM andMAX aggregates return the sum and the maximum value respec-
tively of an attributes of all objects at the specified location. This implies that
the attribute must be a default object attribute in order to ensure that the at-
tribute is available for all objects. For example

IF SUM OF weight AT bridge > 500 THEN ...

Alan Adventure Language Manual 53

1995-12-18 Alan version 2.6

IF MAX OF size IN inventory > size OF small_door THEN ...

The last example could be adopted to make various restrictions in the possible
travels of the hero.

54 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Alan Adventure Language Manual 55

1995-12-18 Alan version 2.6

4 LEXICAL DEFINITIONS

4.1 Comments

Comments may be placed anywhere in the Alan source. A comment is opened
by double hyphens (’--’) and extends to the end of the line.

-- This is a comment

4.2 Identifiers and Names

Words used as identifiers in an Alan source may only be composed of letters,
digits and underscores. The first character must be a letter.

identifier = letter (letter | digit | underscore)*

In order to be able to use reserved words as identifiers (e.g. for verbs) there is
also a second kind of identifier, namely the quoted identifier.

quoted_identifier = single_quote any_character+ single_quote

A quoted identifier starts and ends with single quotes and may contain any
character except quotes (including spaces). It may be used to make an identi-
fier out of a reserved word such asLOOK. This may be useful in the definition
of the verbLOOK which then would look like:

VERB ’look’
DOES

LOOK.
END VERB ’look’.

Note that normal identifiers are always translated to lower case before making
any comparisons so it does not matter how you (or the player) write them (al-
though it is easier to read if the same kind of editing is used for the same kind
of words). Quoted identifiers are not changed at all, so they must always be
written identically. They may also contain spaces which make them useful as
long names for locations as in

LOCATION pluto NAME ’At the Rim of Pluto Crater’
 DESCRIPTION

...

One single quoted identifier is used as the whole name of the location so as to
preserve editing and avoiding clashes with the reserved wordsAT andOF.

Note:Do NOT use a single quoted identifier as the name for any-
thing other than locations, as the words in objects and actor names
are analysed separately and assumed to be adjectives (except for
the last, which is a noun). Only quote separate words to avoid
clashes with reserved words.

56 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Note:Be careful when using quoted identifiers, especially if the
player is supposed to use the word. A player can not input words
containing upper case characters, underscores, spaces or other
special characters or separators.

Note:To get a single quote within a quoted identifier repeat it
(‘Tom’’s Diner’).

Some of the identifiers in an Alan description is by default used as player
words. This is for example the case with verb names (unless a SYNTAX state-
ment has been declared for the VERB) and object names (unless a NAME
clause has been used). If these contain special characters the player can not
enter them.

4.3 Numbers

Numbers in Alan are only integers and thus may consist only of digits.

number = digit+

4.4 Strings

The string is the main lexical component in an Alan source. This is how you
describe the surroundings and events to the player. Strings, therefore, are easy
to enter and consist simply of a pair of double quotes surrounding any number
of characters. The text may include newline characters and thus may cover
multiple lines in the source.

string = ’"’ any_character+ ’"’

When processed by the Alan compiler, any multiple spaces, newlines and tabs
will be compressed to one single space as the formatting to fit the screen is
done automatically during execution of the game (except for embedded for-
matting information, as specified inOutput Statements on page 42). You may
therefore write your strings any way you like, they will always be neatly for-
matted on the players screen.

Note:As strings may contain any character a missing double
quote may lead to many seemingly strange error messages. If the
compiler points to the first word after a double quote and indicates
that it has deleted a lot if IDs (identifiers), this is probably due to
a missing end quote in the previous string.

Note:To get a double quote within strings repeat it ("The sailor
said ""Hello!"".").

Alan Adventure Language Manual 57

1995-12-18 Alan version 2.6

4.5 Files

It is possible to write one adventure using many files, having different parts
in different files, thus giving an opportunity for some rudimentary kind of
modularisation. The method for this is the$include construct.

include = ’$INCLUDE’ quoted_identifier

where the quoted identifier is the name of the file to include. The$include
may be placed anywhere in a file and the effect will be the same as if the con-
tents of the named file had been inserted at that position in the file. Includes
may be nested.

58 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Alan Adventure Language Manual 59

1995-12-18 Alan version 2.6

5 EXECUTION OF AN ADVENTURE

5.1 A Turn of Events

The player in a way controls the execution of an Alan adventure. Each of his
inputs are taken care of and acted upon by the run-time system. The execution
of an Alan adventure starts by executing the start section. Then the player is
prompted for a command.

The player input is analysed according to the explicit and implicit syntax rules
and converted to an execution of verb bodies (global and in possible parame-
ters) or exits (in case of directional commands).

After the players command has been taken care of all rules are evaluated and
possibly executed. Then each of the other actors execute one step (if active)
and for each actor the rules are evaluated again. Finally any events that are
scheduled are fired before prompting the player again.

So to summarise:

get and execute a player command
evaluate all rules
for each actor

execute one step (if active)
evaluate all rules as above

end
check for and execute any pending events

Then the user is prompted for another command and everything is repeated.

A player command may be either a verb or a direction. A verb is executed by
checking the syntax of the input, performing any preconditions (checks) and
then executing the verb bodies (as described inVerbs on page 27). A direc-
tional command is executed by finding any exit in that direction, evaluating
the checks and the body (if any) of that exit and locating thehero at the new
location.

5.2 Player Input

The syntax defined in the Alan source is the basis for what the player is al-
lowed to input. Commands with these formats form the basic statements
available to the player. In addition the following combinations and variations
are possible:

• concatenating of statements usingAND or THEN, like
> open the door then enter

• the use ofIT to refer to the last object mentioned in the previous
command, e.g
> take the book and read it

60 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

• references to multiple objects usingAND, this allows
> take the blue vase and the pillow

• reference to multiple objects usingALL or EVERYTHING
> drop all

• excluding objects usingBUT or EXCEPT, like:
> wear everything except the bowler hat

• the use ofTHEM to refer to the multiple objects referenced in the
last command, e.g.
> remove the hat and the scarf then drop them

The reference to multiple objects (or actors) in a position is, of course, only
allowed if the adventure author has allowed it by using a multiple indicator in
the syntax definition (seeSyntax Definitions on page 25). These variations are
built in and handled automatically by the run-time system.

The interpreter also automatically restricts parameter references to objects
and actors at the current location. I.e. the player can only refer to objects and
actors that are present in his input. For hints on how to allow references to ob-
jects and actors that are not at the current location, refer toImaginary Objects
on page 67.

Another restriction placed on the player input by the interpreter is that the
words the player is allowed to use can only contain alphabetic characters. This
must be kept in mind when naming verbs that use the default syntax (an ex-
plicit SYNTAX statement can always specify other player words to trigger the
verb).

5.3 Run-time Contexts

When the player enters a command the Alan run-time system evaluates the
various constructs from the adventure description (source) as described
above. Depending on the players command evaluation of different parts of the
adventure may be triggered. These parts all have different conditions under
which they are evaluated and also have different contexts. Four different ex-
ecution contexts can be identified:

• execution of a verb, during the execution of a verb (the syntax and
verb checks and the verb bodies), which is the result of the player
entering a command that was not a directional command, param-
eters are defined and may be referenced in the statements and ex-
pressions. Also theACTOR is set to the hero andLOCATION to
the location where the hero is (HERE refers to the location of the
hero).

• execution of descriptions, these are started as the response to a di-
rectional command, aLOOK or DESCRIBE statement, or aLO-
CATE statement operating on the hero. During this no parameters
are defined,ACTOR is set as above, andLOCATION of course to

Alan Adventure Language Manual 61

1995-12-18 Alan version 2.6

the current (or new) location. The description clauses for objects
and locations as well as theDOES part of locations are evaluated
in this context.DOES-parts are executed for all actors entering a
location withACTOR set to the current actor.

• execution of actors and rules, each actor performs his step and af-
ter each actor all rules are executed. In these contexts no parame-
ters are defined butACTOR is set to the actor that is executing or
was executing immediately preceding the rules. So you could say
that rules are run for each actor, andLOCATION is set to that of
the executing actor (HERE refers to where the executing actor is).

• execution of events, no parameters and no actor is defined. The
location is set to where the event was scheduled to be executed
(see alsoEvent Statements on page 46).

So the execution of various parts of the adventure source can also be said to
have a number of different focuses, meaning where the action is considered
to take place:

• the hero - the actions of the player are always focused on the hero
and the actions performed are always related to where the hero is

• an actor - steps executed by an actor are always focused where the
actor is

• an event - code executed in events are focused where the event
was specified to take place (seeEvent Statements on page 46).

• a rule - rules are executed once after each actor (including the
hero) with the focus set to where that actor is

5.4 Moving Actors

The main way to move actors are the exits (seeLocations on page 31). They,
of course, only apply to the hero, but are executed if the player inputs a direc-
tional command, i.e. a word defined as the name for an exit in any location.
First the current location is investigated for an exit in the indicated direction,
if there is none an error message is output. Otherwise that exit is examined for
CHECKs which are run according to normal rules (seeVerbs on page 27). If
noCHECK was present or if the check passed the statements in the body (the
DOES-part) is executed. The hero is then located at the location indicated in
the exit header, which will result in the description of the location (by execut-
ing theDESCRIPTION-clause of the location) and any objects or actors
present (by executing theirDESCRIPTIONs).

When any actor (including the hero) is located at a location, theDOES-clause
of that location is executed as if the actor had moved into thatLOCATION.
The actor which was moved will be theACTOR even though the movement
was not caused by himself (but the result of an event, for example). So this is

62 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

also the last step in the sequence of events caused by locating the hero some-
where.

Alan Adventure Language Manual 63

1995-12-18 Alan version 2.6

6 HINTS AND TIPS

This chapter will give you some ideas about how the various features of Alan
may be used to implement common features in an Adventure game. These are
only suggestions and you are, of course, welcome to invent your own, but
these are probably some ideas that can get you started.

6.1 Use of Attributes

Attributes are primarily used for holding status information about the object,
actor or location to which it belongs. This allows, for example, the water bot-
tle to contain three levels of water.

OBJECT bottle
HAS level 3.
VERB drink

DOES
IF level OF bottle > 0 THEN

DECREASE level OF bottle.
ELSE

"There is no more water in the bottle."
END IF.

END VERB drink.
END OBJECT bottle.

Another example is the broken mirror.

OBJECT mirror
IS NOT broken.
VERB break

DOES
MAKE mirror broken.

END VERB break.
END OBJECT mirror.

The appropriate verbs defined in the objects may then modify the attributes
and thus update the status information.

But attributes defined for all objects also allows a kind of classification of the
objects (or locations or actors as appropriate). If the following declaration is
made

OBJECT ATTRIBUTES
NOT takeable.

all objects receive the attribute “takeable” and if the attribute is not specifical-
ly redeclared for an object it will not be takeable. Note however that the se-
mantic meaning of “takeable” must be implemented e.g. in the verb “take”:

VERB take
CHECK OBJECT IS takeable

ELSE "You can’t take the $o."
DOES

LOCATE OBJECT IN inventory.
END VERB take.

64 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

In the same way restrictions concerning what is possible to eat, drink, open
etc. may be implemented. This use of attributes to classify objects is “action-
oriented”, i.e. they imply that a particular action (verb) is applicable to the ob-
ject.

An alternate approach is to classify objects after their characteristics. Consid-
er:

VERB take
CHECK OBJECT IS NOT heavy

ELSE "That is much too heavy."
AND OBJECT IS NOT animal

ELSE "The $o moves quickly away, just far enough
for you not to reach it."

DOES
LOCATE OBJECT IN inventory.

END VERB take.

This approach is more “class-oriented” as the objects are classified and a verb
is possible to apply to certain classes of objects and not to others. This ap-
proach is more elegant but is harder to keep track of as you introduce new ob-
jects (which class or even classes does a new object belong to?).

6.2 Descriptions

The attributes are also used when presenting information about status to the
player. The attributes are tested in IF-statements to modify theDESCRIP-
TIONs and possibly even the short description in theMENTIONED sections.
For example:

OBJECT mirror
IS NOT broken.
DESCRIPTION

"On the wall there is a beautiful mirror with an
elaborate golden frame."
IF mirror IS broken THEN

"Some moron has broken the glass in it."
END IF.

VERB break
DOES

MAKE mirror broken.
END VERB break.

END OBJECT mirror.

To use this feature with the short descriptions makes the adventure feel a bit
more consistent.

OBJECT bottle
HAS level 3.
ARTICLE ""
MENTIONED

IF level OF bottle > 0 THEN
"a bottle of water"

ELSE
"an empty bottle"

END IF.
END OBJECT bottle.

Alan Adventure Language Manual 65

1995-12-18 Alan version 2.6

> inventory
You are carrying

an empty bottle

6.3 Common Verbs

As your library of adventures grow you will find that some verbs are always
needed, and always function the same way. Examples are “take”, “drop”, “in-
vent”, “look”, “quit” and so on. It is advised to use an include file contain
these verbs as well as their syntax definitions and any synonyms. Attributes
needed for these particular verbs could also be placed in a default attribute
declaration in this file.

All your adventures may then include this file, making these features imme-
diately accessible when you start a new adventure. All that this takes is some
thought as to what names to use for the open, openable, takeable etc. attributes
as discussed inUse of Attributes on page 63.

6.4 Doors

Another common feature is the closed door. Here’s how to implement it.

OBJECT treasury_door AT hallway
VERB open

DOES
MAKE treasury_door open.
MAKE hallway_door open.

END VERB open.
END OBJECT treasury_door.

LOCATION hallway
EXIT east TO treasury

CHECK treasury_door IS open
ELSE "The door to the treasury is closed."

END EXIT.
END LOCATION hallway.

OBJECT hallway_door AT treasury
VERB open

DOES
MAKE treasury_door open.
MAKE hallway_door open.

END VERB open.
END OBJECT treasury_door.

LOCATION treasury
EXIT west TO hallway

CHECK hallway_door IS open
ELSE "The door to the hallway is closed."

END EXIT.
END LOCATION treasury.

Note that we need two doors, one at each location, but they are synchronised
by always making them both open or closed at the same time. The check in
theEXITs makes sure that the hero can not pass through a closed door.

66 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

6.5 Containers

Containers are either pure containers or objects or actors with the container
property. A pure container is always considered to be where the hero is. This
means that the inventory (what the hero is carrying), his clothes etc. are suit-
able to be pure containers.

For a container to be directly manipulable by the player it must be an object
(or actor). This means that it always is located at a particular location in the
same way as other objects. A container (in the following the term container is
used to refer to objects with the container property) is always open, i.e the ob-
jects it contain are always accessible.

To be able to “close” a container, i.e. to make it impossible for the hero to take
or see things inside a container, the following technique may be used (other
techniques may be possible and even better!). Create an extra object with the
container property, this container is used as a temporary storage for objects in
the first container (the one the player is seeing). Place this at a location not
accessible to the player (the limbo location Nowhere always comes in
handy!).

The verbs “open” and “close” then get the following definition within the ob-
ject:

OBJECT chest AT treasury
CONTAINER
IS NOT open.

VERB close
DOES

MAKE chest NOT open.
EMPTY chest IN chest_contents.

END VERB close.

VERB open
DOES

MAKE chest open.
EMPTY chest_contents IN chest.
"Opening the chest reveals its contents."
LIST chest.

END VERB open.
END OBJECT chest.

The trick used here is to make all the things in the container disappear when
it is closed. To do this, the extra containerchest_contents is used as a
temporary holding place for the things inside the chest. Note that we need to
makechest_contents an actual object since pure containers are always
accessible (they are where the hero is!). When the chest is opened again we
simply empty the contents of thechest_contents container into the
chest, andVoila!

Alan Adventure Language Manual 67

1995-12-18 Alan version 2.6

6.6 Imaginary Objects

Sometimes you need to make it possible for the player to refer to things either
far away, things that are not really objects or that may be at many places at
once. Examples of these are a distant mountain that may be examined through
a set of binoculars, the melody in “whistle the melody”, and water or walls.
The problem here is that the Arun interpreter assumes that all objects refer-
enced by the player must be present (the cause for this is two-fold: first, this
is the most common case which would otherwise be necessary to handle man-
ually in checks for every verb and secondly, it is used to solve ambiguities be-
tween different objects with the same name).

For objects that should be visible from a distance the easiest method is to in-
troduce a ‘shadow object’. This is a second object acting on behalf of, or rep-
resenting, the distant object at the locations where it should be possible to re-
fer to it. For example:

LOCATION hills
:

END LOCATION hills.

OBJECT mountain AT hills
:

END OBJECT mountain.

LOCATION scenic_vista NAME Scenic Vista
END LOCATION scenic_vista.

OBJECT shadow_mountain
NAME distant mountain AT scenic_vista
DESCRIPTION

"Far in the distance you can see the Pebbly
Mountain raising towards the sky."

END OBJECT shadow_moutain.

This would allow for example at scenic_vista:

Scenic Vista.
Far in the distance you can see the Pebbly Mountain raising
towards the sky.

> look at mountain through the binoculars
...

which would otherwise be impossible. If the mountain should be visible and
manipulable from a number of locations, you might implement one shadow
object for each location but this is a bit tedious if they are identical. One trick
here is to use something like the following rule:

WHEN hero AT scenic_vista OR hero AT hill_road =>
LOCATE shadow_mountain AT hero.

This will ensure that whenever the hero moves to any of the places from
where the mountain is visible, theshadow_mountain is sure to follow.-
However, as the rules are executedafter the hero has moved, a better strategy
might be to make theshadow_mountain ‘silent’, i.e. to have no descrip-
tion. Instead the description of it should be embedded in the description of the

68 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

adjacent locations. Yet another possibility would be to move the pseudo-ob-
ject around using statements in the exits, like

LOCATION scenic_vista NAME Scenic Vista
EXIT east TO hills

DOES
LOCATE shadow_mountain AT hills.

END EXIT east.
END LOCATION scenic_vista.

Objects that are always present, such as the air or the parts of the heroes body,
may be treated like normal objects. I.e. they are defined as the objects they
represent. They are then placed in a container that is not an object, which
makes the objects always accessible, since containers (that are not objects) are
considered to be where the hero is (cf. the inventory). This is also a simple
way to create other compartments on the hero, such as a belt.

CONTAINER belt
LIMIT count 2

ELSE "You can’t fit more in your belt."
END CONTAINER belt.

VERB invent
DOES

LIST inventory.
LIST belt.

END VERB invent.

CONTAINER pseudo
END CONTAINER pseudo.

OBJECT air IN pseudo
VERB breathe

:
END VERB breathe.

END OBJECT air.

6.7 Actors

Actors are a vital component to make a story dynamic. They move around and
act according to their scripts. To make the player aware of the other actors ac-
tions they need to be described. This must be done so that the player always
get the correct perspective on the actions of the actors.

A way to ensure this is to rely on the fact that output statements are not shown
unless the hero is at the location where the output is taking place. This means
that for every actor action, especially movement, you need to first describe the
actions, then let the actor perform them and, finally, possibly describe the ef-
fects.

An example is the movement of an actor from one location to another. In this
case the step could look something like

"Charlie Chaplin goes down the stairs to the hallway."
LOCATE charlie_chaplin AT hallway.
"Charlie Chaplin comes down the stairs and

Alan Adventure Language Manual 69

1995-12-18 Alan version 2.6

 leaves the house through the front door."
LOCATE charlie_chaplin AT outside_house.
"Charlie Chaplin comes out from the nearest house."

An actor is described, for example, when a location is entered or as the result
of aLOOK in the same way as objects are. This means that a good idea is to
include the description of an actors activities in the description of him. One
way to do this would be to use attributes to keep track of the actors state and
test these in the description clause.

ACTOR george NAME George Formby
IS

NOT cleaning_windows.
NOT tuning.

DESCRIPTION
IF george IS cleaning_windows THEN

"George Formby is here cleaning windows."
ELSIF george IS tuning THEN

"George Formby is tuning his ukelele."
ELSE

"George Formby is here."
END IF.

...

Although quite feasible, this is a bit tedious. As, at least a part of, the state is
indicated by the script the actor is executing, this could be used to avoid the
potentially largeIF -chain. The optional descriptions tied to each script will
be executed instead of the main description when the actor is following that
script. So this would allow

ACTOR george NAME George Formby
DESCRIPTION

"George Formby is here."
SCRIPT 1.

DESCRIPTION
"George Formby is here cleaning windows."

STEP
...

SCRIPT 2.
DESCRIPTION

"George Formby is tuning his ukelele."
STEP

...
...

This makes it easier to keep track of what an actor is doing. Another hint here
is to describe the change in an actors activities at the same time as executing
theUSE statement, like

EVENT start_cleaning
USE SCRIPT 1 FOR george.
"All of a sudden, George starts to clean the windows."

END EVENT.

This makes the descriptions of changes to be shown when it takes place and
the description of the actor is always consistent. You can, of course, still have
attributes describing the actors state to customize the description of the actor

70 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

on an even more detailed level, but it generally suffices to describe an actor
in terms of what script he is executing.

6.8 Distant Events

A slight problem with the feature that output is not visible unless the hero is
present, is that a description of an event might not always be presented to the
player.

EVENT explosion
"A gigantic explosion fills the whole room with smoke
 and dust. Your ears ring from the loud noise. After a
 while cracks starts to show in the ceiling, widening
 fast, stones and debris falling in increasing size
 and numbers until finally the complete roof falls down
 from the heavy explosion."
MAKE LOCATION destroyed.

END EVENT.

If the hero isn’t at the location where the event is executed, he will never know
anything about what has happened. The solution is to create an event that goes
of where the hero is.

EVENT distant_explosion
"Somewhere far away you can hear an explosion."

END EVENT.
...
IF HERO NEARBY THEN

SCHEDULE distant_explosion AT HERO AFTER 0.
...

6.9 Questions and Answers

Sometimes it may be necessary to ask the player for an answer to some ques-
tion. One example is if you want to confirm an action. The following example
delineates one simple way to do this which could be adopted for various cir-
cumstances.

ACTOR hero IS NOT quitting.
END ACTOR hero.

SYNTAX
'quit' = 'quit'.
yes = yes.

SYNONYMS
y = yes.
q = 'quit'.

VERB 'quit' DOES "Do you really want to give up?
Type 'yes' to quit, or to carry on
type your next command."

MAKE hero quitting.
SCHEDULE unquit AFTER 1.

END VERB 'quit'.

Alan Adventure Language Manual 71

1995-12-18 Alan version 2.6

VERB yes CHECK hero IS quitting
ELSE "That does not seem to answer any question."

DOES QUIT.
END VERB yes.

EVENT unquit MAKE hero NOT quitting.
END EVENT unquit.

Thanks to Tony O'Hagan (aoh@maths.nott.ac.uk) for this excellent idea.

6.10 Structure

A good thing to do when designing an interactive fiction story is to separate
the geography from the story. In Alan you can use the include facility to struc-
ture your Alan source. An method could be to place the description of each
location in a separate file together with any objects that could be considered
part of the scenery or at least is not only a tool in a puzzle. These files can then
be included in a ’map’ file which in turn is included by the top level file.

The story line can be divided into files too, one for each ’scene’. A scene be-
ing comments describing the important things that are suppose to happen, any
prerequisites and objects, events, rules etc. which are specific for this part of
the story.

This strategy will both give you a better structure of your adventure as well as
leading you to designing a better story, much like the storyboarding technique
used in making movies or plays.

6.11 Debugging

To simplify the development of adventures written in the Alan language, the
interpreter incorporates some features for debugging. There are a few debug-
ging switches available when starting the interpreter:

-t Enable trace mode
-s Enable single instruction trace
-d Enable debug mode

Trace mode will print out information about each invocation of the instruction
interpreter, making it easy to see which parts of the code are being executed.

Single instruction trace will, in addition to trace mode information, also trace
every single Acode instruction.

Finally, debug mode will execute the start up sequence and then prompt for a
debug command with

ABUG>

Note:None of the above switches are effective unless the adven-
ture was compiled with the debug option set (seeOptions on page
21).

72 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Abug may also be entered by typing the single command

> debug

during the execution of an Adventure that was compiled with the debug op-
tion.

A question mark or an ‘h’ will give a brief listing of the commands available
in Abug:

a Display a list of all actors.
c Display a list of all containers.
e Display a list of all events and their status.
g Go on. I.e proceed by executing the next turn. Abug
will stop and prompt for a new command again before the
player is next in turn.
l Display a list of all locations.
o Display a list of all objects.
q Quit the adventure (and Abug).
s Toggle single instruction trace.
t Toggle trace mode (off and on).
x Exit Abug, i.e proceed without stopping.

The commandsA, C, L andO may optionally be followed by a number. Abug
will then display detailed information about the entity requested, such as val-
ues of attributes, its present location etc.

Currently there is no way to modify anything using Abug.

The following is a short excerpt from a debugging session (user input in bold
face):

<Arun, Adventure Interpreter version 2.6 alpha>
<Version of 'saviour' is 2.6(0)a>

Welcome to the game of SAVIOUR!

[introductory text deleted for brevity]

ABUG> s
Step on.

ABUG> t
Trace on.

ABUG> g

> n

<EXIT 1 (n) from 22 (Outside The Tall Building),
Executing:>

++
 dd9: PUSH 1
 dda: SCORE 1 (5)
 ddb: RETURN
--

<EXIT 1 (n) from 22 (Outside The Tall Building), Moving:>

Alan Adventure Language Manual 73

1995-12-18 Alan version 2.6

++
 de4: PUSH 4
 de5: PUSH 6229
 de6: PRINT 6229, 4 "Hall"
 de7: RETURN
--
.

++
 de8: PUSH 158
 de9: PUSH 6235
 dea: PRINT 6235, 158 "Inside the entrance is a
hallway full of dust and pieces of the ceiling has fallen
to the floor. At the west end is a staircase, and to the
south is the exit."
 deb: PUSH 1
 dec: DESCRIBE 1
++
 620: PUSH 30
 621: PUSH 1428
 622: PRINT 1428, 30 " To the east is a folding
door."
 623: PUSH 6
 624: PUSH 1
 625: ATTRIBUTE 1, 6 (1)
 626: IF TRUE
 627: PUSH 13
 628: PUSH 1446
 629: PRINT 1446, 13 " It is closed."
 62a: ELSE
 62f: RETURN
--

 ded: RETURN
--

ABUG> a
ACTORS:
 17: Hero

ABUG> a 1 7
ACTOR 17 : Hero
 Location = 23 Hall
 Script = 0
 Step = 0
 Attributes =

ABUG> o
OBJECTS:
 1: door
 2: rats
 3: spool of computer tape
 4: old book
 5: 3 metre long ladder
 6: rather heavy computer terminal
 7: small coin
 8: birds nest
 9: set of rusty keys
 10: clock
 11: drawer
 12: desk

74 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

 13: dirty manual
 14: computer
 15: vending machine
 16: old mouldy candy bar

ABUG> o 6
OBJECT 6 : rather heavy computer terminal
 Location = 30 Terminal Room
 Attributes =
 1: 1 (takeable)
 2: 1 (readable)
 3: 0 (openable)
 4: 0 (startable)
 5: 1 (examinable)
 6: 0 (connected)
 7: 0 (showing_msg1)
 8: 0 (showing_msg2)

ABUG> q

Lines of ’+’ characters indicates the start of interpretation, thus they can be
present inside other single step traces (like the DESCRIBE in the example
above). Likewise lines of ’-’ indicates the return from one such level of inter-
pretation.

Alan Adventure Language Manual 75

1995-12-18 Alan version 2.6

7 ADVENTURE CONSTRUCTION

This chapter will give a few clues on how to be a successful adventure author,
because creating agood adventure is more like writing a book than writing a
program (although Alan can be viewed as a kind of programming language).

7.1 Getting an Idea

As with a book, the success or failure depends on how intriguing the story is,
how hooked you can get the reader (in our case the player). So, the first step
must be to get a good idea. This may be hard or easy but with time you, like a
good author, learn to pick up ideas when you get them in ordinary every-day
life, and store them for later use.

A seemingly simple idea might also be developed into a good adventure if it
is placed in the correct setting and supplied with additional features, tricks and
problems.

When you have a good idea, try to refrain from typing it in directly in a text
editor and compile it with Alan. Instead, write the story down as if it were the
story line for a book or a movie. Where appropriate, insert hints on various
diversions and alternate paths that come to mind, but try to stay mainly with
the main story from beginning to the preferred end. Then, let a close friend
read it.

7.2 Elaborating the Story

After having rewritten the story line once or twice, start creating the scenery.
If your setting is small, you could draw a map of the locations needed, but a
better way is probably to make a list of major locations first (those essential
to the story). For each location note what important properties the location
must have and which objects are necessary (just as notes,don’t create the
Alan declarations yet!). For each object, make a small note on what the object
is needed for (by the player!).

This may also be done using a scene by scene approach. By this we mean that
the story is segmented into scenes (and maybe also acts) like in a play. For
each act and scene you do the above. This makes it easier to get an overview
over a larger adventure.

I also suggest that you also create a story on a level above the actual game, at
least in your own mind. This story should explain why the game-world exists
and thus give a consistency to the text that you will present to the player. No-
body likes an adventure without a cause. This story or world of ideas need not
be revealed to the player.

This also applies to the narrator, i.e. the imaginary person or creature that car-
ries out the conversation with the player. Create an image of him or it and
stick to it. Receiving comments about your (limited) progress in the game
might be funny as long as they are not out of character.

76 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

7.3 Implementing it

At last it is time to sit down at the terminal. Divide the adventure text into files
containing global verbs, the map (possibly divided further according to the
scenes), the actors (perhaps one file for each actor) and a main file including
the other files. This makes it easy to handle the adventure and you may also
ask your friend to participate in the development by giving him a few files to
work on.

First, just declare the locations and connect them with exits. Do not work on
the “purple prose” descriptions yet. The Alan system supplies good defaults
for descriptions and so on, so use these while developing the structure of the
adventure. Do not bother even with the details of making it impossible to pick
up the elephant, etc.

Play the adventure continuously during the development, but do not try the
things you plan to make impossible later. Just go through it according to the
line you planned the story to follow. A hint here is to use a separate file for
the start section. In this file you can easily set up the situation you wish to test
while not having to tire yourself by playing the adventure from the start every
time.

7.4 Polishing the Adventure

So, now you have a working adventure, a bit bare bones, but still the story
plays the way you planned. Now it is time to insert all the nice descriptions,
the limitations and perhaps the extra things to divert and hinder the hero. Just
be careful not to fall into the locked-door-syndrome. Too many adventures
have been tedious to play because you need to find-key/get-key/unlock-door-
with-key/open-door (anyway, why do people go around locking doors and
throwing away the keys). Think big.

Start by fixing the verbs so that they prohibit the impossible. Introduce as
many synonyms as you can think of, this makes the adventure so much more
playable.

Create the location descriptions. Remember to use the same style in all your
descriptions; breaking out of style does not look good in the eyes of the ad-
venturous. The descriptions must give the player the correct image, the brain
is still the best graphic interface available, but they should also plant ideas in
the player on how to solve the problems you place before him.

Another thing to aim for is the feeling which a player gets when he somehow
finds information explaining things he has encountered earlier in the game.
Here, as always, it is good advice to ask a friend to read the texts and convey
his or her impressions (remember you know it all because you wrote it!).

Lastly fill in the adjectives for the objects, their descriptions and short descrip-
tions (if needed).

Now, at last, your adventure game is ready to meet its audience.

Alan Adventure Language Manual 77

1995-12-18 Alan version 2.6

A RUN-TIME MESSAGES

This appendix describes the errors that may occur during the running of the
adventure, i.e during interpretation of the generated Acode. There are two
classes of errors, system errors that are fatal and abort the adventure, and user
errors which are not fatal but abort the execution of the current player com-
mand and discard the rest of the user input, which is a normal part of the in-
teraction between the player and the Alan run-time system.

A.1 System Errors

System errors are errors caused by internal malfunctions. Mainly these are im-
plementation errors (aka. bugs!), but may also result from user errors. The
system error messages also have a purple prose style to fit in with your game:

As you enter the twilight zone of Adventures, you stumble
and fall to your knees. In front of you, you can vaguely
see the outlines of an Adventure that never was.
SYSTEM ERROR: Can’t open adventure code file.

Author Errors

The following system errors are in some sense caused by the Adventure au-
thor (you).

Out of memory.

The adventure was so large that the interpreter could not allocate
enough dynamic memory for it. Try to finish other running applica-
tions (does not work or is not possible on all systems), get more real
memory, or complain to the Alan implementors (see appendix G,FU-
TURE DEVELOPMENTS, on page 109 for how to reach us).

Incompatible version of ACODE program.

The interpreter you are using have a different version than the Alan
compiler used to compile the adventure. Use a different Arun or rec-
ompile the adventure with the matching compiler.

Note:the Arun switch‘-d ’ will, beside entering debug mode,
also print the version of both the Arun interpreter and the version
of the Alan compiler used to compile the adventure.

Recursive LOOK.

This message is shown when aLOOK statement is executed as a result
of aLOOK, i.e. a recursiveLOOK! TheLOOK statement should only be
used in global verb bodies,not in descriptions ofLOCATIONs and
OBJECTs as there is a definite risk that it will be executed as the ef-
fect of aLOOK, either explicit or implicit (by the hero entering that lo-
cation!).

78 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Locating something inside itself.

This means that an attempt to locate an object (that is a container) in-
side itself has been made. This might happen if the adventure author
has neglected to check this in a verb likeput_in = ’put’ (o)
’in’ (c) .

Non-existing parameter referenced.

A parameter that wasn’t available was referenced. This is probably
due to using for example $2 in a string in a context where the syntax
was restricted to only one parameter. This may avoided by using the
SAY statement instead of the embedded string parameter references,
which would result in compile time checking avoiding the risk of hav-
ing this happen to the player.

Note:Parameter references embedded in strings arenot currently
checked during compile time.

Note:Embedded string references ($1, $o, etc.) isnot guaranteed
to be forward compatible (i.e. it may be removed in future ver-
sions).

Player Errors

Can’t open adventure code file.

Can’t open adventure data file.

The player attempted to run an adventure for which there were no code
or data file available, probably a misspelling.

Could not read all ACD code.

Checksum error in .ACD file (%1 instead of %2).

These two messages indicate problems in the adventure files. Possibly
caused by transfer problems of the.acd and.dat files which must be
made in binary mode.

Implementor Errors

Any other text in a system error message is really a SYSTEM ERROR. Scrib-
ble down the text and contact the implementors (see appendix G,FUTURE
DEVELOPMENTS, on page 109). If possible supply the source for your ad-
venture, a trace of the few last player commands (if possible with single step
and trace turned on, seeDebugging on page 71)

A.2 Input Responses

Various messages are printed for the benefit of the player. Most messages
probably come from the adventure itself, but there are a small set of messages

Alan Adventure Language Manual 79

1995-12-18 Alan version 2.6

given directly by the Arun interpreter. They are presented below using the
Alan STRING-format, i.e. containing the special character combinations de-
scribed inOutput Statements on page 42. These standard messages exist for
all languages and are selected depending upon the setting of the language op-
tion. See alsoMessage Identifiers on page 81 for a complete list of all mes-
sages and their identifiers.

Huh?

No input at all.

I don’t understand.

The input did not follow any syntax the Arun parser knows about.

I don’t know what you mean by ’all’.

The player inputALL, but the Arun parser could not find any objects
or actors that it could refer to.

I don’t know what you mean by ’it’.

IT may only be used when the previous command contained a refer-
ence to one object or actor.

I don’t know what you mean by ’them’.

THEM refers to the set of objects or actors mentioned in the previous
command. If there were no multiple parameters in the previous player
command, Arun will issue this message.

You can’t refer to multiple objects with $v.

The syntax for the indicated verb did not allow multiple parameters.

I can’t guess what you want to $v.

The verb required a parameter.

You must supply a noun.

The player started to specify an object or actor but only supplied the
adjectives.

You must give an object after ’but’.

In a command containingALL BUT , the player must also give the ob-
ject or objects excluded.

You can only use ’but’ after ’all’.

The wordsBUT andEXCEPT may only be used after ALL.

80 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

That doesn’t leave much to $v!

The player used anALL BUT construct which explicitly excluded
everything matched by theALL.

I don’t know which $1 you mean.

There were multiple objects (or actors) that matched the description
given by the player. More adjectives are necessary to distinguish be-
tween them.

I can’t see any $1 here.

The player referred to an object or actor that was not present.

You can’t go that way.

A directional word was used but there is no exit in that direction.

You can’t do that.

Somehow Arun found no verb body to execute. This may be a situa-
tion overlooked by the author or the player may be trying to do some-
thing that is not possible.

You can’t $v the $1.

A variation of the above.

<More>

The classic message when the screen is full. The player should press
RETURN to proceed.

Sorry, save failed.

When executing aSAVE, the file system indicated some error.

Sorry, could not open the save file.

When executing aRESTORE, Arun found no save file (file called<ad-
venture>.sav) on the current directory.

Sorry, the save file was created by a different version.

The save file found was created by a different version of the Alan
compiler.

Sorry, the save file did not contain a save for this adventure.

The indicated save file did not contain a save of this adventure.

Alan Adventure Language Manual 81

1995-12-18 Alan version 2.6

A.3 Message Identifiers

The following messages are available, and may be modified using theMES-
SAGE statements (see section 3.5 on page 25). All messages are available in
all supported languages but below only english message texts are shown.

A description of the usage of some of the messages can be found in the section
Input Responses above.

HUH,
"Huh?",

WHAT,
"I don't understand.",

WHATALL,
"I don't know what you mean by 'all'.",

WHATIT,
"I don't know what you mean by 'it'.",

WHATTHEM,
"I don't know what you mean by 'them'.",

MULTIPLE,
"You can't refer to multiple objects with '$v'.",

WANT,
"I can't guess what you want to $v.",

NOUN,
"You must supply a noun.",

AFTERBUT,
"You must give an object after 'but'.",

BUTALL,
"You can only use 'but' after 'all'.",

NOTMUCH,
"That doesn't leave much to $v!",

WHICHONE,
"I don't know which $1 you mean.",

NOSUCH,
"I can't see any $1 here.",

NOWAY,
"You can't go that way.",

82 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

CANT0,
"You can't do that.",

CANT,
"You can't $v the $1.",

NOTHING,
"There is nothing here that you can $v.",

SEEOBJECT1,
"There is",

SEEOBJECTCOMMA,
"$$, ",

SEEOBJECTAND,
"and ",

SEEOBJECTEND,
"here.",

SEEACTOR,
"is here.",

CONTAINS1,
"The",

CONTAINS,
"contains",

CONTAINSCOMMA,
", ",

CONTAINSAND,
"and ",

CONTAINSEND,
"$$.",

EMPTY1,
"The",

ISEMPTY,
"is empty.",

HAVESCORED,
"You have scored",

SCOREOUTOF,
"points out of",

Alan Adventure Language Manual 83

1995-12-18 Alan version 2.6

UNKNOWNWORD,
"I don't know that word.",

MORE,
"<More>",

AGAIN,
"(again)",

SAVEWHERE,
"Enter file name to save in",

SAVEOVERWRITE,
"That file already exists, overwrite (y) ? ",

SAVEFAILED,
"Sorry, save failed.",

SAVEMISSING,
"Sorry, could not open the save file.",

SAVEVERSION,
"Sorry, the save file was created by a different
version.",

SAVENAME,
"Sorry, the save file did not contain a save for this
adventure.",

RESTOREFROM,
"Enter file name to restore from",

RETRY,
"Do you want to restart (y) ? ",

DEFARTICLE,
"a",

84 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Alan Adventure Language Manual 85

1995-12-18 Alan version 2.6

B ALAN LANGUAGE GRAMMAR

The Alan language is defined formally below using a BNF-form. This is a set
of rules defining exactly what constructs are legal in an Alan source. The rules
are numbered for easy reference.

The BNF form divides the structure of the input source into smaller parts
(rules) which in turn are defined by other rules. For example rule 1 says that
anADVENTURE (in this case an Alan program) consists of options, defaults,
units and a start section. In rule 149 we see that the start section is in turn de-
fined to contain the reserved wordSTART followed by a reference to where
to start, followed by a period and some optional statements.

The equal sign (=) may be read “consists of” or “is defined as”. The exclama-
tion mark indicates a choice between the two different constructs, for example
in rule 6 through 8 one can see that an option may either be a single identifier,
an identifier followed by another identifier or an identifier followed by an in-
teger. The semicolon indicates the end of the definition of the symbol on the
left hand side of the equal sign.

 1. adventure = optional_options units start
 ;

 2. optional_options =
 3. ! 'OPTIONS' options
 ;

 4. options = option
 5. ! options option
 ;

 6. option = ID '.'
 7. ! ID ID '.'
 8. ! ID INTEGER '.'
 ;

 9. units = unit
 10. ! units unit
 ;

 11. unit = object_default
 12. ! location_default
 13. ! actor_default
 14. ! messages
 15. ! rule
 16. ! synonyms
 17. ! syntax
 18. ! verb
 19. ! location
 20. ! object
 21. ! container
 22. ! actor
 23. ! event
 ;

 24. location_default = 'LOCATION' 'ATTRIBUTES' attributes
 ;

 25. object_default = 'OBJECT' 'ATTRIBUTES' attributes
 ;

 26. actor_default = 'ACTOR' 'ATTRIBUTES' attributes
 ;

 27. attributes = attribute '.'
 28. ! attributes attribute '.'
 ;

 29. attribute = ID

86 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

 30. ! 'NOT' ID
 31. ! ID optional_minus INTEGER
 32. ! ID STRING
 ;

 33. synonyms = 'SYNONYMS' synonym_list
 ;

 34. synonym_list = synonym
 35. ! synonym_list synonym
 ;

 36. synonym = id_list '=' ID '.'
 ;

 37. messages = 'MESSAGE' message_list
 ;

 38. message_list = message
 39. ! message_list message
 ;

 40. message = ID ':' STRING
 ;

 41. syntax = 'SYNTAX' syntax_list
 ;

 42. syntax_list = syntax_item
 43. ! syntax_list syntax_item
 ;

 44. syntax_item = ID '=' syntax_elements optional_class_restrictions
 ;

 45. syntax_elements = syntax_element
 46. ! syntax_elements syntax_element
 ;

 47. syntax_element = ID
 48. ! '(' ID ')' optional_multiple_indicator
 ;

 49. optional_multiple_indicator =
 50. ! '*'
 ;

 51. optional_class_restrictions = '.'
 52. ! 'WHERE' class_restrictions
 ;

 53. class_restrictions = class_restriction
 54. ! class_restrictions 'AND' class_restriction
 ;

 55. class_restriction = ID 'ISA' classes 'ELSE' statements
 ;

 56. classes = class_identifier
 57. ! classes 'OR' class_identifier
 ;

 58. class_identifier = 'OBJECT'
 59. ! 'ACTOR'
 60. ! 'CONTAINER'
 61. ! 'INTEGER'
 62. ! 'STRING'
 63. ! 'CONTAINER' 'OBJECT'
 64. ! 'CONTAINER' 'ACTOR'
 ;

 65. optional_verbs =
 66. ! optional_verbs verb
 ;

 67. verb = verb_header verb_body verb_tail
 ;

 68. verb_header = 'VERB' id_list

Alan Adventure Language Manual 87

1995-12-18 Alan version 2.6

 ;

 69. verb_body = simple_verb_body
 70. ! verb_alternatives
 ;

 71. verb_alternatives = verb_alternative
 72. ! verb_alternatives verb_alternative
 ;

 73. verb_alternative = 'WHEN' ID simple_verb_body
 ;

 74. simple_verb_body = optional_checks optional_does
 ;

 75. verb_tail = 'END' 'VERB' optional_id '.'
 ;

 76. optional_checks =
 77. ! 'CHECK' statements
 78. ! 'CHECK' check_list
 ;

 79. check_list = check
 80. ! check_list 'AND' check
 ;

 81. check = expression 'ELSE' statements
 ;

 82. optional_does =
 83. ! 'DOES' optional_qual statements
 ;

 84. location = location_header location_body location_tail
 ;

 85. location_header = 'LOCATION' ID optional_name
 ;

 86. location_body = optional_attributes optional_description optional_does
 optional_exits optional_verbs
 ;

 87. location_tail = 'END' 'LOCATION' optional_id '.'
 ;

 88. optional_exits =
 89. ! optional_exits exit
 ;

 90. exit = 'EXIT' id_list 'TO' ID optional_exit_body '.'
 ;

 91. optional_exit_body =
 92. ! optional_checks optional_does 'END' 'EXIT'
 optional_id
 ;

 93. object = object_header object_body object_tail
 ;

 94. object_header = 'OBJECT' ID optional_name optional_where
 ;

 95. object_tail = 'END' 'OBJECT' optional_id '.'
 ;

 96. object_body = optional_properties optional_attributes
 optional_descriptions optional_verbs
 ;

 97. optional_attributes =
 98. ! optional_attributes is attributes
 ;

 99. is = 'IS'
100. ! 'ARE'

88 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

101. ! 'HAS'
 ;

102. optional_descriptions =
103. ! optional_descriptions
 article_or_mentioned_or_description
 ;

104. article_or_mentioned_or_description = article
105. ! description
106. ! mentioned
 ;

107. optional_description =
108. ! description
 ;

109. description = 'DESCRIPTION'
110. ! 'DESCRIPTION' statements
 ;

111. article = 'ARTICLE'
112. ! 'ARTICLE' statements
 ;

113. mentioned = 'MENTIONED' statements
 ;

114. optional_name =
115. ! 'NAME' ids
 ;

116. optional_properties =
117. ! 'CONTAINER' container_body
 ;

118. container = container_header container_body container_tail
 ;

119. container_header = 'CONTAINER' ID
 ;

120. container_body = optional_limits optional_header optional_empty
 ;

121. container_tail = 'END' 'CONTAINER' optional_id '.'
 ;

122. optional_limits =
123. ! 'LIMITS' limits
 ;

124. limits = limit
125. ! limits limit
 ;

126. limit = limit_attribute 'THEN' statements
 ;

127. limit_attribute = attribute
128. ! 'COUNT' INTEGER
 ;

129. optional_header =
130. ! 'HEADER' statements
 ;

131. optional_empty =
132. ! 'ELSE' statements
 ;

133. event = event_header statements event_tail
 ;

134. event_header = 'EVENT' ID
 ;

135. event_tail = 'END' 'EVENT' optional_id '.'
 ;

Alan Adventure Language Manual 89

1995-12-18 Alan version 2.6

136. actor = actor_header actor_body actor_tail
 ;

137. actor_header = 'ACTOR' ID optional_name optional_where
 ;

138. actor_body = optional_properties optional_attributes
 optional_description optional_verbs optional_actor_script
 ;

139. actor_tail = 'END' 'ACTOR' optional_id '.'
 ;

140. optional_actor_script =
141. ! optional_actor_script script
 ;

142. script = 'SCRIPT' INTEGER '.' optional_description step_list
 ;

143. step_list = step
144. ! step_list step
 ;

145. step = 'STEP' statements
146. ! 'STEP' 'AFTER' INTEGER statements
147. ! 'STEP' 'WAIT' 'UNTIL' expression statements
 ;

148. rule = 'WHEN' expression '=>' statements
 ;

149. start = 'START' where '.' optional_statements
 ;

150. optional_statements =
151. ! statements
 ;

152. statements = statement
153. ! statements statement
 ;

154. statement = output_statement
155. ! special_statement
156. ! manipulation_statement
157. ! event_statement
158. ! assignment_statement
159. ! actor_statement
160. ! if_statement
 ;

161. output_statement = STRING
162. ! 'DESCRIBE' what '.'
163. ! 'SAY' expression '.'
164. ! 'LIST' what '.'
 ;

165. special_statement = 'QUIT' '.'
166. ! 'LOOK' '.'
167. ! 'SAVE' '.'
168. ! 'RESTORE' '.'
169. ! 'SCORE' optional_integer '.'
170. ! 'VISITS' INTEGER '.'
171. ! 'SYSTEM' STRING '.'
 ;

172. manipulation_statement = 'EMPTY' what optional_where '.'
173. ! 'LOCATE' what where '.'
 ;

174. event_statement = 'CANCEL' ID '.'
175. ! 'SCHEDULE' ID optional_where 'AFTER' INTEGER '.'
 ;

176. assignment_statement = 'MAKE' what something '.'
177. ! 'INCREASE' attribute_reference optional_by_clause
 '.'

90 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

178. ! 'DECREASE' attribute_reference optional_by_clause
 '.'
179. ! 'SET' attribute_reference 'TO' expression '.'
 ;

180. optional_by_clause =
181. ! 'BY' expression
 ;

182. if_statement = 'IF' expression 'THEN' statements optional_elsif_list
 optional_else_part 'END' 'IF' '.'
 ;

183. optional_elsif_list =
184. ! elsif_list
 ;

185. elsif_list = 'ELSIF' expression 'THEN' statements
186. ! elsif_list 'ELSIF' expression 'THEN' statements
 ;

187. optional_else_part =
188. ! 'ELSE' statements
 ;

189. actor_statement = 'USE' 'SCRIPT' INTEGER optional_for_actor '.'
 ;

190. optional_for_actor =
191. ! 'FOR' ID
 ;

192. expression = term
193. ! expression 'OR' term
 ;

194. term = factor
195. ! term 'AND' factor
 ;

196. factor = primary
197. ! primary optional_not where
198. ! primary binop primary
199. ! primary optional_not relop primary
200. ! primary is something
 ;

201. primary = optional_minus INTEGER
202. ! STRING
203. ! what
204. ! 'SCORE'
205. ! aggregate where
206. ! '(' expression ')'
207. ! attribute_reference
208. ! 'RANDOM' INTEGER 'TO' INTEGER
 ;

209. aggregate = 'COUNT'
210. ! 'SUM' 'OF' ID
211. ! 'MAX' 'OF' ID
 ;

212. something = optional_not ID
 ;

213. what = 'OBJECT'
214. ! 'LOCATION'
215. ! 'ACTOR'
216. ! ID
 ;

217. optional_where =
218. ! where
 ;

219. where = 'HERE'
220. ! 'NEARBY'
221. ! 'AT' what
222. ! 'IN' what

Alan Adventure Language Manual 91

1995-12-18 Alan version 2.6

 ;

223. binop = '+'
224. ! '-'
225. ! '*'
226. ! '/'
 ;

227. relop = '<>'
228. ! '='
229. ! '=='
230. ! '>='
231. ! '<='
232. ! '>'
233. ! '<'
 ;

234. optional_qual =
235. ! 'BEFORE'
236. ! 'AFTER'
237. ! 'ONLY'
 ;

238. optional_not =
239. ! 'NOT'
 ;

240. optional_id =
241. ! ID
 ;

242. ids = ID
243. ! ids ID
 ;

244. id_list = ID
245. ! id_list ',' ID
 ;

246. optional_integer =
247. ! INTEGER
 ;

248. optional_minus =
249. ! '-'
 ;

250. attribute_reference = ID 'OF' what
 ;

92 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Alan Adventure Language Manual 93

1995-12-18 Alan version 2.6

C COMPILER ERROR MESSAGES

This appendix describes the error messages generated by the Alan compiler.
For each message, a short description of the error, possible causes etc. are giv-
en. Each message reported also indicates the severity of that error. The mes-
sage is supplemented with an indication of its severity. An informational mes-
sage (indicated by an I) simply gives some information to the user, a warning
message (W) indicates an error but the compilation still generates a valid out-
put (although not always what the user intended). Error messages (E) indicate
errors which have made it impossible to generate any output, but the compiler
continues to process all input. Fatal (F) and system (S) messages always ter-
minate the compilation process immediately.

The message descriptions below may also contain the special insertion mark-
ers‘%n’ (wheren is a digit), which indicate that text will be inserted during
compile time at that point in the message, e.g. the offending identifier or a file
name.

100 Parsing resumed here.

A severe syntax error was discovered. Some input was skipped. This
error message marks the place where the parsing was restarted.

101 %1 inserted.

A syntax error was discovered and one or more symbols inserted in the
input in an attempt to recover.

102 %1 deleted.

A syntax error was discovered and one or more symbols was skipped
from the input in an attempt to recover.

103 %1 replaced by %2.

A syntax error was discovered and one or more symbols was replaced
by one or more other symbols in an attempt to recover.

104 Severe syntax error, construct ignored.

An intricate syntax error was discovered. A complete construct was
skipped in an attempt to recover.

105 Syntax error, couldn’t recover.

106 Parse stack overflow.

107 Parse table error.

108 Parsing terminated.

Alan compiler implementation errors. Should not occur!

94 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

150 Unterminated STRING.

An opening double quote was not terminated by a closing quote before
end of file. Error message points to the opening quote. Remember
STRINGs may cover several lines.

151 File name missing for $INCLUDE directive.

An include directive was given but the file indicated was not found.
The complete file name must be given.

198 Could not open output file '%1' for writing.

The indicated output file could not be opened, probably because the
directory did not exist, the file or directory was write protected.

199 Adventure source file (%1) not found.

The source file given on the command line did not exist. The Alan
compiler adds the.alan extension to the file name given, if it did not
include a period.

201 Mismatched block identifier, ’%1’ assumed.

The identifier following a terminating END did not match the one giv-
en at the beginning of the construct. This indicates an illegal nesting
or a missed END IF. The identifier indicates to which block the END
is assumed to belong.

202 Multiple usage of direction ’%1’ in this EXIT.

203 Multiple definition of EXIT ’%1’ in this location.

The directional word indicated was used more than once, either in the
same, or different exit declaration from the location. This is contradic-
tory and not legal.

204 Multiple definition of %1 DEFAULTS. Ignored.

Only one declaration of default attributes per type is allowed. The sec-
ond declaration is ignored.

205 Multiple usage of ’%1’ in this VERB definition.

When specifying actions for multiple verbs in the same declaration,
the indicated word occurred twice.

206 Multiple definition of SYNTAX for %1.

More than one syntax definition for the same verb was found. This is
an error, remove the offending one.

Alan Adventure Language Manual 95

1995-12-18 Alan version 2.6

207 VERB ’%1’ is not defined.

A SYNTAX construct defined the syntax for a verb that was never de-
fined.

208 ’%1’ is not a VERB.

The identifier on the left hand side of a SYNTAX definition was de-
fined as something that was not a VERB.

209 First element in a SYNTAX must be a player word.

The definition of a SYNTAX may not start with a parameter. The first
word must be a player word so as to distinguish it from other forms of
input.

210 Action qualification not allowed here.

The BEFORE, AFTER and ONLY qualifiers may not be used for a
DOES-clause in this context.

211 Adventure must start at a Location.

You specified awhere expression in theSTART section that did not
specify an explicit location. The start section specifies where the hero
starts and must be aLOCATION.

212 Syntax parameter ’%1’ overrides symbol.

TheSYNTAX definition valid in this context defined a symbol which
is the same as an entity (object, location or actor). The syntax param-
eter will take precedence.

213 Verb alternatives not allowed here.

You may only specify different verb body alternatives within objects.
The global verb body and the verb body in the location may not have
alternatives.

214 Parameter not defined in syntax for ’%1’.

The identifier given as the selector in a verb body alternative was not
defined in the syntax for that verb.

215 Syntax not compatible with syntax for ’%1’.

To be able to use the same body for different verbs by supplying them
in a comma separated list in the verb header they must all be compat-
ible. This means that they have the same number of parameters and the
parameters have the same names. Otherwise conflicts will arise when
figuring out which parameter to use.

96 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

216 Parameter ’%1’ multiply defined in this SYNTAX.

The parameter was defined more than once in the same SYNTAX def-
inition.

217 Only one multiple parameter allowed for each syntax.
This one ignored.

To be able to use multiple parameters in a player command only one
parameter may be marked as referring to multiple objects or actors us-
ing ALL or conjugations. This is a warning, the syntax will be as if the
first multiple marker was the only one.

218 Multiple definition of attribute ’%1’.

The indicated attribute name was defined more than once in the same
context (default attribute list or within the same entity). Remove one
definition.

220 Multiple definition of ’%1’.

The indicated word has multiple, and possibly different, definitions.

221 Multiple class restriction for parameter ’%1’.

The same parameter occurred more than once in the list of class re-
striction in the sameSYNTAX definition.

222 Identifier ’%1’ in class definition is not a parameter.

Only the parameters in the syntax may be referenced in the class re-
stricting clause of aSYNTAX definition.

230 No syntax defined for this verb, assumed ’%1 (object)’.

This message is a warning to indicate that the default syntax handling
has been used.

310 Identifier ’%1’ not defined.

The indicated word was never defined. It must be declared as either a
location, an object, a container, an actor or an event.

311 Must refer to %1.

The construct indicated does not refer to the correct kind of item, the
message indicates which kind of item was expected.

312 Parameter not uniquely defined as %1, which is required.

In certain contexts it is necessary to refer to a particular type of entity,
e.g. the IN expression must refer to a container or an object with the
container property. If the reference (thewhat part) is a parameter
identifier, this parameter must be restricted to be of the required type

Alan Adventure Language Manual 97

1995-12-18 Alan version 2.6

by use of parameter restrictions (such as ‘WHERE c ISA CONTAIN-
ER’).

315 Attribute not defined for ’%1’.

The indicated attribute is not defined for the particular object, location
or actor. It must either be a default attribute or be locally declared.

318 Entity ’%1’ is not a Container.

The referenced entity (object or actor) was not declared to have the
container property, although the context required a container.

320 Word ’%1’ belongs to multiple word classes.

A word was declared as to belong to different word classes such as
noun, synonym, adjective etc.

321 Synonym target word ’%1’ not defined.

To define a synonym its target word (the word on the left side of the
equal sign) must be defined as a proper word elsewhere in the source.

322 Word ’%1’ already defined as a synonym.

A word may not be declared as a synonym for different target words.

330 Wrong types of expression. Must be of %1 type.

In an expression, a value or an expression was used that had a type that
was not allowed. The message indicates the correct type.

331 Incompatible types in %1.

The two values in an expression with a binary operator did not have
compatible types, or the value used in a SET statement was not type
compatible with the referenced attribute.

332 Type of local attribute must match default attribute.

An attribute declared locally (within an object, actor or location) that
has the same name as a default attribute, has to have the same type
(boolean, integer or string).

333 The word ’%1’ is defined as a synonym as well as of
another word class.

Synonyms must be wordsnot defined elsewhere.

400 Script not defined for Actor ’%1’.

No script with the indicated number was defined for the actor.

98 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

401 Actor reference required outside Actor specification.

Inside an actor specification it is permissible to leave out the actor ref-
erence in a USE statement in which case the surrounding actor is as-
sumed. Outside actor specifications, the actor reference must always
be supplied.

402 An Actor can’t be inside a Container.

The LOCATE statement tried to locate an actor inside a container.
This is not allowed.

403 Script number multiply defined for Actor ’%1’.

The indicated number was used for more than one script for the same
actor.

404 Attribute to %1 must be a default attribute.

To reference attributes forOBJECT, LOCATION andACTOR the at-
tribute used must be a default attribute, as all objects, locations or ac-
tors must have it.

405 The class of a parameter used in %1 must be uniquely
defined.

In some statements the class of the identifier must be determined dur-
ing compile time. This is, for example, the case inMAKE andSET
statements.

406 A parameter defined as Container have no default
attributes.

A parameter that was restricted to containers do not have any default
attributes. Actors, objects and locations have separate sets of default
attributes. In order to refer to an attribute on a parameter it must be re-
stricted to one of these classes. If the parameter also requires the con-
tainer property, useCONTAINER ACTOR orCONTAINER OBJECT.

407 Attribute in LIMITS must be a default attribute.

All objects must have the attribute that a limit is to test.

408 Attributes in %1 must be of boolean type.

The attribute referenced in the indicated context must be a boolean at-
tribute.

409 No parameter defined in this context.

No parameter is defined in the context where a reference toOBJECT
was made. Parameters are only defined within checks and bodies of
verbs, so the use ofOBJECT (an obsolete construct, use the parameter
identifier instead) is also restricted to those contexts. SeeRun-time
Contexts on page 60.

Alan Adventure Language Manual 99

1995-12-18 Alan version 2.6

410 A parameter may not be used in %1.

In certain statements a parameter may not be used at all.

411 %1 ignored for Actor ’hero’.

It is allowed to redefine the predefined actorHERO (the player) which
makes it possible to define local attributes and descriptions for the
hero. However any definition of scripts or initial location is ignored
(the script is supplied by the player in his input and the initial location
is defined in theSTART section).

412 ’ACTOR’ is not allowed inside events.

In events no actor is active. This means that no reference to the active
actor usingACTOR can be made.

413 Expression in %1 must be of integer type.

The context required a numeric expression.

414 Invalid initial location for %1.

The initial location specified was not valid.

415 Invalid Where specification in %1 statement.

The statement indicated does not allow thewhere specification used.

416 Interval of size 1 in RANDOM expression.

This message informs that the interval in aRANDOM statement was
just one single value, resulting in always returning the same value. Not
very random.

417 Comparing two constant entities will always yield the
same result.

The expression compared two identifiers none of which was a param-
eter. This will always give the same result. This is probably an error,
but the message is still a warning as it gives a perfectly running adven-
ture (but, perhaps not what you intended?).

418 Aggregate is only allowed on integer type attributes.

The aggregatesMAX andSUM can only perform their calculation on in-
tegers.

419 Expression in %1 must be of integer or string type.

In the indicated context only integer and string type expressions may
be used.

100 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

501 LOCATION ’%1’ has no EXITs.

In case the hero is located at the indicated location he may not be able
to escape from that location. This may be intentional (as for a limbo
location or a location with magic words to use as an escape) but the
warning is presented as a reminder.

600 Multiple use of option ’%1’, ignored.

The indicated option was used more than once, this occurrence is ig-
nored and the previous setting used.

601 Unknown option, ’%1’.

A word was given in the option section that was not the name of an
option.

602 Illegal value for option ’%1’.

The indicated option does not allow the value used.

997 SYSTEM ERROR: %1

A severe implementation dependent error has occurred (a bug!).
Please report.

998 Feature not implemented in %1.

The combination of some syntactically correct but semantically tricky
constructs are not yet implemented. Please report.

999 No Adventure generated.

When an error is detected this informational message is given to indi-
cate that no executable adventure was output.

Alan Adventure Language Manual 101

1995-12-18 Alan version 2.6

D HOW TO USE THE SYSTEM

D.1 Compiling

This version of the Alan Adventure Development System is a traditional batch
compiler. This means that the actual development system is a compiler which
read text files created using any normal text editor. To compile an adventure
use the command:

alan <adventure>

where <adventure> is the name of the main file containing your adventure
source text. The compiler will add an extension,.alan (or .ala on PCs), if none
is supplied. The option-help will give a brief help on other options to the
compiler.

The output from the compiler,alan, is two files, an adventure code fileadven-
ture.acdand an adventure data file,adventure.dat.

D.2 Compiler Switches

The compiler supports the following switches:

• -verbose prints compiler version and other verbose messages

• -warnings show warning messages from the compilation process

• -infos show informational messages from the compilation process

• -full give a complete listing of the source on the screen

• -height <n> use page height <n> (lines) when producing list files

• -width <n> use page width <n> (columns) when producing list
files

• -debug include debugging information in the produced adventure
files (same as the debug option, seeOptions on page 21)

• -pack encode and compress the text data (same as the pack op-
tion, seeOptions on page 21)

• -summary produce a summary about number of actors, size of
adventure files, timing information etc.

• -dump print the internal form (developers use only)

Giving an extra hyphen before the option reverses its meaning, e.g.--warn-
ings means don’t show warnings. Switches may be abbreviated.

102 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

D.3 Running the Adventure

To play the generated adventure the Alan interpreter,arun, is executed with
the adventure name as a parameter.

arun <adventure>

No extension on the adventure name is allowed.

If the interpreter program is copied to a different name it will look for code
and data files with the same name. Any parameters or switches will be ig-
nored. For example, by copying thearun program toadventure the interpret-
er will, when started under the new name, directly look for the filesadventu-
re.acd andadventure.dat. The three filesadventure, adventure.acd and
adventure.dat thus makes a complete game package which is easy to start us-
ing the single command:

> adventure

D.4 Interpreter Switches

The interpreter supports the following switches:

• -d print interpreter version and enter debug mode

• -i ignore CRC and version errors in the adventure files

• -t trace sections executed

• -s show single instruction trace

In later versions an interactive development environment is envisioned but
this is still far away. So you have to be content with the debugging support
described inDebugging on page 71 for now.

Alan Adventure Language Manual 103

1995-12-18 Alan version 2.6

E SYSTEM DETAILS

A complete Alan system should contain the following files

alan - executable image for Alan compiler
arun - executable image for Alan interpreter
jungle.alan
dungeon.alan
COPYING - description of copying conditions
alan.ps - postscript version of this document
alan.txt - plain text version of this document

Depending on the environment the two executable files may have different
names, such asalan.exe.

E.1 Amiga

The Alan system is delivered as anlha archive. To install the Alan system,
create a directory and copy the archive file (e.g.alan.lha) there. Use the com-
mands

lha x alan.lha
lha x arun.lha

(or equivalent depending on archiver) to extract the files. Include this direc-
tory in your path. The easiest way to do this is to include a command like

path SYS:Alan

in yourstartup-sequence (under Workbench 2.x or above,s:User-startup)
and then reboot. Another possibility is to type the above command in a Shell
(which will only make these definitions available until next reboot).

After this the Alan system is ready for use. The example adventure (see ap-
pendix E,SYSTEM DETAILS, on page 103) is included in the delivery and
you may compile and run it with the commands

alan example
arun example

The Alan compiler requires more than the standard stack size (4096), a size
of 20000 has been used without trouble.

The Alan interpreterarun supports Workbench-startup through double-click-
ing on the Arun-icon. The tooltype WINDOW is supported to make it possi-
ble to selecting the window in which the adventure should be run. If a console
handler device such as NEWCON: in 1.3 or the normal CON: in 2.x and
above history and command line editing is available.

E.2 Unix

On UNIX systems the Alan system is delivered in a compressedtar archive.
To extract the files give the commands:

104 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

uncompress alan.tar.Z
tar xvf alan.tar

You may copy the executable files,alan andarun, to a directory which is in
your path or include the relevant directory in thePATH environment variable.
The installation may be tested by giving the commands

alan example
arun example

which should compile and run the example adventure (see appendix I, EX-
AMPLE ADVENTURE, on page 80).

On UNIX systems command history, recall and editing is available.

E.3 MS-DOS and OS/2

For MS-DOS and OS/2, the Alan system is delivered in apkzip compatible
zip archive. To extract the files issue the commands

unzip alan.zip
unzip arun.zip

The current directory will contain the executables as well as the samples and
documentation. Make sure this directory is included in yourPATH variable.

Testing may be performed as above.

E.4 Portability of Games

The adventure files produced by the compiler is compatible across all support-
ed platforms. This means that by copying the binary.acd and.dat files to an-
other machine they should be possible to interpret by an interpreter on that
new machine without any changes. Note however that the files must be trans-
ferred inbinary mode (where applicable). Also the character sets are automat-
ically converted to the native set allowing multi-national characters to be pre-
sented correctly even on machines that does not support the IS0 8859-1 stand-
ard. This is of course restricted to characters having a representation in the
current native character set.

It is a strong goal to achieve complete portability of the games to be able to
provide games for all supported platforms without re-compilation. Game au-
thors should take this into serious consideration when designing games and
not use any system specific characters, character combinations or special
commands that may be available on some systems.

Alan Adventure Language Manual 105

1995-12-18 Alan version 2.6

F DIFFERENCES BETWEEN VERSIONS

Version 2.6

The 2.6 interpreter will run 2.5 games, but the 2.6 compiler can not generate
2.5 games. So upgrading to 2.6 will create games only playable with 2.6 in-
terpreters, but you can keep old games and still play them.

User definition of run-time messages is now possible.

Removed the indefinite article from the default messages. Instead introduced
theARTICLE slot in objects which will be used (if present) before producing
theMENTIONED message (which may be constructed automatically). If no
article is declared a default is supplied ("a" if using english). This means that
some tricks that have been used to somewhat remedy the article problem ('a'
was always used!), don't work any more. Remove all 'a', 'an' etc. from the texts
and names in the Alan source (usually in theMENTIONED slot and possibly
in theHEADER for containers), and introduce theARTICLE "an" declara-
tion on objects that require it (those whose name start with a vowel sound).
For objects that doesn't need an article define an emptyARTICLE clause.

It also means that their is now a new reserved wordARTICLE.

It is also now possible to define theARTICLE, MENTIONED andDESCRIP-
TION on objects in any order.

Version 2.5

String quotes (") within strings are now allowed, if doubled ("Charlie
said ""Hello!"""). The same goes for single quotes (’) within quoted
identifiers.

(Luis Torres <let@reef.cis.ufl.edu>)

Multiple default attribute sections simplifies using general include files as the
default attributes can be distributed across the complete adventure source.

The new VISITS statement replaces the previous option with the same name,
allowing setting of thevisits variable during run-time.

The compiler now generates completely compatible adventure files, including
multi-national character sets which are converted automatically to be present-
ed correctly on any supported platform.

If the interpreter is renamed it will automatically load adventure files (.acd
and.dat) with the same name.

(Jeff Harrison <harrison@mprgate.mpr.ca>)

TheQUIT statement prints a restart question which may be answered affirm-
ative, in which the game is reloaded and restarted, or negative in which case
the adventure is terminated.

(Byron Montgomerie <byron@saturn.cs.mun.ca>)

106 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

SAVE andRESTORE now prompts for a file to use so multiple save files can
be used by the player.

(Luis Torres <let@reef.cis.ufl.edu>)

Multiplication and division can now be performed using the ’*’ and ’/’ oper-
ators respectively.

(Robert Yoke-Loong Foo <af685@freenet.carleton.ca>)

Version 2.4

Actors may now be containers (allows for making them carry things). The
class indications in the syntax declarations have been enhanced to account for
this also. You can now restrict parameters to all entities having the container
property, only actors having it, or only objects having it (seeSyntax Defini-
tions on page 25, andContainers on page 36 for details).

String comparison normally ignores the case of characters (the new operator
‘==’ does exact matching) (seeBinary and Relational operators on page 51).

The statements to increase or decrease values are now calledINCREASE and
DECREASE (instead ofINCREMENT andDECREMENT).

An optional description has been introduced on actor scripts, giving a possi-
bility to create descriptions that are directly coupled to the activities of the ac-
tor (refer toActors on page 38).

TheQUIT statement now does not print any scores. This has to be made ex-
plicitly. Also the identifierSCORE is now allowed in expressions, represent-
ing the current value of scores collected so far.

Containers are now listed in a more natural way, the old format of one item
per line has been replaced by concatenating them into a natural sentence, like:

You are carrying a box, a ball and a lightbulb.

This might require a change to the HEADER declaration of containers.

Version 2.3

String and integer literals are introduced in the player input and in the syntax
declarations. Attributes may now also be strings. No incompatibilities should
occur.

Version 2.0

In version 2, the concept of syntax is introduced. A programmer may allow
different and more complex input from the player, not just the simple verb/
object type used in version 1. However, the default mechanism is still this
simpler form of input so very little needs to be changed when converting to
version 2. This also follows the spirit of Alan, it means that syntax is not strict-
ly necessary unless you want to do something extra. For player input follow-
ing the simple verb/object syntax there is nothing you have to do.

Alan Adventure Language Manual 107

1995-12-18 Alan version 2.6

Another difference is the improvement in the definition of synonyms. First,
the order of definition is different, you should now supply all the synonyms
first andthen the word they are synonyms for. This will probably require
some rewriting of your Alan programs, but it is the more logical way to spec-
ify synonyms. Also, synonyms are now allowed anywhere in the program, so
it is now possible to group global verb definitions, syntax definitions and syn-
onyms for the same verb together (and perhaps place them in a separate in-
clude file).

108 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Alan Adventure Language Manual 109

1995-12-18 Alan version 2.6

G FUTURE DEVELOPMENTS

As Alan is an application oriented language, i.e. it is designed to fit a particu-
lar application domain perfectly (in this case adventure authoring), it is de-
pendent on adventure authors requirements and ideas for its further evolution.
So please let us know!

email: thoni@softlab.se
gorfo@ida.liu.se

postage: Thomas Nilsson phone: Int. +46 13 12 11 67
Stenbrötsgatan 57 Nat. 013 - 12 11 67
S-582 47 LINKÖPING
SWEDEN

Göran Forslund phone: Int. +46 13 13 39 91
Vallmogatan 22 Nat. 013 - 13 39 91
S-582 46 LINKÖPING
SWEDEN

But here are some ideas:

• Definition of common attributes, verb definitions etc. through in-
troduction of a class structure.

• Definition of interaction with actors, perhaps through some kind
of pattern matching sub-language using string literals.

• Background pictures

• Sound

• ...

110 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Alan Adventure Language Manual 111

1995-12-18 Alan version 2.6

H REFERENCES

[Ada80] Scott Adams :Pirate’s Adventure; BYTE December
1980, pp 192-212
An article describing the history behind the Scott Ad-
am’s adventures, particularly thePirate’s Adventure.
Also includes BASIC source for the adventure, con-
sisting mostly of DATA-statements.

[Bla80] Marc S. Blank, S. W. Galley :How to Fit a Large
Program Into a Small Machine; Creative Computing
July 1980, pp 80-87
A good article on the internals of the Z-interpreter, the
pseudo-machine created by Infocom for creating and
running adventures. As always from the hands of the
Infocom men, also very good reading.

[Bet87] David Betz :An Adventure Authoring System; BYTE
May 1987, pp 125-135
A description of a system similar to Alan,AdvSys,
consisting of a special purpose language, a compiler
and an interpreter for it. At last the termauthoring is
used instead ofprogramming. The system is available
through various PD-sources such as Fred Fish, BIX
etc.

[Bra84] A. J. Bradbury :Adventure Games for the Commo-
dore 64; Granada Publishing 1984, ISBN 0-246-
12412-1
A good book, especially on the topic of adventure
writing methodology. Carries the concept of story-
boarding a bit further than [Gra83]. Also contains in-
terspersed utilities and modules (in C64 BASIC) and
a small adventure, “The Case of the Lost Adventure”.

[Bri84] Tony Bridge, Richard Williams :Sinclair QL Adven-
tures; Sunshine Books 1984, ISBN 0-946408-66-1
Contains a few good chapters on adventures and re-
views of some games of the classical text-type, but
then goes on to present the listing of a fairly uninter-
esting “adventure generator” for a menu-drivenDun-
geon And Dragons inspired (much fighting, strength
scoring and banes and such) kind of adventures
games.

[Buc87] Mary Ann Buckles :Interactive Fiction as Literature;
BYTE May 1987, pp 135-142
A very interesting article discussing the literary herit-
age of adventure games and their future in that per-
spective.

[Fic86] Erik Fichtelius :Nu kommer det svenska äventyrsspe-

112 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

let!; Upp&Ner, nr 2 1986
A swedish article describing the famous swedish
“Stuga” game, created around 1980, which at that
time was available for the PC.

[Gra83] Mike Grace :Commodore 64 Adventures; Sunshine
Books 1983, ISBN 0-946408-11-4
A fairly good book on playing and writing adventure
games, written by an beginner programmer. Strictly
BASIC programming but contains many good ideas
to borrow. Includes some short sections on methods
and mentions the concept of storyboarding. Contains
a type-in adventure (“Nightmare Planet”) for the C64.

[Geu85] A.F. de Geus, J.H. Jongejan, A.M. Koelmans :Adven-
ture Description Language; Sigma Press 1985, ISBN
1-85058-011-1
Describes an assembler-like Adventure Language for
the BBC Micro, and uses its design as a vehicle for
briefly describing a few basic computer science tech-
niques (e.g. grammars, hashing, huffman coding and
graph theory). Source (in ADL!) for “Red Button”
and “Long Forgotten Arabia” adventures plus com-
plete source for the “scanner”, “interpreter” and “edi-
tor” for ADL. Note: this isnot the better known ADL
by Ross Cunniff.

[Goe93] Phil Goetz :Interactive Fiction; Dept. of Computer
Science, SUNY, Buffalo NY 14260, USA
Interesting paper setting out to define the term inter-
active fiction. Also discusses history and future of IF,
and various media it may use.

[Gra87] David Graves :Second Generation Adventure
Games; Journal of Computer Game Design, Volume
1, number 2 (August 1987), pp 4-7
An article describing many of the more fundamental
concepts (conceptual and implementational) of inter-
active fiction of today, such as object orientation, nat-
ural language, text generation and goal orientation.

[Gra88] David Graves :Bringing Characters to Life; Journal
of Computer Game Design, Volume 2, number 2 (De-
cember 1988), pp 10-11
Describes the role and implementation of artificial
personalities in interactive fiction. This feature is sel-
dom implemented in main stream interactive fiction
but would probably give greater depth to the non-
player characters in the story.

[Gra91] David Graves :Plot Automation; Journal of Computer
Game Design, Volume 5, number 1 (October 1991),
pp 10-12

Alan Adventure Language Manual 113

1995-12-18 Alan version 2.6

The interesting idea of automatically creating a plot
from the personalities and goals of the actors in the
story is presented and discussed.

[Het84] Tony Hetherington :Adventure Games; Personal
Computer World, January 1984 (October 1991), pp
17-26
Introductory discussion on what makes a good adven-
ture, text vs. graphic, then some reviews on current
games, e.g. The Hobbit and Snowball.

[Has80] Greg Hassett :How to write An Adventure; Creative
Computing July 1980, pp 88-90
A short superficial article containing nothing that
can’t be found elsewhere.

[Leb79] P. David Lebling, Mark S. Blank, Timothy A. An-
dersson :ZORK - A Computerized Fantasy Simula-
tion Game; IEEE Computer, April 1979
An interesting article describing the inner workings
and motivations behind ZORK by the men who (al-
most) started it all.

[Leb80] P. David Lebling :ZORK and the Future of Compu-
terized Fantasy Simulations; BYTE December 1980,
pp 172-182
Lebling again describes the Zork world and machine.
This article adds discussions on various implications
of continuing to development, such as intelligent ac-
tors and communication with them, how far to take
the parsing of natural language and how careful you
must be before adding another feature in the games
universe.

[Lid80] Bob Liddil : On the Road to Adventure; BYTE De-
cember 1980, pp 158-170
Some tips for playing and reviews of number of not so
famous adventures (by Adams, Hassett, Program-
mer’s Guild and Mad Hatter).

[Mit86] David Mitchell :An adventure in programming tech-
niques; Addison-Wesley 1986, ISBN 0-201-15030-1
An excellent book covering almost every aspect of
adventure playing and writing. As the title suggests
adventure writing is taken as the goal for presenting
various programming techniques, but still with the
problems of writing and designing adventures as the
primary issue. A bible for adventurers.

[McG84] Gary McGath :COMPUTE!’s Guide To Adventure
Games; COMPUTE! Books 1984, ISBN 0-942386-
67-1
An excellent book, its primary merit is the reviews of

114 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

most of the Infocom adventures, all Scott Adam’s and
a bunch of various other adventure games available
and popular in 1984. Also contains a field guide for
adventurers and a short discussion on how to program
your own games. Includes source (in various dialects
of BASIC!) for “Tower Of Mystery”. The concluding
chapter on the future of adventure games is most in-
triguing and may serve as a source for inspiration
when trying to push its limits.

[Owe83] Peter Owens :Adventures in Learning; Popular Com-
puting, December 1983, pp. 147-150
An article discussing how computer games, adven-
tures in particular, can be used in education and their
potential effect of learning people to think.

[Sca81] Peter D. Scargill :Adven-80, An Advanced Adventure
Development System; Dr. Dobb’s Journal, Number 61
(November 1981)
An interesting predecessor, assembler like in struc-
ture with a lot of ”magic numbers”, but was probably
a good system at the time.

Alan Adventure Language Manual 115

1995-12-18 Alan version 2.6

I EXAMPLE ADVENTURE

This section contains a small example of how an adventure can be written in
Alan. The emphasis have not been on the ultimate features of the language.
Instead it is intended to show how much functionality can be achieved by just
a few hundred lines of code.

-- This is an example of an adventure written in ALAN using almost
-- nothing of the more advanced features.

-- The story is not much: You have lost your memory and stumble around
-- on a narrow path in the middle of the jungle. To the north the path
-- takes you to a river and to the south to a clearing where a tiger
-- blocks your way. The only way to get past the tiger is to eat a
-- certain kind of fungus, which works as tiger repellant (a clue about
-- this can be found in your notebook). The fungus can only be found
-- by climbing the vine hanging down over the path. When you have
-- succeded in getting past the tiger the game gets to a happy ending.

LOCATION Path

 DESCRIPTION
 "You are standing on a barely visible path in the middle of nowhere.
 The path looks like it's been walked by bare feet (or rather paws) for
 many a year. From the small amount of light reaching the ground here
 I should say the path runs in almost straight north/south direction.
 On both sides of the path is the deepest, darkest jungle you've ever
 seen. I really wouldn't recommend going that way. The path itself
 isn't much of a place to hold on to either. You get the impression
 that the vegetation is trying hard to recapture even this tiny part
 of land. The trees on both sides seems to come closer and there are
 vines hanging down almost touching your head."

 EXIT north TO bank.
 EXIT south TO clearing.
 EXIT east, west TO jungle.
END LOCATION.

LOCATION Bank

 DESCRIPTION
 "The path ends here on the south side of a wide river. On the ground
 you can see lots of paw prints (some pretty big ones, too). The obvious
 guess is naturally that this is a common place for the wild animals to
 stop by for a drink or two (and maybe a bite too). The river itself
 doesn't seem to be too dangerous - it's neither too wide nor too rapid -
 but those logs with a pair of eyes give you second thoughts."

 EXIT north, swim TO river.
 EXIT south TO path.
 EXIT east, west TO jungle.
END LOCATION.

LOCATION Trees

 DESCRIPTION
 "You have now ended up high above the ground in the middle of the
 trees and vines. The vegetation is so thick up here that it seems
 almost like a green floor."

 EXIT down TO path.
END LOCATION.

LOCATION River

 DESCRIPTION
 "Defying the obvious horrors of the river you try for the northern
 river bank. One crocodile immediately chops your left foot of, but
 you makes it almost to the middle of the river before another merciful
 crocodile finish you off."

116 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

 QUIT.

END LOCATION.

LOCATION Clearing

 DESCRIPTION
 "Here the jungle opens up a bit and the path takes you straight into
 a clearing. The path seems to continue on the south side of the
 clearing some fifty paces away."

 EXIT north TO path.
 EXIT east, west TO jungle.
 EXIT south TO camp
 CHECK hero IS repelling
 ELSE "The tiger opens its big mouth and lets out a terrifying
 growl. Apparently it won't let you pass."
 DOES
 "When you approaches the tiger it looks confused. Then it
 really takes in your smell. It suddenly bolts, turns and
 takes off into the jungle."
 LOCATE tiger AT nowhere.
 END EXIT.
END LOCATION.

LOCATION Jungle

 DESCRIPTION
 "Now you've really done it. Didn't I tell you NOT to enter the jungle."

 EXIT north, south, east, west TO jungle DOES
 "Stumbling around in the jungle trying to make your way through
 the damp vegetation that almost seems to reach out for you,
 you suddenly stumble onto a snake, which disapprove very clearly
 of you stepping on it. One bite in the leg and you have had it."
 QUIT.
 END EXIT.
END LOCATION.

LOCATION Camp

 DESCRIPTION
 "Here is the scattered parts of what ones was the camp of your
 expedition. The sight of it makes your memory come back. When
 you were attacked last night of a herd of wild elephants everyone
 fled in panic. You yourself ran straight into a tree and must
 have lost both conciousness and memory. 'Well, hope the computer
 still works.' you think. 'I think I stick to computer adventures,
 at least for the immediate future.'"
 QUIT.
END LOCATION.

LOCATION nowhere

-- The location for disappearing objects.
END LOCATION.

OBJECT Tiger AT Clearing
 DESCRIPTION
 "An enormous tiger is standing here blocking your way."
END OBJECT.

OBJECT Notebook IN inventory
 DESCRIPTION
 "The book is called 'The Jungle Book: Tricks and Tips'. It
 also has your name on it."

 VERB Take DOES
 LOCATE OBJECT IN inventory.
 "Taken!"
 END VERB.

 VERB Drop DOES

Alan Adventure Language Manual 117

1995-12-18 Alan version 2.6

 LOCATE OBJECT HERE.
 "Dropped!"
 END VERB.

 VERB Read DOES
 "You open the book and glance over the notes. It is really
 a very strange mixture. Something about a tree you shouldn't
 hide under when it rains, 'cause some kind of bugs will start
 falling of its leaves, something else about a certain kind of
 fungus, which grows up among the vines and when eaten is a
 strong tiger repellant and something about how to make a fire
 from wet moss. Here are page after page of useful hints of
 how to survive in the jungle, all in your own hand writing."
 END VERB.
END OBJECT.

OBJECT Vine AT Path
 DESCRIPTION
 "A particulary long and thick vine is hanging down just beside
 you."

 VERB climb DOES
 "The vine is quite slippery, but you still manage to climb
 well into the trees."
 LOCATE HERO AT Trees.
 END VERB.
END OBJECT.

OBJECT Fungus AT Trees
 DESCRIPTION
 "Some kind of vaguely familiar fungus is growing here on a vine."

 VERB Take DOES
 LOCATE OBJECT IN inventory.
 "Taken!"
 END VERB.

 VERB Drop DOES
 LOCATE OBJECT HERE.
 "The fungus immediately clings to a new vine."
 END VERB.

 VERB eat DOES
 "You try a bit of the fungus. It doesn't taste bad although it
 isn't that delicious either. You swallow the rest of it almost
 without chewing. After a short while a strange odour starts
 perspiring from your body."
 LOCATE fungus AT nowhere.
 MAKE hero repelling.
 END VERB.
END OBJECT.

SYNTAX take_inventory = 'inventory'.

SYNONYMS i = 'inventory'.

VERB take_inventory DOES
 LIST inventory.
END VERB.

SYNTAX 'look' = 'look'.

SYNONYMS l = 'look'.

VERB 'look' DOES
 LOOK.
END VERB.

SYNTAX 'quit' = 'quit'.

SYNONYMS q = 'quit'.

VERB 'quit' DOES
 QUIT.
END VERB.

118 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

-- NOTE ! It is NOT necessary to declare the actor Hero (which is the
-- player himself). But IF you want to make in possible to give
-- the Hero certain attributes, THEN you have to declare it.

ACTOR Hero
 IS NOT repelling.
END ACTOR.

START AT path.
 "$p'Oh, my head. It hurts. Why am I out here when I've got this kind
 of headache? And where is 'here'? And who am I?'"

Alan Adventure Language Manual 119

1995-12-18 Alan version 2.6

J COPYING CONDITIONS

The Alan Adventure Development System is REQUEST-WARE. This means
that copies of the documentation and executables may be received from the
ThoNi&GorFo Adventure Factories, henceforth called The Factories, for free
on request.

A copy of these conditions must accompany any copy of the Alan System.

J.1 Documentation

The documentation is copyrighted by The Factories. Copying is allowed pro-
vided it is distributed as a whole, or quoted accompanied with appropriate ref-
erences. This includes putting the documentation (in Postscript or plain text)
on FTP-sites, BBS'es or other public access computer networks or nodes, in
fact this is encouraged as it will promote the usage of the Alan System. The
source text for any example adventures are subject to the same conditions.

J.2 Executables

The Alan system contains two executable programs, the compiler Alan and
the interpreter Arun.

Distribution of the interpreter alone or together with game data produced by
the compiler is allowed without restrictions or royalty claims provided appro-
priate references and acknowledgment accompanies the game in documenta-
tion or program output. In addition a description of the game, its plot and ma-
jor features, and/or the game itself (preferably in source) should be donated to
The Factories. The Factories agree to any copying or copyright restrictions
placed on such a game.

The compiler may not be distributed without registering the receiver with The
Factories. Furthermore placing the compiler on FTP-sites, BBS'es or other
public access computer networks or nodes is prohibited. Instead persons reg-
istering a request with The Factories will receive a free copy of the latest ver-
sion and the right to use the compiler and its output as described above.

Registered users will receive free notification of updates, new platforms sup-
ported, information on commercially or otherwise released games and other
information supplied by other users or The Factories.

Registration is free and preferably made through a simple email message. Re-
questing a distribution through email will automatically register the requestor.

J.3 Source

No source will ever be placed in the public domain or otherwise disclosed to
third parties except for porting to new platforms.

120 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

J.4 Examples

The Factories would appreciate any example adventures or solutions to prob-
lems to improve the documentation and user support. However Alan source
marked as such will be considered not copyrighted and may or may not be
used, as a whole or in part, in the Alan documentation or distributed in other
forms by decision of The Factories.

J.5 Versions, compatibility and support

The Alan System is versioned using a three level number coding scheme, in-
dicating version number, release and correction respectively. Major differenc-
es in the language or the introduction of many new features will be indicated
by an increment of the version number. Minor changes to the language and
introduction of features are indicated by an increment of the release number.
Bug fixes will increase the correction number.

Any adventure files and interpreters having the same version and release num-
bers will be compatible. Adventure files are also compatible across all sup-
ported platforms, this includes character sets so any multinational characters
are correctly presented on any system. This gives complete coverage of the
supported platforms from a single machine.

As the Alan System is a non-profit project user support may vary. To maxim-
ise probability of handling, error reports should be sent to The Factories (pref-
erably by email) and include source, version of compiler and interpreter as
well as a detailed description of how to reproduce the error and its symptoms.

Corrections and releases will be issued on irregular intervals, restricted to reg-
istered users.

J.6 Distribution

The Alan System is mainly distributed through electronic mail. This distribu-
tion is free.

Physical media, such as disk or tape, may be supported depending on plat-
form. A requirement is that the requester supplies appropriate media. The cost
for physical media distribution may vary.

J.7 Executive Summary

So, in short, the interpreter Arun and any game produced using the Alan Sys-
tem is yours. You may sell or copy it as you like, and as you need the inter-
preter to run the game it may be copied freely too. The Arun interpreter may
also be uploaded on BBS'es or FTP-sites to allow players to download an in-
terpreter for his platform and use that to run your game.

The documentation and examples are free to copy or place on any BBS'es or
FTP-sites if their contents are not changed.

Alan Adventure Language Manual 121

1995-12-18 Alan version 2.6

The Alan compiler may only be possessed by registered users. To register
means you tell The Factories who you are, preferably an email address, but
postal mail is fine too. No payment is required. So rather that copying the Sys-
tem for your friends tell them how to contact us, and we'll send them a copy.

Distribution on disks or tape may cost depending on the media. A floppy disc
distribution is free, provided you supply the disk.

If you find the Alan Compiler on a BBS or an FTP-site, we would like your
help to notify us and the responsible persons that they are breaking the copy-
ing conditions of the Alan System. Instead a note or the Alan documentation
could be uploaded.

If you create a game using the Alan System we like to see it. Send us a copy
(preferably in source) and any documentation or a description of the game and
its novel features. This will also add to the suite of test data and therefore im-
prove the quality of future releases as well as allow us to find and document
any incompatibilities. If you also enclose a solution we can automate the test-
ing even further. The Factories will not redistribute your game without your
written permission.

Short games or samples of Alan source are welcome as examples that we
might use and distribute to other users. Sending an example means you waive
all rights to it.

122 Alan Adventure Language Manual

Alan version 2.6 1995-12-18

Index 123

Alan version 2.6 1995-12-18

A
Abug 72
ACTOR 16, 39

in what specifications 49
actor 12
actors

execution context 61
hints about 68
moving 61

adjective 34
AFTER qualifier 30
aggregate

COUNT 52
MAX 52
SUM 52

ALL 26, 36, 60, 79, 80
alternatives, verb 29
AND 26, 59, 60
article 35
Arun 71, 79, 102, 103
AT 49
attributes 15, 52, 63

boolean 23
default 23
numeric 23
of actors 39
of locations 32
of objects 35
string 23

B
BEFORE qualifier 30
binary operators 51
BNF 85
boolean attributes 23
BUT 60, 79, 80

C
CANCEL statement 46
character combinations, in strings

42
character sets 22
CHECK 28

in exits 32, 61

in verbs 17
check, unconditional 28
checks

execution order 31
common verbs 65
comparisons 51
concatenation, in player commands

59
CONTAINER 37
container property

of actors 39
of objects 34

containers
closing 66
hints about 66

contexts of execution 60
COUNT

aggregate 52
in limits 37

D
Debug option 22
debugging 71
DECREASE statement 47
default

attributes 23, 65
syntax 19, 27

DESCRIBE statement 36, 43
DESCRIPTION

of actor scripts 40, 69
of actors 40
of locations 14, 32

descriptions
execution context 60

DOES
in exits 61
in locations 32, 61
in verbs 28

doors, hints about 65
double quotes 56

E
EMPTY statement 46
equality 51
EVENT 38

124 Index

1995-12-18 Alan version 2.6

events
execution context 61
hints about 70

EVERYTHING 60
EXCEPT 60, 79
execution contexts 60
execution of an adventure 59
EXIT 13, 32, 61
expression types 50
expressions 50

logical 51

H
HEADER 38
HERE 49
hero 41, 61

I
identifiers

case translation of 55
lexical definition 55
quoted 55

IF statement 15, 48, 64
IN 49
include

construct 57
files 57, 65

INCREASE statement 47
Infocom 9, 10
IT 59, 79

L
Language option 22
languages 79
Length option 22
LIMITS 37

execution of 37, 46
LIST statement 43
literals 52
LOCATE statement 15, 45
locating inside containers 37, 46
LOCATION 31

in what specification 49
location 11, 13

logical expressions 51
logical operators 51
LOOK statement 44

M
MAKE statement 15, 47
map 11
MAX aggregate 52
MENTIONED 36
multinational characters 22
multiple indicator 26, 60
multiple parameters 60

N
NAME

of actors 39
of locations 31, 55
of objects 33

NEARBY 49
noun 34
numbers

lexical definition 56
numeric attributes 23

O
OBJECT 14, 33

in what specifications 49
object 11

shadow 67
ONLY qualifier 30
operators

binary 51
logical 51
relational 52

options 21
output statements 42

P
Pack option 22
parameter 19, 26

classes 26
referencing 60

player commands 59
presence, of parameters 60

Index 125

Alan version 2.6 1995-12-18

Q
qualifiers, verb 28, 30
QUIT statement 44
quoted identifier 55
quotes

double 56
single 56
string 56

R
RANDOM 52
relational operators 52
RESTORE statement 44
restriction, of parameters 19, 26
rules 41

executing 41
execution context 61

S
SAVE 80
SAVE statement 44
SAY statement 43
SCHEDULE statement 46
SCORE statement 44
SCRIPT 40
scripts

description of 40
SET statement 15, 47
shadow object 67
single quotes 56
spacing, in strings 56
start section 21, 41
statements, output from 42
STEP 40
step, executing the last 41
STRING 14, 42
string

attributes 23
comparisons 51
special character combinations

42
string quotes 56
strings

lexical definition 56

spacing 56
SUM aggregate 52
SYNONYMS 24
SYNTAX 19, 26
syntax, default 19, 27

T
THEM 60, 79
THEN 59
types of expressions 50

U
unconditional check 28
USE statement 40, 48

V
VERB 16, 28

global 17
in location 17
in object 17

verb 12
alternative 29
execution context 60
execution order 18, 20, 30
qualifiers 28, 30
reusing common 65

VISITS statements 45

W
what specifications 49
WHEN 41
where specification 48
Width option 22

126 Index

1995-12-18 Alan version 2.6

