

Documents by Graham Nelson

about

INTERACTIVE FICTION

Compiled and converted to Word 6.0 in Feb, 95 by D. Raisin

Contents

� VERZEICHNIS \o "1-1" \n �Documents by Graham Nelson

The Craft of Adventure

The Inform Technical Manual

The Specification of the Z-Machine and Inform assembly language

�

1 - Introduction

(Please ignore bad English!)

If you're searching for documentation about interactive fiction (the authors view) and haven't read these documents yet: try them. The texts of Graham Nelson are very good. He knows what he's talking about.

Not everybody has a version of TEX ready installed on his machine. Not everybody can be bothered to install it just because of one document he would like to read. As the documents of Graham are mainly available in TEX-Format, I converted them to Word format, which should be accessible to most PC users. I didn't change a byte of information (wouldn't dare to!), I just changed the formatting. The Inform Designer's Manual is missing at the moment but it is available as ASCII.

The source of the complied texts is ftp.gmd.de@if-archive.

I will update this document if necessary from time to time until someone else wants to do this.

Each document is in a separate "Abschnitt " (what the hell is it called in the English Word version?). If you want to print only one text, type "An" (n is the "Abschnitt" (?) number) into the page-range input box in the printer dialogue. Each Document is also marked by a separate text marker.

I used a German version of Word. I hope Word's documents are international.

Fonts used: Times New Roman, Arial, Courier New, Symbol

Surf on,

Dietrich

dr@fub46.zedat.fu-berlin.de

�

The Craft of Adventure

Five articles on the design of adventure games

(Second edition)

Contents

� VERZEICHNIS \o "2-2" \b Craft �1 - Introduction	� GEHEZU _Toc318616001 � SEITENREF _Toc318616001 �1��

2 - In The Beginning	� GEHEZU _Toc318616002 � SEITENREF _Toc318616002 �2��

3 - Bill of Player's Rights	� GEHEZU _Toc318616003 � SEITENREF _Toc318616003 �4��

4 - A Narrative...	� GEHEZU _Toc318616004 � SEITENREF _Toc318616004 �7��

5 - At War With a Crossword	� GEHEZU _Toc318616005 � SEITENREF _Toc318616005 �13��

6 - Varnish and Veneer	� GEHEZU _Toc318616006 � SEITENREF _Toc318616006 �20��

�

1 - Introduction

Skill without imagination is craftsmanship and gives us many useful objects such as wickerwork picnic baskets. Imagination without skill gives us modern art.

	Tom Stoppard, Artist Descending A Staircase

Making books is a skilled trade, like making clocks.

	Jean de la Bruyere (1645-1696)

If you're going to have a complicated story you must work to a map; otherwise you'll never make a map of it afterwards.

	J. R. R. Tolkien (1892-1973)

Designing an adventure game is both an art and a craft. Whereas art cannot be taught, only commented upon, craft at least can be handed down: but the tricks of the trade do not make an elegant narrative, only a catalogue. This small collection of essays is just such a string of grits of wisdom and half-baked critical opinions, which may well leave the reader feeling unsatisfied. One can only say to such a reader that any book claiming to reveal the secret of how to paint, or to write novels, should be recycled at once into something more genuinely artistic, say a papier-mache sculpture.

If there is any theme here, it is that standards count: not just of competent coding, but of writing. True, most designers have been either programmers 'in real life' or at the 'Hardy Boys Mysteries' end of the literary scale, but that's no reason to look down on their better works, or to begrudge them a look at all. Though this book is mainly about the larger scale, one reason I think highly of 'Spellbreaker' is for memorable phrases like 'a voice of honey and ashes'. Or 'You insult me, you insult even my dog!'

The author of a text adventure has to be schizophrenic in a way that the author of a novel does not. The novel-reader does not suffer as the player of a game does: she needs only to keep turning the pages, and can be trusted to do this by herself. The novelist may worry that the reader is getting bored and discouraged, but not that she will suddenly find pages 63 to the end have been glued together just as the plot is getting interesting.

Thus, the game author has continually to worry about how the player is getting along, whether she is lost, confused, fed up, finding it too tedious to keep an accurate map: or, on the other hand, whether she is yawning through a sequence of easy puzzles without much exploration. Too difficult, too easy? Too much choice, too little? So this book will keep going back to the player's eye view.

On the other hand, there is also a novel to be written: the player may get the chapters all out of order, the plot may go awry, but somehow the author has to rescue the situation and bind up the strings neatly. Our player should walk away thinking it was a well-thought out story: in fact, a novel, and not a child's puzzle-book.

An adventure game is a crossword at war with a narrative. Design sharply divides into the global - plot, structure, genre - and the local - puzzles and rooms, orders in which things must be done. And this book divides accordingly.

Frequent examples are quoted from real games, especially from 'Adventure' and the middle-period Infocom games: for two reasons. Firstly, they will be familiar to many aficionados. Secondly, although a decade has passed they still represent the bulk of the best work in the field. In a few places my own game 'Curses' is cited, because I know all the unhappy behind-the-scenes stories about it.

I have tried not to give anything substantial away. So I have also avoided mention of recent games other than my own; while revising this text, for instance, I had access to an advance copy of David M. Baggett's fine game 'The Legend Lives', but resisted the temptation to insert any references to it. Except to say that it demonstrates that, as I write this, the genre is still going strong: well, long may it.

	Graham Nelson

	Magdalen College, Oxford

	January 1995

2 - In The Beginning

It's very tight. But we have cave!

	Patricia Crowther, July 1972

Perhaps the first adventurer was a mulatto slave named Stephen Bishop, born about 1820: 'slight, graceful, and very handsome'; a 'quick, daring, enthusiastic' guide to the Mammoth Cave in the Kentucky karst. The story of the Cave is a curious microcosm of American history. Its discovery is a matter of legend dating back to the 1790s; it is said that a hunter, John Houchin, pursued a wounded bear to a large pit near the Green River and stumbled upon the entrance. The entrance was thick with bats and by the War of 1812 was intensively mined for guano, dissolved into nitrate vats to make saltpetre for gunpowder. After the war prices fell; but the Cave became a minor side-show when a dessicated Indian mummy was found nearby, sitting upright in a stone coffin, surrounded by talismans. In 1815, Fawn Hoof, as she was nicknamed after one of the charms, was taken away by a circus, drawing crowds across America (a tour rather reminiscent of Don McLean's song 'The Legend of Andrew McCrew'). She ended up in the Smithsonian but by the 1820s the Cave was being called one of the wonders of the world, largely due to her posthumous efforts.

By the early nineteenth century European caves were big tourist attractions, but hardly anyone visited the Mammoth, 'wonder of the world' or not. Nor was it then especially large (the name was a leftover from the miners, who boasted of their mammoth yields of guano). In 1838, Stephen Bishop's owner bought up the Cave. Stephen, as (being a slave) he was invariably called, was by any standards a remarkable man: self-educated in Latin and Greek, he became famous as the 'chief ruler' of his underground realm. He explored and named much of the layout in his spare time, doubling the known map in a year. The distinctive flavour of the Cave's names - half-homespun American, half-classical - started with Stephen: the River Styx, the Snowball Room, Little Bat Avenue, the Giant Dome. Stephen found strange blind fish, snakes, silent crickets, the remains of cave bears (savage, playful creatures, five feet long and four high, which became extinct at the end of the last Ice Age), centuries-old Indian gypsum workings and ever more cave. His 1842 map, drafted entirely from memory, was still in use forty years later.

As a tourist attraction (and, since Stephen's owner was a philanthropist, briefly a sanatorium for tuberculosis, owing to a hopeless medical theory) the Cave became big business: for decades nearby caves were hotly seized and legal title endlessly challenged. The neighbouring chain, across Houchins Valley in the Flint Ridge, opened the Great Onyx Cave in 1912. By the 1920s, the Kentucky Cave Wars were in full swing. Rival owners diverted tourists with fake policemen, employed stooges to heckle each other's guided tours, burned down ticket huts, put out libellous and forged advertisements. Cave exploration became so dangerous and secretive that finally in 1941 the U.S. Government stepped in, made much of the area a National Park and effectively banned caving. The gold rush of tourists was, in any case, waning.

Convinced that the Mammoth and Flint Ridge caves were all linked in a huge chain, explorers tried secret entrances for years, eventually winning official backing. Throughout the 1960s all connections from Flint Ridge - difficult and water-filled tunnels - ended frustratingly in chokes of boulders. A 'reed-thin' physicist, Patricia Crowther, made the breakthrough in 1972 when she got through the Tight Spot and found a muddy passage: it was a hidden way into the Mammoth Cave.

Under the terms of his owner's will, Stephen Bishop was freed in 1856, at which time the cave boasted 226 avenues, 47 domes, 23 pits and 8 waterfalls. He died a year later, before he could buy his wife and son. In the 1970s, Crowther's muddy passage was found on his map.

The Mammoth Cave is huge, its full extent still a matter of speculation (estimates vary from 300 to 500 miles). Patricia's husband, Willie Crowther, wrote a computer simulation of his favourite region, Bedquilt Cave, in FORTRAN in the early 1970s. (It came to be called Colossal Cave, though this name actually belongs further along.) Like the real cave, the simulation was a map on about four levels of depth, rich in geology. A good example is the orange column which descends to the Orange River Rock room (where the bird lives): and the real column is indeed orange (of travertine, a beautiful mineral found in wet limestone).

The game's language is loaded with references to caving, to 'domes' and 'crawls'. A 'slab room', for instance, is a very old cave whose roof has begun to break away into sharp flakes which litter the floor in a crazy heap. The program's use of the word 'room' for all manner of caves and places seems slightly sloppy in everyday English, but is widespread in American caving and goes back as far as Stephen Bishop: so the Adventure-games usage of the word 'room' to mean 'place' may even be bequeathed from him.

Then came elaboration. A colleague of Crowther's (at a Massachusetts computing firm), Don Woods, stocked up the caves with magical items and puzzles, inspired by a role-playing game. Despite this, very many of the elements of the original game crop up in real life. Cavers do turn back when their carbide lamps flicker; there are mysterious markings and initials on the cave walls, some left by the miners, some by Bishop, some by 1920s explorers. Of course there isn't an active volcano in central Kentucky, nor are there dragons and dwarves. But even these embellishments are, in a sense, derived from tradition: like most of the early role-playing games, 'Adventure' owes much to J. R. R. Tolkien's 'The Hobbit', and the passage through the mountains and Moria of 'The Lord of the Rings' (arguably its most dramatic and atmospheric passage). Tolkien himself, the most successful myth-maker of the twentieth century, worked from the example of Icelandic, Finnish and Welsh sagas.

By 1977 tapes of 'Adventure' were being circulated widely, by the Digital user group DECUS, amongst others: taking over lunchtimes and weekends wherever it went... but that's another story. (Tracy Kidder's fascinating book 'The Soul of a New Machine', a journalist's-eye-view of working in a computing firm at about this time, catches it well.)

There is a moral to this tale, and a reason for telling it. The original 'Adventure' was much imitated and many traditions are derived from it. It had no direct sequel itself but several 'schools' of adventure games began from it. 'Zork' (which was to be the first Infocom game) and 'Adventureland' (the first Scott Adams game) include, for instance, a rather passive dragon, a bear, a troll, a volcano, a maze, a lamp with limited battery-power, a place to deposit treasures and so on. The earliest British game of real quality, 'Acheton', written at Cambridge University in 1979-80 by David Seal and Jonathan Thackray (and the first of a dozen or so games written in Cambridge) has in addition secret canyons, water, a wizard's house not unlike that of 'Zork'. The Level 9 games began with a good port of 'Adventure' (which was generally considered at the time, and ever since, to be in the public domain, on what legal grounds it's hard to see) and then two sequels in similar style. All these games had a standard prologue-middle game-end game form: the prologue is a tranquil outside world, the middle game consists of collecting treasures in the cave, the end is usually called a Master Game (Level 9 expanded on the 'Adventure' end game somewhat, not so well).

Of this first crop of games, 'Adventure' remains the best, mainly because it has its roots in a simulation. This is why it is so atmospheric, more so than any other game for a decade after. The Great Underground Empire of 'Zork' is an imitation of the original, based not on real caves but on Crowther's descriptions. 'Zork' is better laid out as a game but not as convincing, and in places a caricature: too tidy, with no blind alleys, no secret canyons. Its mythology is similarly less well-grounded: the long-gone Flathead dynasty, beginning in a few throwaway jokes, ended up downright tiresome in the later sequels, when the 'legend of the Flatheads' had become, by default, the distinguishing feature of 'Zorkness'. The middle segments especially of 'Zork' (now called 'Zork II') make a fine game, one of the best of the 'cave' games, but 'Zork' remains flawed in a way that many of Infocom's later games were not.

In the beginning of any game is its 'world', physical and imaginary, geography and myth. The vital test takes place in the player's head: is the picture of a continuous sweep of landscape, or of a railway-map on which a counter moves from one node to another? 'Adventure' passes this test, however primitive some may call it. If it had not done so, the genre might never have started.

3 - Bill of Player's Rights

In an early version of Zork, it was possible to be killed by the collapse of an unstable room. Due to carelessness with scheduling such a collapse, 50,000 pounds of rock might fall on your head during a stroll down a forest path. Meteors, no doubt.

	P. David Lebling

W. H. Auden once observed that poetry makes nothing happen. Adventure games are far more futile: it must never be forgotten that they intentionally annoy the player most of the time. There's a fine line between a challenge and a nuisance: the designer has to think, first and foremost, like a player (not an author, and certainly not a programmer). With that in mind, I hold the following rights to be self-evident:

1. Not to be killed without warning

At its most basic level, this means that a room with three exits, two of which lead to instant death and the third to treasure, is unreasonable without some hint. On the subject of which:

2. Not to be given horribly unclear hints

Many years ago, I played a game in which going north from a cave led to a lethal pit. The hint was: there was a pride of lions carved above the doorway. Good hints can be skilfully hidden, or very brief, but should not need explaining after the event. (The game was Level 9's 'Dungeon', in which pride comes before a fall. Conversely, the hint in the moving-rocks plain problem in 'Spellbreaker' is a masterpiece.)

3. To be able to win without experience of past lives

This rule is very hard to abide by. Here are three examples:

(i)	There is a nuclear bomb buried under some anonymous floor somewhere, which must be disarmed. The player knows where to dig because, last time around, it blew up there.

(ii)	There is a rocket-launcher with a panel of buttons, which looks as if it needs to be correctly programmed. But the player can misfire the rocket easily by tampering with the controls before finding the manual.

(iii)	(This from 'The Lurking Horror'.) Something needs to be cooked for the right length of time. The only way to find the right time is by trial and error, but each game allows only one trial. On the other hand, common sense suggests a reasonable answer.

Of these (i) is clearly unfair, most players would agree (ii) is fair enough and (iii), as tends to happen with real cases, is border-line. In principle, then, a good player should be able to play the entire game out without doing anything illogical, and deserves likewise:

4. To be able to win without knowledge of future events

For example, the game opens near a shop. You have one coin and can buy a lamp, a magic carpet or a periscope. Five minutes later you are transported away without warning to a submarine, whereupon you need a periscope. If you bought the carpet, bad luck.

5. Not to have the game closed off without warning

'Closed off' meaning that it would become impossible to proceed at some later date. If there is a Japanese paper wall which you can walk through at the very beginning of the game, it is extremely annoying to find that a puzzle at the very end requires it to still be intact, because every one of your saved games will be useless. Similarly it is quite common to have a room which can only be visited once per game. If there are two different things to be accomplished there, this should be hinted at.

In other words, an irrevocable act is only fair if the player is given due warning that it would be irrevocable.

6. Not to need to do unlikely things

For example, a game which depends on asking a policeman about something he could not reasonably know about. (Less extremely, the problem of the hacker's keys in 'The Lurking Horror'.) Another unlikely thing is waiting in dull places. If you have a junction at which after five turns an elf turns up bearing a magic ring, a player may well never spend five consecutive turns there and will miss what you intended to be easy. ('Zork III' is very much a case in point.) If you intend the player to stay somewhere for a while, put something intriguing there.

7. Not to need to do boring things for the sake of it

In the bad old days many games would make life difficult by putting objects needed to solve a problem miles away from where the problem was, despite all logic - say, a boat in the middle of a desert. Or, for example, a four-discs tower of Hanoi puzzle might entertain. But not an eight-discs one. And the two most hackneyed puzzles - only being able to carry four items, and fumbling with a rucksack, or having to keep finding new light sources - can wear a player's patience down very quickly.

8. Not to have to type exactly the right verb

For instance, "looking inside" a box finds nothing, but "searching" it does. Or consider the following dialogue (amazingly, from 'Sorcerer'):

>unlock journal�(with the small key)

No spell would help with that!

>open journal�(with the small key)

The journal springs open.

This is so misleading as to constitute a bug, but it's an easy design fault to fall into. (Similarly, the wording needed to use the brick in 'Zork II' strikes me as quite unfair, unless I missed something obvious.) Consider how many ways a player can, for instance, ask to take a coat off:

remove coat / take coat off / take off coat / disrobe coat / doff coat / shed coat

(I was sceptical when play-testers asked me to add "don" and "doff" to my game 'Curses', but enjoyed a certain moment of triumph when my mother tried it during her first game.) Nouns also need...

9. To be allowed reasonable synonyms

In the same room in 'Sorcerer' is a "woven wall hanging" which can instead be called "tapestry" (though not "curtain"). This is not a luxury, it's an essential. For instance, in 'Trinity' there is a charming statue of a carefree little boy playing a set of pan pipes. This can be called the "charming" or "peter" "statue" "sculpture" "pan" "boy" "pipe" or "pipes". Objects often have more than 10 nouns attached.

Perhaps a remark on a sad subject might be intruded here. The Japanese woman near the start of 'Trinity' can be called "yellow" and "Jap", for instance, terms with a grisly resonance. In the play-testing of 'Curses', it was pointed out to me that the line "Let's just call a spade a spade" (an innocent joke about a garden spade) meant something quite different to extreme right-wing politicians in southern America; in the end, I kept the line, but it's never seemed quite as funny since.

10. To have a decent parser

(If only this went without saying.) At the very least the parser should provide for taking and dropping multiple objects.

Since only the Bible stops at ten commandments, here are seven more, though these seem to me to be matters of opinion:

11. To have reasonable freedom of action

Being locked up in a long sequence of prisons, with only brief escapes between them, is not all that entertaining. After a while the player begins to feel that the designer has tied him to a chair in order to shout the plot at him. This is particularly dangerous for adventure game adaptations of books (and most players would agree that the Melbourne House adventures based on 'The Lord of the Rings' suffered from this).

12. Not to depend much on luck

Small chance variations add to the fun, but only small ones. The thief in 'Zork I' seems to me to be just about right in this respect, and similarly the spinning room in 'Zork II'. But a ten-ton weight which fell down and killed you at a certain point in half of all games is just annoying. (Also, you're only making work for yourself, in that games with random elements are much harder to test and debug, though that shouldn't in an ideal world be an issue.)

A particular danger occurs with low-probability events, one or a combination of which might destroy the player's chances. For instance, in the earliest edition of 'Adventureland', the bees have an 8% chance of suffocation each turn carried in the bottle: one needs to carry them for 10 or 11 turns, which gives the bees only a 40% chance of surviving to their destination.

There is much to be said for varying messages which occur very often (such as, "You consult your spell book.") in a fairly random way, for variety's own sake.

13. To be able to understand a problem once it is solved

This may sound odd, but many problems are solved by accident or trial and error. A guard-post which can be passed if and only if you are carrying a spear, for instance, ought to indicate somehow that this is why you're allowed past. (The most extreme example must be the notorious Bank of Zork, of which I've never even understood other people's explanations.)

14. Not to be given too many red herrings

A few red herrings make a game more interesting. A very nice feature of 'Zork I', 'II' and 'III' is that they each contain red herrings explained in the others (in one case, explained in 'Sorcerer'). But difficult puzzles tend to be solved last, and the main technique players use is to look at their maps and see what's left that they don't understand. This is frustrating when there are many insoluble puzzles and useless objects. So you can expect players to lose interest if you aren't careful. My personal view is that red herrings ought to be clued: for instance, if there is a useless coconut near the beginning, then perhaps much later an absent-minded botanist could be found who wandered about dropping them. The coconut should at least have some rationale.

An object is not a red herring merely because it has no game function: a useless newspaper could quite fairly be found in a library. But not a kaleidoscope.

The very worst game I've played for red herrings is 'Sorcerer', which by my reckoning has 10.

15. To have a good reason why something is impossible

Unless it's also funny, a very contrived reason why something is impossible just irritates. (The reason one can't walk on the grass in Kensington Gardens in 'Trinity' is only just funny enough, I think.)

Moral objections, though, are fair. For instance, if you are staying in your best friend's house, where there is a diamond in a display case, smashing the case and taking the diamond would be physically easy but quite out of character. Mr Spock can certainly be disallowed from shooting Captain Kirk in the back.

16. Not to need to be American

The diamond maze in 'Zork II' being a case in point. Similarly, it's polite to allow the player to type English or American spellings or idiom. For instance 'Trinity' endears itself to English players in that the soccer ball can be called "football" - soccer is a word almost never used in England. (Since these words were first written, several people have politely pointed out to me that my own 'Curses' is, shall we say, slightly English. But then, like any good dictator, I prefer drafting constitutions to abiding by them.)

17. To know how the game is getting on

In other words, when the end is approaching, or how the plot is developing. Once upon a time, score was the only measure of this, but hopefully not any more.

4 - A Narrative...

The initial version of the game was designed and implemented in about two weeks.

	P. David Lebling, Marc S. Blank, Timothy A. Anderson, of 'Zork'

It was started in May of '85 and finished in June '86.

	Brian Moriarty, of 'Trinity' (from earlier ideas)

Away in a Genre

The days of wandering around doing unrelated things to get treasures are long passed, if they ever were. Even 'Adventure' went to some effort to avoid this.

Its many imitators, in the early years of small computers, often took no such trouble. The effect was quite surreal. One would walk across the drawbridge of a medieval castle and find a pot plant, a vat of acid, a copy of Playboy magazine and an electric drill. There were puzzles without rhyme or reason. The player was a characterless magpie always on the lookout for something cute to do. The crossword had won without a fight.

It tends to be forgotten that 'Adventure' was quite clean in this respect: at its best it had an austere, Tolkienesque feel, in which magic was scarce, and its atmosphere and geography was well-judged, especially around the edges of the map: the outside forests and gullies, the early rubble-strewn caves, the Orange River Rock room and the rim of the volcano. Knife-throwing dwarves would appear from time to time, but joky town council officers with clipboards never would. 'Zork' was condensed, less spacious and never quite so consistent in style: machines with buttons lay side by side with trolls and vampire bats. Nonetheless, even 'Zork' has a certain 'house style', and the best of even the tiniest games, those by Scott Adams, make up a variety of genres (not always worked through but often interesting): vampire film, comic-book, Voodoo, ghost story.

By the mid-1980s better games had settled the point. Any player dumped in the middle of one of 'The Lurking Horror' (H. P. Lovecraft horror), 'Leather Goddesses of Phobos' (30s racy space opera) or 'Ballyhoo' (mournfully cynical circus mystery) would immediately be able to say which it was.

The essential flavour that makes your game distinctive and yours is genre. And so the first decision to be made, when beginning a design, is the style of the game. Major or minor key, basically cheerful or nightmarish, or somewhere in between? Exploration, romance, mystery, historical reconstruction, adaptation of a book, film noir, horror? In the style of Terry Pratchett, Edgar Allen Poe, Thomas Hardy, Philip K. Dick? Icelandic, Greek, Chaucerian, Hopi Indian, Aztec, Australian myth?

If the chosen genre isn't fresh and relatively new, then the game had better be very good. It's a fateful decision: the only irreversible one.

Adapting Books

Two words of warning about adapting books. First, remember copyright, which has broader implications than many non-authors realise. For instance, fans of Anne McCaffrey's "Dragon" series of novels are allowed to play network games set on imaginary planets which do not appear in McCaffrey's works, and to adopt characters of their own invention, but not to use or refer to hers. This is a relatively tolerant position on the part of her publishers.

Even if no money changes hands, copyright law is enforceable, usually until fifty years after the author's death (but in some countries seventy). Moreover some classics are written by young authors (the most extreme case I've found is a copyright life of 115 years after publication). Most of twentieth-century literature, even much predating World War I, is still covered: and some literary estates (that of Tintin, for instance) are highly protective. (The playwright Alan Bennett recently commented on the trouble he had over a brief parody of the 1930s school of adventure yarns - Sapper, Dornford Yates, and so on - just because of an automatic hostile response by publishers.) The quotations from games in this article are legal only because brief excerpts are permitted for critical or review purposes.

Secondly, a direct linear plot is very hard to successfully implement in an adventure game. It will be too long (just as a novel is usually too much for a film, which is nearer to a longish short story in scope) and it will involve the central character making crucial and perhaps unlikely decisions at the right moment. If the player decides to have tea outside and not to go into those ancient caves after all, the result is not "A Passage to India". (A book, incidentally, which E. M. Forster published in 1924, and on which British copyright will expire in 2020.)

Pastiche is legally safer and usually works better in any case: steal a milieu rather than a plot. In this (indeed, perhaps only this) respect, McCaffrey's works are superior to Forster's: then again, Chaucer or Rabelais have more to offer than either, and with no executors waiting to pounce.

Magic and Mythology

Whether or not there is "magic" (and it might not be called such, for example in the case of science fiction) there is always myth. This is the imaginary fabric of the game: landscape is more than just buildings and trees. The commonest 'mythology' is what might be called 'lazy medieval', where anything prior to the invention of gunpowder goes, all at once, everything from Greek gods to the longbow (a span of about two thousand years). In fact, anything an average reader might think of as 'old world' will do, the Western idea of antiquity being a huge collage. This was so even in the time of the Renaissance:

One is tempted to call the medieval habit of life mathematical or to compare it with a gigantic game where everything is included and every act is conducted under the most complicated system of rules. Ultimately the game grew over-complicated and was too much for people...

(In some ways, the historical counterparts of the characters in a medieval adventure game saw the real world as if it were such a game.)

That last quotation was from E. M. W. Tillyard's book 'The Elizabethan World Picture', exactly the stuff of which game-settings are made. Tillyard's main claim is that

The Elizabethans pictured the universal order under three main forms: a chain, a series of corresponding planes and a dance.

Throw all that together with Hampton Court, boats on the Thames by night and an expedition or two to the Azores and the game is afoot.

Most games do have "magic", some way of allowing the player to transform her surroundings in a wholly unexpected and dramatic way which would not be possible in real life. There are two dangers: firstly, many systems have already been tried - and naturally a designer wants to find a new one. Sometimes spells take place in the mind (the 'Enchanter' trilogy), sometimes with the aid of certain objects ('Curses'); sometimes half-way between the two (Level 9's 'Magik' trilogy).

Secondly, magic is surreal almost by definition and surrealism is dangerous (unless it is deliberate, something only really attempted once, in 'Nord 'n' Burt Couldn't Make Head Nor Tail Of It'). The T-Removing Machine of 'Leather Goddesses of Phobos' (which can, for instance, transform a rabbit to a rabbi) is a stroke of genius but a risky one. The adventure game is centred on words and descriptions, but the world it incarnates is supposed to be solid and real, surely, and not dependent on how it is described? To prevent magic from derailing the illusion, it must have a coherent rationale. This is perhaps the definition of mystic religion, and there are plenty around to steal from.

What can magic do? Chambers English Dictionary defines it as

the art of producing marvellous results by compelling the aid of spirits, or by using the secret forces of nature, such as the power supposed to reside in certain objects as 'givers of life': enchantment: sorcery: art of producing illusions by legerdemain: a secret or mysterious power over the imagination or will.

It is now a commonplace that this is really the same as unexplained science, that a tricorder and a rusty iron rod with a star on the end are basically the same myth. As C. S. Lewis, in 'The Abolition of Man', defined it,

For magic and applied science alike the problem is how to subdue reality to the wishes of man.

Role-playing games tend to have elaborately worked-out theories about magic, but these aren't always suitable. Here are two (slightly simplified) excerpts from the spell book of 'Tunnels and Trolls', which has my favourite magic system:

Magic Fangs	Change a belt or staff into a small poisonous serpent. Cannot "communicate" with mage, but does obey mage's commands. Lasts as long as mage puts strength into it at time of creation.

Bog and Mire	Converts rock to mud or quicksand for 2 turns, up to 1000 cubic feet. Can adjust dimensions as required, but must be a regular geometric solid.

Magic Fangs is an ideal spell for an adventure game, whereas Bog and Mire is a nightmare to implement and impossible for the player to describe.

If there are spells (or things which come down to spells, such as alien artifacts) then each should be used at least twice in the game, preferably in different contexts, and some many times. But, and this is a big 'but', the majority of puzzles should be soluble by hand - or else the player will start to feel that it would save a good deal of time and effort just to find the "win game" spell and be done with it. In similar vein, using an "open even locked or enchanted object" spell on a shut door is less satisfying than casting a "cause to rust" spell on its hinges, or something even more indirect.

Magic has to be part of the mythology of a game to work. Alien artifacts would only make sense found on, say, an adrift alien spaceship, and the player will certainly expect to have more about the 'aliens' revealed in play. Even the traditional magic word "xyzzy", written on the cave's walls, is in keeping with the centuries of initials carved by the first explorers of the Mammoth cave.

Research

Design usually begins with, and is periodically interrupted by, research. This can be the most entertaining part of the project and is certainly the most rewarding, not so much because factual accuracy matters (it doesn't) but because it continually sparks off ideas.

A decent town library, for instance, contains thousands of maps of one kind or another if one knows where to look: deck plans of Napoleonic warships, small-scale contour maps of mountain passes, city plans of New York and ancient Thebes, the layout of the U.S. Congress. There will be photographs of every conceivable kind of terrain, of most species of animals and plants; cutaway drawings of a 747 airliner and a domestic fridge; shelves full of the collected paintings of every great artist from the Renaissance onwards. Data is available on the melting point of tungsten, the distances and spectral types of the nearest two dozen stars, journey times by rail and road across France.

History crowds with fugitive tales. Finding an eyewitness account is always a pleasure: for instance,

As we ranged by Gratiosa, on the tenth of September, about twelve a clocke at night, we saw a large and perfect Rainbow by the Moone light, in the bignesse and forme of all other Rainbows, but in colour much differing, for it was more whitish, but chiefly inclining to the colour of the flame of fire.

(Described by the ordinary seaman Arthur Gorges aboard Sir Walter Raleigh's expedition of 1597.)

Then, too, useful raw materials come to hand. A book about Tibet may mention, in passing, the way to make tea with a charcoal-burning samovar. So, why not a tea-making puzzle somewhere? It doesn't matter that there is as yet no plot to fit it into: if it's in keeping with the genre, it will fit somewhere.

Research also usefully fills in gaps. Suppose a fire station is to be created: what are the rooms? A garage, a lounge, a room full of uniforms, yes: but what else? Here is Stu Galley, on writing the Chandleresque murder mystery 'Witness':

Soon my office bookshelf had an old Sears catalogue and a pictorial history of advertising (to help me furnish the house and clothe the characters), the "Dictionary of American Slang" (to add colour to the text) and a 1937 desk encyclopaedia (to weed out anachronisms).

The result (overdone but hugely amusing) is that one proceeds up the peastone drive of the Linder house to meet (for instance) Monica, who has dark waved hair and wears a navy Rayon blouse, tan slacks and tan pumps with Cuban heels. She then treats you like a masher who just gave her a whistle.

On the other hand, the peril of research is that it piles up fact without end. It is essential to condense. Here Brian Moriarty, on research for 'Trinity', which went as far as geological surveys:

The first thing I did was sit down and make a map of the Trinity site. It was changed about 50 times trying to simplify it and get it down from over 100 rooms to the 40 or so rooms that now comprise it. It was a lot more accurate and very detailed, but a lot of that detail was totally useless.

There is no need to implement ten side-chapels when coding, say, Chartres cathedral, merely because the real one has ten.

The Overture

At this point the designer has a few photocopied sheets, some scribbled ideas and perhaps even a little code - the implementation of a samovar, for instance - but nothing else. (There's no harm in sketching details before having the whole design worked out: painters often do. Besides, it can be very disspiriting looking at a huge paper plan of which nothing whatever is yet programmed.) It is time for a plot.

Plot begins with the opening message, rather the way an episode of Star Trek begins before the credits come up. Write it now. It ought to be striking and concise (not an effort to sit through, like the title page of 'Beyond Zork'). By and large Infocom were good at this, and a fine example is Brian Moriarty's overture to 'Trinity':

Sharp words between the superpowers. Tanks in East Berlin. And now, reports the BBC, rumors of a satellite blackout. It's enough to spoil your continental breakfast.

But the world will have to wait. This is the last day of your $599 London Getaway Package, and you're determined to soak up as much of that authentic English ambience as you can. So you've left the tour bus behind, ditched the camera and escaped to Hyde Park for a contemplative stroll through the Kensington Gardens.

Already you know: who you are (an unadventurous American tourist, of no consequence to the world); exactly where you are (Kensington Gardens, Hyde Park, London, England); and what is going on (bad news, I'm afraid: World War III is about to break out). Notice the careful details: mention of the BBC, of continental breakfasts, of the camera and the tour bus. In style, the opening of 'Trinity' is escapism from a disastrous world out of control: notice the way the first paragraph is in tense, blunt, headline-like sentences, whereas the second is much more relaxed. So a good deal has been achieved in two paragraphs.

The point about telling the player who to be is more subtle than first appears. "What should you, the detective, do now?" asks 'Witness' pointedly on the first turn. Gender is an especially awkward point. In some games the player's character is exactly prescribed: in 'Plundered Hearts' you are a particular girl whisked away by pirates, and have to act in character. Other games take the attitude that anyone who turns up can play, as themselves, with whatever gender or attitudes (and in a dull enough game with no other characters, these don't even matter).

An Aim in Life

Once the player knows who he is, what is he to do? Even if you don't want him to know everything yet, he has to have some initial task.

Games vary in how much they reveal at once. 'Trinity' is foreboding but really only tells the player to go for a walk. 'Curses' gives the player an initial task which appears easy - look through some attics for a tourist map of Paris - the significance of which is only gradually revealed, in stages, as the game proceeds. (Not everyone likes this, and some players have told me it took them a while to motivate themselves because of it, but on balance I disagree.) Whereas even the best of "magic realm" type games (such as 'Enchanter') tends to begin with something like:

You, a novice Enchanter with but a few simple spells in your Book, must seek out Krill, explore the Castle he has overthrown, and learn his secrets. Only then may his vast evil...

A play is nowadays sometimes said to be 'a journey for the main character', and there's something in this. There's a tendency in most games to make the protagonist terribly, terribly important, albeit initially ordinary - the player sits down as Clark Kent, and by the time the prologue has ended is wearing Superman's gown. Presumably the idea is that it's more fun being Superman than Kent (though I'm not so sure about this).

Anyway, the most common plots boil down to saving the world, by exploring until eventually you vanquish something ('Lurking Horror' again, for instance) or collecting some number of objects hidden in awkward places ('Leather Goddesses' again, say). The latter can get very hackneyed (find the nine magic spoons of Zenda to reunite the Kingdom...), so much so that it becomes a bit of a joke ('Hollywood Hijinx') but still it isn't a bad idea, because it enables many different problems to be open at once.

As an aside on saving the world, with which I suspect many fans of 'Dr Who' would agree: it's more interesting and dramatic to save a small number of people (the mud-slide will wipe out the whole village!) than the whole impersonal world (but Doctor, the instability could blow up every star in the universe!).

In the same way, a game which involves really fleshed-out characters other than the player will involve them in the plot and the player's motives, which obviously opens many more possibilities.

The ultimate aim at this stage is to be able to write a one-page synopsis of what will happen in the full game (as is done when pitching a film, and as Infocom did internally, according to several sources): and this ought to have a clear structure.

Size and Density

Once upon a time, the sole measure of quality in advertisements for adventure games was the number of rooms. Even quite small programs would have 200 rooms, which meant only minimal room descriptions and simple puzzles which were scattered thinly over the map. (The Level 9 game 'Snowball' - perhaps their best, and now perhaps almost lost - cheekily advertised itself as having 2,000,000 rooms... though 1,999,800 of them were quite similar to each other.)

Nowadays a healthier principle has been adopted: that (barring a few junctions and corridors) there should be something out of the ordinary about every room.

One reason for the quality of the Infocom games is that their roots were in a format which enforced a high density. In their formative years there was an absolute ceiling of 255 objects, which needs to cover rooms, objects and many other things (e.g., compass directions and spells). Some writers were slacker than others (Steve Meretzky, for example) but there simply wasn't room for great boring stretches. An object limit can be a blessing as well as a curse. (And the same applies to some extent to the Scott Adams games, whose format obliged extreme economy on number of rooms and objects but coded rules and what we would now call daemons so efficiently that the resulting games tend to have very tightly interlinked puzzles and objects, full of side-effects and multiple uses.)

Let us consider the earlier Infocom format as an example of setting a budget. Many 'objects' are not portable: walls, tapestries, thrones, control panels, coal-grinding machines. As a rule of thumb, four objects to one room is to be expected: so we might allocate, say, 60 rooms. Of the remaining 200 objects, one can expect 15-20 to be used up by the game's administration (e.g., in an Infocom game these might be a "Darkness" room, 12 compass directions, the player and so on). Another 50-75 or so objects may be portable but the largest number, at least 100, will be furniture.

Similarly there used to be room for at most 150K of text. This is the equivalent of about a quarter of a modern novel, or, put another way, enough bytes to store a very substantial book of poetry. Roughly, it meant spending 2K of text (about 350 words) in each room - ten times the level of detail of the original mainframe Adventure.

Most adventure-compilers are fairly flexible about resources nowadays (certainly TADS and Inform are), and this means that a rigorous budget is not absolutely needed. Nonetheless, a plan can be helpful and can help to keep a game in proportion. If a game of 60 rooms is intended, how will they be divided up among the stages of the game? Is the plan too ambitious, or too meek?

The Prologue

Just as most Hollywood films are three-act plays (following a convention abandoned decades ago by the theatre), so there is a conventional game structure.

Most games have a prologue, a middle game and an end game, usually quite closed off from each other. Once one of these phases has been left, it generally cannot be returned to (though there is sometimes a reprise at the end, or a premonition at the beginning): the player is always going 'further up, and further in', like the children entering Narnia.

The prologue has two vital duties. Firstly, it has to establish an atmosphere, and give out a little background information.

To this end the original 'Adventure' had the above-ground landscape; the fact that it was there gave a much greater sense of claustrophobia and depth to the underground bulk of the game. Similarly, most games begin with something relatively mundane (the guild-house in 'Sorcerer', Kensington Gardens in 'Trinity') or else they include the exotic with dream-sequences ('The Lurking Horror'). Seldom is a player dropped in at the deep end (as 'Plundered Hearts', which splendidly begins amid a sea battle).

The other duty is to attract a player enough to make her carry on playing. It's worth imagining that the player is only toying with the game at this stage, and isn't drawing a map or being at all careful. If the prologue is big, the player will quickly get lost and give up. If it is too hard, then many players simply won't reach the middle game.

Perhaps eight to ten rooms is the largest a prologue ought to be, and even then it should have a simple (easily remembered) map layout. The player can pick up a few useful items - the traditional bottle, lamp and key, whatever they may be in this game - and set out on the journey by one means or another.

The Middle Game

The middle game is both the largest and the one which least needs detailed planning in advance, oddly enough, because it is the one which comes nearest to being a collection of puzzles.

There may be 50 or so locations in the middle game. How are they to be divided up? Will there be one huge landscape, or will it divide into zones? Here, designers often try to impose some coherency by making symmetrical patterns: areas corresponding to the four winds, or the twelve signs of the Zodiac, for instance. Gaining access to these areas, one by one, provides a sequence of problems and rewards for the player.

Perhaps the fundamental question is: wide or narrow? How much will be visible at once?

Some games, such as the original Adventure, are very wide: there are thirty or so puzzles, all easily available, none leading to each other. Others, such as 'Spellbreaker', are very narrow: a long sequence of puzzles, each of which leads only to a chance to solve the next.

A compromise is probably best. Wide games are not very interesting (and annoyingly unrewarding since one knows that a problem solved cannot transform the landscape), while narrow ones can in a way be easy: if only one puzzle is available at a time, the player will just concentrate on it, and will not be held up by trying to use objects which are provided for different puzzles.

Just as the number of locations can be divided into rough classes at this stage, so can the number of (portable) objects. In most games, there are a few families of objects: the cubes and scrolls in 'Spellbreaker', the rods and Tarot cards in 'Curses' and so on. These are to be scattered about the map, of course, and found one by one by a player who will come to value them highly. The really important rules of the game to work out at this stage are those to do with these families of objects. What are they for? Is there a special way to use them? And these are the first puzzles to implement.

So a first-draft design of the middle game may just consist of a rough sketch of a map divided into zones, with an idea for some event or meeting to take place in each, together with some general ideas for objects. Slotting actual puzzles in can come later.

The End Game

Some end games are small ('The Lurking Horror' or 'Sorcerer' for instance), others huge (the master game in 'Zork', now called 'Zork III'). Almost all games have one.

End games serve two purposes. Firstly they give the player a sense of being near to success, and can be used to culminate the plot, to reveal the game's secrets. This is obvious enough. They also serve to stop the final stage of the game from being too hard.

As a designer, you don't usually want the last step to be too difficult; you want to give the player the satisfaction of finishing, as a reward for having got through the game. (But of course you want to make him work for it.) An end game helps by narrowing the game, so that only a few rooms and objects are accessible.

In a novelist's last chapter, ends are always tied up (suspiciously neatly compared with real life - Jane Austen being a particular offender, though always in the interests of humour). The characters are all sent off with their fates worked out and issues which cropped up from time to time are settled. So should the end game be. Looking back, as if you were a winning player, do you understand why everything that happened did? (Of course, some questions will forever remain dark. Who did kill the chauffeur in 'The Big Sleep'?)

Most stories have a decisive end. The old Gothic manor house burns down, the alien invaders are poisoned, the evil warlord is deposed. If the end game lacks such an event, perhaps it is insufficiently final.

Above all, what happens to the player's character, when the adventure ends?

The final message is also an important one to write carefully, and, like the overture, the coda should be brief. To quote examples here would only spoil their games. But a good rule of thumb, as any film screenplay writer will testify, seems to be to make the two scenes which open and close the story "book-ends" for each other: in some way symmetrical and matching.

5 - At War With a Crossword

Forest sways,�rocks press heavily,�roots grip,�tree-trunk close to tree-trunk.�Wave upon wave breaks, foaming,�deepest cavern provides shelter.

	Goethe, Faust

His building is a palace without design; the passages are tortuous, the rooms disfigured with senseless gilding, ill-ventilated, and horribly crowded with knick-knacks. But the knick-knacks are very curious, very strange; and who will say at what point strangeness begins to turn into beauty? ... At every moment we are reminded of something in the far past or something still to come. What is at hand may be dull; but we never lose faith in the richness of the collection as a whole... We are 'pleased, like travellers, with seeing more', and we are not always disappointed.

	C.S. Lewis (of Martianus), The Allegory of Love

From the large to the small. The layout is sketched out; a rough synopsis is written down; but none of the action of the game is yet clear. In short, there are no puzzles. What are they to be? How will they link together? This section runs through the possibilities but is full of question marks, the intention being more to prod the designer about the consequences of decisions than to suggest solutions.

Puzzles

Puzzles ought not to be simply a matter of typing one well-chosen line. The hallmark of a good game is not to get any points for picking up an easily available key and unlocking a door with it. This sort of low-level achievement - wearing an overcoat found lying around, for instance - should count for little. A memorable puzzle will need several different ideas to solve (the Babel fish dispenser in 'The Hitch-hiker's Guide to the Galaxy', for instance). My personal rule with puzzles is never to allow one which I can code up in less than five minutes.

Nonetheless, a good game mixes the easy with the hard, especially early on. The player should be able to score a few points (not many) on the very first half-hearted attempt. (Fortunately, most authors' guesses about which puzzles are easy and which hard are hopelessly wrong anyway. It always amuses me, for instance, how late on players generally find the golden key in 'Curses': whereas they often puzzle out the slide-projector far quicker than I intended.)

There are three big pitfalls in making puzzles:

The "Get-X-Use-X" syndrome

Here, the whole game involves wandering about picking up bicycle pumps and then looking for a bicycle: picking up pins and looking for balloons to burst, and so on. Every puzzle needs one object. As soon as it has been used it can be dropped, for it surely will not be required again.

The "What's-The-Verb" syndrome

So you have your bicycle pump and bicycle: "use pump" doesn't work, "pump bike" doesn't work... only "inflate tyre" does. There are games where this linguistic challenge is most of the work for the player. An especially tricky form of this problem is that in most games "examine", "search" and "look inside" are different actions: it is easy to code a hidden treasure, say, so that only one of these produces the treasure.

The "In-Joke" syndrome

In which the player has to play a parody of your company office, high school class, etc., or finds an entirely inexplicable object (say, a coat with a mysterious slogan on) which is only there because your sister has a very funny one like it, or meets endless bizarre characters modelled on your best friends and enemies.

Then again, a few puzzles will always be in the get-x-use-x style, and that does no harm: while pursuing tolerance of verbs to extremes leads to everything being "moved", not "pushed", "pulled", "rotated" and so on: and what artist has not immortalised his madder friends at one time or another?

Variety in style is very important, but logic is paramount. Often the designer begins knowing only that in a given place, the player is to put out a fire. How is this to be done? Will the means be found nearby? Will the fire have other consequences? Will there be partial solutions to the problem, which put the fire out but leave vital equipment damaged? If the player takes a long time not solving the problem, will the place burn down so that the game becomes unwinnable? Will this be obvious, if so?

Machinery

In some ways the easiest puzzles to write sensibly are machines, which need to be manipulated: levers to pull, switches to press, cogs to turn, ropes to pull. They need not make conversation. They often require tools, which brings in objects. They can transform things in a semi-magical way (coal to diamonds being the cliche) and can plausibly do almost anything if sufficiently mysterious and strange: time travel, for instance.

They can also connect together different locations with machinery: chains, swinging arms, chutes may run across the map, and help to glue it together.

A special kind of machine is the kind to be travelled in. Many Infocom games have such a vehicle (for the ignoble reason that the code was already in the 'Zork I' kernel, but never mind) and cars, tractors, fork-lift trucks, boats, hot-air balloons have all made appearances. The coding needs a little care (for instance, not being able to drive upstairs, or through a narrow crevice) but a whole range of new puzzles is made possible: petrol, ignition keys, a car radio perhaps. And travelling in new ways adds to the realism of the landscape, which thereby becomes more than a set of rules about walking.

Keys and Doors

Almost invariably games close off sections of the map (temporarily) by putting them behind locked doors, which the player can see and gnash her teeth over, but cannot yet open. And almost every variation on this theme has been tried: coded messages on the door, illusory defences, gate-keepers, the key being in the lock on the wrong side, and so on. Still, the usual thing is simply to find a key in some fairly remote place, bring it to the door and open it.

If there are people just inside, do they react when the player knocks on the door, or tries to break it down or ram it? If not, why not?

In some situations doors should be lockable (and open- and closeable) on both sides. Though irritating to implement, this adds considerably to the effect.

In a large game there may be several, perhaps five or six, keys of one kind or another: it's essential not to make these too similar in appearance. Some games have "master keys" which open several different locks in a building, for instance, or "skeleton keys", or a magic spell to get around this.

Air, Earth, Fire and Water

The elements all tangle up code but add to the illusion. Fire has many useful properties - it makes light, it destroys things, it can cause explosions and chemical reactions, it cooks food, it softens materials, it can be passed from one object to another - but in the end it spreads, whereas code doesn't. If the player is allowed to carry a naked flame around (a burning torch, for instance), then suddenly the game needs to know whether or not each item in the game (a curtain, a pot plant, a book) is flammable. Even the classic matchbook of matches can make for grisly implementation.

As in Robert Redford's film, so in the best game landscaping: a river runs through it. But in any room where water is available, players will try drinking, swimming, washing, diving. They will try to walk away with the water. (And of course this applies to acid pools, natural oil pits and the like.)

Liquids make poor objects, because they need to be carried in some container yet can be poured from one to another, and because they are endlessly divisible. "Some water" can easily be made into "some water" and "some water". If there's more than one liquid in the game, can they be mixed? Pouring liquid over something is likely to make a mess of it: yet why should it be impossible? And so on.

The compromise solution is usually to have a bottle with a 'capacity' of, say, 5 units of water, which can be refilled in any room where there is water (there is a flag for this, say) with 1 unit drunk at a time. The player who tries to pour water over (most) things is simply admonished and told not to.

Implementing swimming, or being underwater, is a different order of difficulty again. What happens to the objects being held? Can a player swim while wearing heavy clothes, or carrying many things? Is it possible to dive?

Moreover, does the player run out of air? In many games there is some such puzzle: a room where the air is poor, or open space, or underwater: and a scuba mask or a space helmet is called for. One should not kill the player at once when he enters such a hostile environment unprotected, since he will probably not have had fair warning. Some games even implement gases: helium, explosive hydrogen, laughing gas.

And so to earth. One of the oldest puzzles around is digging for buried treasure. The shovel can be found in just about every traditional-style game and a good many others which ought to know better besides. Of course in real life one can dig very nearly anywhere outdoors: there's simply little cause to. Games really can't afford to allow this. It's quite difficult to think of a persuasive way of breaking the news to the player, though.

Still, digging in some form makes a good puzzle: it artificially creates a new location, or a new map connection, or a new container (the hole left behind).

Animals and Plants

Vegetation fits into almost any landscape, and in most games plays some part in it. This is good for variety, since by and large one deals with plants differently from machines and people. One pulls the undergrowth away from ruins, for instance, or picks flowers. Trees and creeping plants (wistaria or ivy, for instance) ought to be climbable. The overgrown-schoolboy element in players expects this sort of thing.

A plant which can be grown into a beanstalk is now, perhaps, rather a cliche. So naturally no self-respecting author would write one.

Animals are even more useful, for several reasons: they move, they behave in curious and obsessive ways: they have amusingly human characteristics, but do not generally react to conversation and need not be particularly surprised by the player doing something very shocking nearby, so they are relatively easy to code: and they add a splash of colour. What would the Garden of Eden have been without turtles, elephants, rabbits, leopards and guinea pigs?

The classic, rather predictable puzzle with animals is solved by feeding them some apposite food to make them obedient, then getting them to do something. Good games find something better. (Significantly, the animal puzzles in 'Adventure' - the bear, the bird and the snake - are better characterised than most of those in later games.)

People

So dawns the sixth day of creation: we have the mountains, rivers, plants and animals, but as yet no people.

The trap with "people" puzzles should perhaps be called the Get-X-Give-X syndrome. People are a little more complicated than that. The nightmare of coding real characters is illustrated well by one of Dave Lebling's example bugs from "Suspect":

> SHOW CORPSE TO MICHAEL

Michael doesn't appear interested.

Of course, Michael is only Veronica's husband; why would he be interested?

People are the hardest elements of any game to code up. They can take five times the amount of code attached to even a complicated room. They have to:

react to events (as above!);

make conversation of some kind or another;

understand and sometimes obey instructions ("robot, go south");

wander around the map in a way consistent with the way the player does;

have some attitude to the player, and some personality.

They often have possessions of their own and can expect to be attacked, have things given to or thrown at them, or even seduced by a desperate player. All this requires code. Good player characters also do surprising things from time to time, in a random way. In some games they have a vast stock of knowledge and replies. The woman selling bread-crumbs at the very beginning of 'Trinity' (who does not play a huge role in the game) can say over 50 different things.

Most conversation is added to the code in play-testing. If the play-testers complain that "ask waiter about apples" does nothing, then add some reply, even if not a terribly useful one.

Good player-characters may come and go, turning up at different times during the game: they are part of the larger plot. But there is also room for the humble door-keeper who has nothing to do but check passes.

Mazes...

Almost every game contains a maze. Nothing nowadays will ever equal the immortal

You are in a maze of twisty little passages, all alike.

But now we are all jaded. A maze should offer some twist which hasn't been done before (the ones in 'Enchanter' and 'Sorcerer' being fine examples).

The point is not to make it hard and boring. The standard maze solution is to litter the rooms with objects in order to make the rooms distinguishable. It's easy enough to obstruct this, the thief in 'Zork I' being about the wittiest way of doing so. But that only makes a maze tediously difficult.

Instead there should be an elegant quick solution: for instance a guide who needs to be bribed, or fluorescent arrows painted on the floor which can only be seen in darkness (plus a hint about darkness, of course).

There is much to be said for David Baggett's recent answer to the question "How do I make my maze so that it doesn't have the standard solution?": omit it altogether.

Above all, don't design a maze which appears to be a standard impossibly hard one: even if it isn't, a player may lose heart and give up rather than go to the trouble of mapping it.

...and Other Old Cliches

There are a few games which do not have "light source" puzzles, but it's hard to think of many. The two standards reduce to:

the player's lamp slowly runs down and will need new oil at least once;

a dark room, full of treasure, can apparently only be reached through a very narrow passage, one which cannot be passed by a player carrying anything (including the lamp).

Most games contain both, and perhaps most always will, but variations are welcome. (There is a superbly clever one in 'Zork III', for instance, perhaps the best thing in it.)

Similarly, unless there are very few portable objects, it becomes ridiculous that a player can carry hundreds of bulky and fiddly things around all the time: so most games impose a limit on how much can be carried, by convention four (i.e., because that's what (some versions of) 'Adventure' did). It is bad form to set puzzles making life difficult because the limit is four and not five (after all, in case of emergency, a player could always carry something else). Of course the norm is to provide a bag for carrying things.

Sophisticated games also quietly work out the total weight being carried. (One of the Infocom games contains a marvellously heavy red herring which can be carried anywhere, but is terribly exhausting to move.)

Mention of exhaustion raises the question of the player's state of health. Some games take a quite role-playing-style view of this, with (perhaps hidden) attributes of "strength" and "constitution". The player grows weary and needs food, tired and needs sleep, wounded and needs recuperation. A puzzle which really exploits this would be difficult to make fair. Consequently all rules like this make nuisance for the player (who will be obliged to go back to the orchard for more fruit every few dozen turns, that kind of thing) and should be watched carefully.

Rewards and Penalties

There are two kinds of reward which need to be given to a player in return for solving a puzzle. One is obvious: the game advances a little. But the player at the keyboard needs a reward as well, that the game should offer something new to look at. In the old days, when a puzzle was solved, the player simply got a bar of gold and had one less puzzle to solve.

Much better is to offer the player some new rooms and objects to play with, as this is a real incentive. If no new rooms are on offer, at least the "treasure" objects can be made interesting, like the spells in the 'Enchanter' trilogy or the cubes in 'Spellbreaker'.

In olden days, games killed the player in some way for almost every wrong guess (or altered the state of the game so that it had become unwinnable). This was annoying and meant that virtually all players were so paranoid as to save the game before, say, picking up any new object. Nowadays it is thought polite not to kill the player without due warning, and to make smaller mistakes recoverable-from. A good alternative to the death sentence is exile (i.e., in some way moving the player somewhere inconvenient but returnable-from).

Writing Room Descriptions

First, a warning: it is tempting, when beginning to code, to give rooms "temporary" descriptions ("Slab room." "Cloister."), and leave the writing for later. There is no more depressing point than when facing a pile of 50 room descriptions to write, all at once, and feeling that one's enthusiasm has altogether gone. (The same warning applies to making an over-detailed design before doing any coding.) Besides, when testing the rooms concerned, one has no feeling of what the game will look like except tatty, and this is also depressing. Also, writing room descriptions forces the author to think about what the room is ultimately for, which is no bad thing. So write a few at a time, as coding goes on, but write them properly: and edit later if necessary (it will be).

Size doesn't matter. It is all too easy to write a huge room description, rambling with irrelevant details: there are usually one to three essentials to get across, and the rest should be cut. (This is admittedly a hard-line view on my part, and opinions vary.)

But even the most tedious junctions deserve description, and description is more than a list of exits. Here is 'Adventure' at its most graceful:

You're in a large room carved out of sedimentary rock. The floor and walls are littered with bits of shells embedded in the stone. A shallow passage proceeds downward, and a somewhat steeper one leads up. A low hands and knees passage enters from the south.

You are walking along a gently sloping north/south passage lined with oddly shaped limestone formations.

Note the geology, the slight unevenness of the ground and the variation in the size of the tunnels. Even if nothing happens here, these are real places.

Flippant, joky room descriptions are best avoided if they will be often revisited. About once in a game an author can get away with:

Observation Room�Calvin Coolidge once described windows as "rectangles of glass." If so, he may have been thinking about the window which fills the western wall of this room. A tiny closet lies to the north. A sign is posted next to the stairs which lead both upwards and downwards.

a characteristic piece of Steve Meretzky from 'Leather Goddesses of Phobos', which demonstrates the lengths one has to go to when faced with a relentlessly ordinary junction-with-window. The sentence which the whole description has been written to avoid is "You can go up, down or north."

Room descriptions are obliged to mention the obvious exits - and it is certainly poor form to fail to mention a particular one unless there is good reason - but there are ways to avoid what can be a tiresomely repetitive business. For instance,

Dark Cave�Little light seeps into this muddy, bone-scattered cave and already you long for fresh air. Strange bubbles, pulsing and shifting as if alive, hang upon the rock at crazy, irregular angles.

Black crabs scuttle about your feet.

> SOUTH

The only exit is back out north to the sea-shore.

In other words, the "You can't go that way" message is tailored to each individual room.

Avoiding repetition is well-nigh impossible, and experienced players will know all the various formulae by heart: "You're in", "You are in", "This is", "You have come to" and so forth. I usually prefer impersonal room descriptions (not mentioning "you" unless to say something other than the obvious fact of being present).

As in all writing, vocabulary counts (another respect in which Scott Adams' games, despite awful grammar, score). If there is a tree, what kind is it, oak, juniper, hawthorn, ash? Then, too, don't make all room descriptions static, and try to invoke more than just sight at times: smell, touch and sound are powerfully evocative. Purity and corruption, movement and stillness, light and dark have obsessed writers through the ages.

Above all, avoid the plainness of:

You are in the Great Hall. You can go north to the Minstrel's Gallery, east to the fireplace and down to the kitchens.

There is a sword here.

So much for bad room descriptions. The following example (which I have not invented) is something much more dangerous, the mediocre room description:

Whirlpool Room�You are in a magnificent cavern with a rushing stream, which cascades over a sparkling waterfall into a roaring whirlpool which disappears through a hole in the floor. Passages exit to the south and west.

...seems a decent enough try. But no novelist would write such sentences. Each important noun - "cavern", "stream", "waterfall", "whirlpool" - has its own adjective - "magnificent", "rushing", "sparkling", "roaring". The two "which" clauses in a row are a little unhappy. "Cascades" is good, but does a stream cascade "over" a waterfall? Does a whirlpool itself disappear? The "hole in the floor" seems incongruous. Surely it must be underwater, indeed deep underwater?

Come to that, the geography could be better used, which would also help to place the whirlpool within the cave (in the middle? on one edge?). And why "Whirlpool Room", which sounds like part of a health club? As a second draft, then, following the original:

Whirlpool Ledge�The path runs a quarter-circle from south to west around a broken ledge of this funnel cavern. A waterfall drops out of the darkness, catching the lamplight as it cascades into the basin. Sinister, rapid currents whip into a roaring whirlpool below.

Even so: there is nothing man-made, nothing alive, no colour and besides it seems to miss the essential feature of all the mountain water-caves I've ever been to, so let us add a second paragraph (with a line break, which is much easier on the eye):

Blue-green algae hangs in clusters from the old guard-railing, which has almost rusted clean through in the frigid, soaking air.

The algae and the guard-rail offer distinct possibilities of a puzzle or two... Perhaps there are frogs who could eat the algae; perhaps the player might find a use for iron oxide, and could scrape rust from the railing. (Herbalists probably used to use rust for something, and an encyclopaedia or a chemistry text book might know.) Certainly the railing should break if a rope is tied to it. Is it safe to dive in? Does the water have a hypnotic effect on someone who stares into it? Is there anything dry which would become damp if the player brought it through here? Might there be a second ledge higher up where the stream falls into the cave? - And so a location is made.

The Map

Puzzles and objects are inextricably linked to the map, which means that the final state of the map only gradually emerges and the author should expect to have to keep changing it to get it right - rather than to devise an enormous empty landscape at first and then fill it with material.

Back to atmosphere, then, because throughout it's vital that the map should be continuous. The mark of a poor game is a map like:

Glacier� |�Dungeon --- Oriental Room --- Fire Station� (fish) (megaphone) (tulips)� |�Cheese Room

in which nothing relates to anything else, so that the game ends up with no overall geography at all. Much more believable is something like:

Snowy Mountainside� \� Carved Tunnel� |� Oriental Room --- Jade Passage --- Fire Dragon� (buddha) (bonsai tree) Room� |� Blossom Room

The geography should also extend to a larger scale: the mountainside should run across the map in both directions. If there is a stream passing through a given location, what happens to it? And so on. Maps of real mountain ranges and real cave systems, invariably more convoluted and narrow than in fiction, can be quite helpful when trying to work this out.

A vexed question is just how much land occupies a single location. Usually a location represents a 'room', perhaps ten yards across at the most. Really large underground chambers - the legendary "Hall of Mists" in Adventure, the barge chamber in 'Infidel' - are usually implemented with several locations, something like:

Ballroom NW --------- Ballroom NE� | \ / 	|� | Dance Floor 	|� | / \ 	|�Ballroom SW --------- Ballroom SE

This does give some impression of space but it can also waste locations in a quite dull way, unless there are genuinely different things at some of the corners: a bust of George III, perhaps, a harpsichord.

On the other hand, in some stretches, drawing the map leaves one with the same frustration as the set-designer for a Wagnerian opera: everything is set outdoors, indistinct and without edges. Sometimes an entire meadow, or valley, might be one single location, but then its description will have to be written carefully to make this clear.

In designing a map, it adds to the interest to make a few connections in the rarer compass directions (NE, NW, SE, SW) to prevent the player from a feeling that the game has a square grid. There should also be a few (possibly long) loops which can be walked around, to prevent endless retracing of steps and to avoid the appearance of a bus service map, half a dozen lines with only one exchange.

If the map is very large, or if a good deal of moving to-and-fro is called for, there should be some rapid means of getting across it, such as the magic words in 'Adventure', or the cubes in 'Spellbreaker'. This can be a puzzle in itself - one that players do not have to solve, but will reward them if they do.

Looking Back at the Shape

A useful exercise, towards the end of the design stage, is to draw out a tree (or more accurately a lattice) of all the puzzles in a game. At the top is a node representing the start of the game, and then lower nodes represent solved puzzles. An arrow is drawn between two puzzles if one has to be solved before the other can be. For instance, a simple portion might look like:

 Start� / \�Find key Enter garage� \ /� Start car� |� Motorway

This is useful because it checks that the game is soluble (for example, if the ignition key had been kept in a phone box on the motorway, it wouldn't have been) and also because it shows the overall structure of the game. Ask:

Do large parts of the game depend on one difficult puzzle?

How many steps does a typical problem need?

How wide is the game at any given time?

Bottlenecks should be avoided unless they are reasonably guessable: otherwise many players will simply get no further. Unless, of course, they are intended for exactly that, to divide an area of the game into 'earlier' and

'later'.

Just as some puzzles should have more than one solution, some objects should have more than one purpose. In bad old games, players automatically threw away everything as soon as they'd used them. In better designed games, obviously useful things (like the crowbar and the gloves in 'Lurking Horror') should be hung on to by the player throughout.

A final word on shape: one of the most annoying things for players is to find, at the extreme end of the game (in the master game, perhaps) that a few otherwise useless objects ought to have been brought along, but that it is now too late. The player should not be thinking that the reason for being stuck on the master game is that something very obscure should have been done 500 turns before.

6 - Varnish and Veneer

So you have a game: the wood is rough and splintered, but it's recognisably a game. There's still a good month's work to do (and several centuries' worth of debugging), though it is easier work than before and feels more rewarding.

Scoring

The traditional way to score an adventure game is to give a points score out of some large and pleasing number (say, 400) and a rank. There are usually ten to fifteen ranks. A genuine example (which shall remain nameless):

Beginner (0), Amateur Adventurer (40), Novice Adventurer (80), Junior Adventurer (160), Adventurer (240), Master (320), Wizard (360), Master Adventurer (400)

in which, although ranks correspond to round numbers, still they have perhaps been rigged to fit the game. Another amusing touch is that ranks tend to be named for the player's profession in the game - so, a musician might begin as "Novice" and rise through "Second Violinist" to "Conductor". One of the wittiest is in the detective game 'Sherlock', where the lowest rank - of zero achievement - is "Chief Superintendent of Scotland Yard".

Among the questions to ask are: will every winner of the game necessarily score exactly 400 out of 400? (This is very difficult to arrange if even small acts are scored.) Will everyone entering the end game already have a score of 360, and so have earned the title "Wizard"? Will the rank "Amateur" correspond exactly to having got out of the prologue and into the middle game?

So what deserves points? Clearly solving the major puzzles does. But do the minor, only halfway-there-yet puzzles? Here, as ever, games vary greatly. In 'Zork III', the scoring is out of 7 and corresponds to seven vital puzzles (though a score of 7 does not mean the game is over). In 'The Lurking Horror', 20 major puzzles are awarded 5 points each, making a maximum of 100.

Alternatively, there is the complicated approach. Points are awarded in twos and threes for small acts, and then in larger doses for treasures - silver bars 5, gold amulets 10, platinum pendants 20. Treasures are scored twice, once when found, once when removed to safety - to the trophy case in 'Zork I', or inside the packing case of Level 9's game 'Dungeon' (no relation to the port of 'Zork' of the same name). Furthermore, 1 point is awarded for each room visited for the first time, and 1 for never having saved the game - a particularly evil trick.

In some games (such as 'Acheton') score actually falls back when the player is wasting time and nothing is being achieved: the player's mana gradually fades. This annoys some players intensely (no bad thing, some might say).

Games used to have a "Last Lousy Point" by custom - a single point which could only be won by doing something hugely unlikely, such as going to a particular area of the Pirate's Maze and dropping a key. This custom, happily, has fallen into disuse.

Wrong Guesses

For some puzzles, a perfectly good alternative solution will occur to players. It's good style to code two or more solutions to the same puzzle, if that doesn't upset the rest of the game. But even if it does, at least a game should say something when a good guess is made. (Trying to cross the volcano on the magic carpet in 'Spellbreaker' is a case in point.)

For example, in 'Curses' there are (at time of writing) six different ways to open the child-proof medicine bottle. They are all quite hard to guess, they are all logically reasonable and most players get one of them.

One reason why 'Zork' held the player's attention so firmly (and why it took about ten times the code size, despite being rather smaller than the original mainframe 'Adventure') was that it had a huge stock of usually funny responses to reasonable things which might be tried.

My favourite funny response, which I can't resist reprinting here, is:

You are falling towards the ground, wind whipping around you.

>east

Down seems more likely.

('Spellbreaker'. Though I also recommend trying to take the sea serpent in 'Zork II'.) This is a good example because it's exactly the sort of boring rule (can't move from the midair position) which most designers usually want to code as fast as possible, and don't write with any imagination.

Another form of wrong guess is in vocabulary. Unless exceptionally large, a good game ought to have about a 1000-word vocabulary: too much less than that and it is probably missing reasonable synonyms; too much more and it is overdoing it. Remember too that players do not know at first what the relevant and irrelevant objects in a room are. For instance:

Old Winery�This small cavity at the north end of the attic once housed all manner of home-made wine paraphernalia, now lost and unlamented. Steps, provided with a good strong banister-rail, lead down and to the west, and the banister rail continues along a passage east.

This clearly mentions a banister, which (as it happens) plays no part in the game, but merely reinforces the idea of an east-west passage including a staircase which (as it happens) is partly for the use of a frail relative. But the player may well try tieing thing to the rail, pulling at it and so on. So the game knows "banister", "rail" and (not entirely logically, but players are not entirely logical) "paraphernalia" as names of irrelevant things. An attempt to toy with them results in the reply

That's not something you need to refer to in the course of this game.

which most players appreciate as fair, and is better than the parser either being ignorant or, worse, pretending not to be.

A feature which some games go to a great deal of trouble to provide, but is of arguable merit (so think I), is to name every room, so that "search winery" would be understood (though of course it would do nothing almost everywhere... and a player would have to try something similar everywhere on the off chance). Some games would even provide "go to winery" from nearby places. These are impressive features but need to be coded carefully not to give the player information she may not yet have earned.

Hints and Prizes

A good game (unless written for a competition) will often contain a hints service, as the Infocom games did in latter days. Most players will only really badly be stuck about once in the course of a game (and they vary widely in which puzzle to be really badly stuck on) and it is only fair to rescue them. (If nothing else, this cuts down on the volume of email cries for help which may arrive.) There are two ways to provide hints:

in the game itself, by having some sage old worthy to ask;

properly separated from the game, with a "hint" command which offers one or more menus full of possible questions.

Of course, a hint should not be an explicit answer. The classic approach is to offer a sequence of hints, each more helpful than the last, until finally the solution is openly confessed. Perhaps surprisingly, not all players like this, and some complain that it makes play too easy to be challenging. It is difficult to construct a hints system in such a way that it doesn't reveal later information (in its lists of questions to which answers are provided, for instance): but worth it.

At the end of the game, when it has been won, is there anything else to be said? In some games, there is. In its final incarnations (alas, not the one included in the 'Lost Treasures of Infocom' package), 'Zork I' offered winners access to the hints system at the RESTART, RESTORE or QUIT prompt. 'Curses' goes so far as to have a trivia quiz, really to tell the player about some of the stranger things which can be done in the game. (If nothing else, this is a good chance for the game's author to boast.)

User Interface, and all that jazz

No, not windows and pull-down menus, but the few meta-commands which go to the game program and do not represent actions of the player's character in the game. Of course,

SAVE, RESTORE, RESTART, QUIT

are essential. Games should also provide commands to allow the player to choose whether room descriptions are abbreviated on second visits or not. Other such options might be commands to control whether the game prints out messages like

[Your score has just gone up by ten points.]

and commands to transcribe to the printer or to a file - these are extremely useful when receiving comments from play-testers.

UNDO is difficult to code but worth it. In 'Curses', UNDO can even restore the player posthumously (though this is not advertised in the game: death, where is thy sting?).

Abbreviations (especially "g" for again, "z" for wait, "x" for examine) must now be considered essential.

Some games produce quotations or jokes from time to time in little windows away from the main text of the game. Care is needed to avoid these overlying vital text. It ought to possible to turn this feature off.

The author's only innovations in this line are to provide a "full score" feature, which accounts exactly for where the player's score has come from and lists achievements so far; to provide a choice of "inventory wide" or "inventory tall", which is helpful for players on screens with few lines; and to provide "objects" and "places" commands:

>places

You have visited: Attic and Old Furniture.

>objects

Objects you have handled:�the crumpled piece of paper (held)�the electric torch (held)�the chocolate biscuit (held)�the bird whistle (in Old Furniture)�the gift-wrapped parcel (lost)

These features may or may not catch on.

Debugging and Testing

Every author will need a few "secret" debugging commands (still present in several of the Infocom games, for instance) to transport the player across the map, or get any object by remote control. Since debugging never ends, it's never wise to remove these commands: you might instead protect them with a password in released editions. (The Inform system gets around this by providing a suite of debugging verbs which is only included if a particular setting is made at compile-time.)

An unobvious but useful feature is a command to make the game non-random. That is, if there is a doorway which randomly leads to one of three places, then this command will make it predictable. This is essential when testing the game against a transcript.

During design, it's helpful to keep such a script of commands which wins the game from the start position. Ideally, your game ought to be able to accept input from a file of commands as well as from the keyboard, so that this script can be run automatically through.

This means that when it comes to adding a new feature towards the end, it is easy to check whether or not it upsets features earlier on.

Bugs are usually easy to fix: they are mostly small oversights. Very few take more than five minutes to fix. Especially common are:

slips of punctuation, spelling or grammar (for instance, "a orange");

rooms being dark when they ought to be light (this tends not to show if the player habitually carries a lamp anyway), or not changing their state of light/darkness when they should, as for instance when a skylight opens or closes;

other object flags having been forgotten, such as a fish not being flagged as edible;

map connections being very slightly out, e.g. west in one direction and northeast in the other, by accident;

something which logically can only happen once, such as a window being broken, actually being possible more than once, with strange consequences;

general messages being unfortunate in particular cases, such as "The ball bounces on the ground and returns to your hand." in mid-air or while wading through a ford;

small illogicalities: being able to swim with a suit of armour on, or wave the coat you're wearing, or eat while wearing a gas mask;

parser accidents and misnamings.

Do not go into play-testing until the scoring system is worked out and the game passes the entire transcript of the "winning" solution without crashing or giving absurd replies.

Playtesting

The days of play-testing are harrowing. The first thing to do is to get a few "friends" and make them play for a while. Look over their shoulders, scribble furiously on a piece of paper, moan with despair and frustration, but do not speak. Force yourself not to explain or defend, whatever the provocation. Expect to have abuse heaped on you, and bear up nobly under the strain. To quote Dave Lebling (on testing 'Suspect', from an article in the "New Zork Times"):

> BARTENDER, GIVE ME A DRINK

"Sorry, I've been hired to mix drinks and that's all."

> DANCE WITH ALICIA

Which Alicia do you mean, Alicia or the overcoat?

Veronica's body is slumped behind the desk, strangled with a lariat.

> TALK TO VERONICA

Veronica's body is listening.

Little bugs, you know? Things no one would notice. At this point the tester's job is fairly easy. The story is like a house of cards -- it looks pretty solid but the slightest touch collapses it...

After a cleaning-up exercise (and there's still time to rethink and redraft), give the game to a few brave beta-testers. Insist on reports in writing or email, or some concrete form, and if you can persuade the testers then try to get a series of reports, one at a time, rather than waiting a month for an epic list of bugs. Keep in touch to make sure the testers are not utterly stuck because a puzzle is impossible due to a bug, or due to it just being far too hard. Don't give hints unless they are asked for.

Play-testing will produce a good 100 or so bugs, mostly awesomely trivial and easily fixed. Still, expect a few catastrophes.

Good play-testers are worth their weight in gold. They try things in a systematically perverse way. To quote Michael Kinyon, whose effect may be felt almost everywhere in 'Curses',

A tester with a new verb is like a kid with a hammer; every problem seems like a nail.

And how else would you know whether "scrape parrot" produced a sensible reply or not?

Unless there is reason not to (because you know more than they do about how the plot will work out), listen to what the play-testers say about style and consistency too. Be sure also to credit them somewhere in the game.

It's Never Finished

Games are never finished. There's always one more bug, or one more message which could be improved, or one more little cute reply to put in. Debugging is a creative process and adds to the life of the game. The play-testing process has increased the code size of 'Curses' by about 50%: in other words, over a third of a game is devoted to "irrelevant" features, blind alleys, flippant replies and the like.

Roughly 300 bugs in 'Curses' have been spotted since it was released publically two years ago (I have received well over a thousand email messages on the subject), and that was after play-testing had been "finished". About once a week I make this week's corrections, and about once every three months I re-issue the mended version. Thus, many people who suggested little extensions and repairs have greatly contributed to the game, and that's why there are so many names in the credits.

Afterword

Bob Newell recently asked why the old, crude, simplistic Scott Adams games still had such fascination to many people: partly nostalgia of the 'favourite childhood books' kind, of course. But also the feeling of holding a well-made miniature, a Chinese puzzle box with exactly-cut pieces.

An adventure game, curiously, is one of the most satisfying of works to have written: perhaps because one can always polish it a little further, perhaps because it has so many hidden and secret possibilities, perhaps because something is made as well as written.

For myself, though, perhaps also because each day somebody new may wander into its world, as I did when occasionally taken to a Digital mainframe in the 1970s, through a dark warren of passages untidier even than my bedroom: so that the glow of the words has not quite faded from my eyes.

�

The Inform Technical Manual

for revision 5.4, last updated 18/1/95

Contents

� VERZEICHNIS \o "2-2" \b Technical �1 - Introduction	� GEHEZU _Toc318615989 � SEITENREF _Toc318615989 �1��

2 - Recondite directives	� GEHEZU _Toc318615990 � SEITENREF _Toc318615990 �1��

3 - Unusual constant forms	� GEHEZU _Toc318615991 � SEITENREF _Toc318615991 �2��

4 - String indirection and low strings	� GEHEZU _Toc318615992 � SEITENREF _Toc318615992 �3��

5 - Game control commands and keyboard reading	� GEHEZU _Toc318615993 � SEITENREF _Toc318615993 �3��

6 - Obselete commands	� GEHEZU _Toc318615994 � SEITENREF _Toc318615994 �4��

7 - The abbreviations optimiser	� GEHEZU _Toc318615995 � SEITENREF _Toc318615995 �5��

8 - Dictionary and parsing table formats	� GEHEZU _Toc318615996 � SEITENREF _Toc318615996 �6��

9 - Porter's notes	� GEHEZU _Toc318615997 � SEITENREF _Toc318615997 �7��

10 - Geography and history of the source code	� GEHEZU _Toc318615998 � SEITENREF _Toc318615998 �9��

�

1 - Introduction

This is a short collection of notes on low-level matters covering what is neither in The Inform Designer's Manual nor the assembly-language documentation in The Specification of the Z-machine.

The Designer's Manual is, however, intended to be entirely self-contained for all practical purposes. If this document contains nothing either interesting or useful, I feel I shall have achieved my purpose.

It contains much of the commentary which used to be in the source code's header, such as its modification history, notes on porting the Inform compiler to new machines and documentation of obselete or internally-used features. I anticipate revising this (though not necessarily the Designer's Manual) each time the source code is updated.

	Graham Nelson

	Magdalen College, Oxford

	September 1994

This is now updated to v1405 (still of release 5.4) and covers recent maintenance.

	January 1995

2 - Recondite directives

These are the directives airily dismissed as 'recondite' in SA1 to the Designer's Manual.

Default <cname> <value>;

If the constant has not yet been defined, define it with this value. (In Verblib this is used to give constants like MAX_CARRIED their default values if the main game source has not already set them; hence the name.)

Stub <rname> <n>;

If the routine has not yet been defined, define one which has n local variables and simply returns false. (Setting the number of local variables prevents the game from calling a routine with more arguments than it has local variables to put them in; this should not do any harm to the interpreter, but neither does a little caution.) This is how "entry point'' routines are handled: the Grammar library file stubs out any undeclared entry points.

Dictionary <name> <text>;

Enters <text> in dictionary, and makes a new constant for its address. This is not so much recondite as obselete; nowadays one would write something like

Constant frog_word 'frog';

but in any case now that one can write simply 'frog' the need has gone away.

System_file;

Declares the present file to be a 'system file'. The only way in which these differ from other files is that if Inform has been told to Replace a given routine, it will ignore a definition of this routine in a 'system file'. Thus Parser and Verblib are system files, and conceivably other user-written library extensions (for magic, say) might want to be.

Lowstring <name> <string>;

Puts string in the "low strings" area of the Z-machine (an area in the lowest 64K of memory which holds static strings, usually to hold abbreviations), and creates a constant with the given name to hold its word address. Any string which is to be used with the @ string escape must be declared in this low strings area. (But the use of the @ string escape is clumsy and there are probably better ways to get the effect in Inform 5.)

Version <v>;

sets the game file version (3 for Standard games, 5 for Advanced; 4 and 6 are present for completeness). This directive isn't so much recondite as redundant; the preferred way is to either set -v3 or some such at the command line, or to include a switches directive, e.g.

Switches v3;

The remaining directives are for debugging Inform only:

Listsymbols; Listdict; Listverbs; Listobjects;

are fairly self-explanatory (be warned: they can produce a lot of output). In addition, a number of tracing modes can be turned on and off in mid-pass:

Trace Btrace Ltrace Etrace NoTrace NoBtrace NoLtrace NoEtrace

Trace is an assembly-language style trace, with addresses and bytes as compiled; Btrace is the same, but produced on both passes, not just on pass 2; Ltrace traces each internal line of code; and Etrace, the highest-level of these, traces the expression evaluator at work by printing out the expression trees made and the assembly source these are reduced to. (A more vehement, less legible version is etrace full, which shows the process in minute detail.)

3 - Unusual constant forms

There are more constant forms in Inform 5 than are dreamt of in the Designer's Manual. Some are obselete, others obscure. To begin with, Inform predefines a number of constants which are used by the library:

adjectives_table	(byte address)�preactions_table	(byte address)�actions_table	(byte address)�code_offset	(packed address of code)�strings_offset	(packed address of strings)�version_number	(3 or 5 as appropriate)�largest_object	(the number of the largest created object + 255)�dict_par1�dict_par2�dict_par3

which can be read by something like

lookup = #adjectives_table;

One does occasionally want to know the largest object number in high-level code, but the library provides a variable top_object such that the legal object numbers are

$$ 1 <= n <= top_object $$

and using this is preferable.

The dict_par constants are byte offsets into a dictionary entry of the three bytes of data about the word, and are provided because these offsets are different between Standard and Advanced games; thus, the parser uses these constants to ensure portability between the two.

A constant beginning #a$ means "the action number of this action routine''. Thus, #a$TakeSub is equivalent to the more usual ##Take.

A constant beginning #w$, followed by a word of text, has as value the address of the given word in the dictionary (Inform will give an error at compile time if no such word is present). Largely obselete.

A constant beginning #n$, followed by a word of text, has as value the address of the given word in the dictionary (Inform adds it to the dictionary as a new word if it is not already there). Thus,

#n$leopard is equivalent to 'leopard'. However, this constant form is still useful to enter single-letter words into the dictionary (like y, which the parser defines as an abbreviation for "yes'') since 'y' would instead mean the ASCII value of the character 'y'.

A constant beginning #r$, followed by a routine name, gives the (packed) address of the given routine. This is chiefly useful for changing the routine-valued properties of an object in mid-game, e.g.

lamp.before = #r$NewBeforeRoutine;

where NewBeforeRoutine is defined as a global routine somewhere.

4 - String indirection and low strings

Inside a static string (in double-quotes), the string escape @nn, an @ sign followed by a two digit number, means "print the n-th string variable here''. nn is a decimal number from 00 to 31. Now such a variable string can be set with the

String <number> <low-string-constant>;

which means that any string to be used in this way has to have been defined as a "low string'' (see above). For example,

Lowstring L_Frog "little green frog"; ... String 0 #L_Frog; "You notice a @00!^";

will result in the output

You notice a little green frog!

Actually, since the first 32 entries of the "synonyms table'' in the Z-machine are reserved for this purpose, the command String n x is in fact equivalent to

(0-->12)-->n=x;

Due to a minor design infelicity of the Z-machine, the more friendly-looking usage

String 0 "illegal frog";

will work in a Standard game but may unpredictably fail in an Advanced one exceeding 128K in length; hence the need to ensure all relevant strings are "low'' (in the bottom 128K of memory).

5 - Game control commands and keyboard reading

quit;

 (Actually an assembly language opcode.) This quits the game (at once, with no confirmatory question to the user): all games must end this way, since it is illegal to return from the Main routine).

restart;

(Similarly an opcode.) Restarts the game exactly to its initial state, losing the previous state for good.

save <label>;�restore <label>;�verify <label>;

Tries to save or load in a saved game file, or to verify that the existing story file is not corrupted (by calculating a checksum and comparing it against the one in the header). In each case, jump to the given label if successful (otherwise run on into the next statement as usual). save and restore are actually commands and not opcodes because the relevant opcodes function differently between Standard and Advanced games; this command ensures portability.

Read <a> [<routine>];

This reads from the keyboard (printing no prompt: it is assumed this has already been done) into buffer a and tokenises it into buffer b. (a and b are expected to point to global string variables, defined by something like

Global a string 120;

meaning that a->0 contains the number 120, and that a->1 to

a->120 are bytes of available read/write memory.) In Standard games, this command automatically redisplays the status line. In Advanced ones, if no routine is given then Inform compiles code to emulate the Standard game status line automatically; if a routine is given, this is called instead, and is expected to update the status line itself. See the Designer's Manual for an example of such a routine.

After read has taken place:

a->1 holds the number of characters typed;

the text, unterminated, is held in a->2 to a->(a->1 + 1);

b->1 holds the number of words typed (note that commas and full stops become separate words in their own right);

from byte 2 onward, b contains 4-byte blocks, one for each word, in the form

byte address of dictionary entry if word is known, 0 otherwise;

number of letters in word

first character of word in the a buffer.

More flexible tokenising and keyboard-reading methods are available by resorting to assembly language; see the aread opcode and the 'special effects' section of the Designer's Manual.

6 - Obselete commands

Inform 5 continues to provide a number of out-dated features from Inform 1 to 4; 'out-dated' in the sense that there are now much better ways to do the same things. The old features have not been removed because the largest Inform program in existence ('Curses') still makes use of them; their further use is not encouraged.

The put command takes the form:

put <addr> byte <index> <v>;�put <addr> word <index> <v>;

which are the old way to use arrays, now superceded by

addr->index=v; addr-->index=v;

The write command can be used to write to many properties of an object at once:

write <object> <p1> <v1> [<p2> <v2>...];

and was useful in the days when the only alternative was using the @put_prop assembly opcode, but is now superceded by lines like

lamp.time_left = 0;

which are clearer and more consistent.

Before Inform provided C-style for loops, it had BASIC-style ones: these were the so-called 'old-style for loops',

for <var> <start> to <finish> ...code...

which were restricted in having only simple finish values (i.e., not compound expressions) and in requiring braces around the code (even if it contained only a single statement). The effect can be duplicated with

for (<var>=<start> : <var> <= <finish> : <var>++) ...code...

one form of a much more general and flexible construct.

7 - The abbreviations optimiser

When the game becomes full, 8 to 10% of its length can be saved by making use of text abbreviations: a method under which up to 64 commonly occurring phrases can be abbreviated whenever they occur. This makes no difference to text as seen by the player. Because checking for these causes a speed overhead (again, of about 10%) and it isn't worthwhile unless a game is very large, Inform does not do so except in economy mode (compiling with the switch -e on). Abbreviations must be declared explicitly, before any other text appears, by a directive such as:

Abbreviate "the ";

This causes "the " to be stored internally as only 2 text chunks (5-bit segments), rather than 4, whenever it occurs: which is very often. Only 64 may be declared (the remaining 32 slots in the Z-machine's "synonyms table'' being kept for string indirection).

To see how good your current choice of abbreviations is, try compiling with the -f (frequencies) option set, which will count the number of times each abbreviation is used, and work out how many bytes it saved. For instance, " the " occurs some 2445 times in 'Curses'. Experiment soon reveals that parts of speech and words like "there" make big savings, but that almost any proper noun makes little difference.

Infocom's own compiler does not seem to have chosen abbreviations very rigorously, since Infocom story files contain just such a naive list. (This may have been wise from the point of view of printing speed in the days of much slower computers.)

In any case, the -u option of Inform (if your computer is large enough and fast enough to make this feasible) will try to work out a nearly-optimal set of abbreviations.

The algorithm for doing so is too complex to give here: see the source code. Briefly, it runs in two phases: building a table of cross-references, and then running a number of passes looking for good substrings and choosing good antichains from the partially ordered set resulting. (The main problem being that abbreviations interfere with each other: taking both of

"the" and "the " will not give the same saving as the individual savings added up.) The result is not guaranteed to be optimal but seems pretty good. The output it finally produces is a list of legal Inform Abbreviate commands which can be pasted into source code.

Since there are something like $$ 2^300000 $$ possible choices for a typical-sized game, this is bound to be an expensive job. A 128K game takes about 45 seconds to compile on my machine, and slightly under two hours to optimise. There are three passes, of which the first is by far the longest.

Reasonable guesswork and experiment (resulting in the words suggested in earlier editions of this manual) actually doesn't perform too badly, but when I first optimised a 128K version of 'Curses', the -u option saved 1200 bytes over the best choices made by hand: here is the selection produced, in the form of -f output:

How frequently abbreviations were used, and roughly how many bytes they saved: ('_' denotes spaces)

you	668 / 444	with	144 / 190	which	92 / 182

urs	58 / 38	tion	142 / 188	ter	274 / 182

t_w	134 / 88	t_s	117 / 77	t_o	164 / 108

t_i	167 / 110	ing	960 / 639	ight	187 / 248

her	283 / 188	e_w	146 / 96	e_s	160 / 106

e_o	227 / 150	e_i	245 / 162	e_a	254 / 168

der	87 / 57	d_s	61 / 40	d_o	122 / 80

d_i	82 / 54	d_a	122 / 80	and	560 / 372

all	289 / 192	You	297 / 394	This	47 / 92

The	384 / 510	Meldrew	28 / 108	It_is	40 / 104

Aunt_Jemima	15 / 102	.	680 / 452	,	1444 / 962

 's_~	42 / 109	's_no	41 / 106	_un	105 / 69

_to	708 / 471	_the_	1328 / 2654	_th	578 / 384

_ro	110 / 72	_pr	95 / 62	_po	78 / 51

_no	246 / 163	_ma	165 / 109	_lo	119 / 78

_ho	87 / 57	_hi	99 / 65	_ha	309 / 205

_gr	67 / 44	_ga	60 / 39	_from	94 / 186

 _for	185 / 245	_fi	130 / 86	_fa	97 / 64

_ex	89 / 58	_ea	61 / 40	_door	46 / 90

_di	110 / 72	_con	88 / 116	_com	72 / 94

_cl	81 / 53	_can	164 / 217	_ba	120 / 79

a	587 / 390

On a version of 'Curses' taking up about 240K, using abbreviations saved about 23000 bytes and added 9 seconds to a 91-second compilation time.

It's interesting how few words in common the naive and optimised lists have. Only two proper nouns survived, and they provide the only longish words. "is " as such turned out not to be worthwhile. " the " was perhaps obvious in retrospect, but I didn't think of it. The best strategy for abbreviating seems to be to choose three-character strings which make a fractional saving each (only one Z-character each time, for the most part) but which occur very often indeed.

Note also that another 32 abbreviations (which could be accommodated, if the string indirections mechanism were dropped) would be little help, as the least worthwhile of these already saves only 38 bytes or so.

8 - Dictionary and parsing table formats

Some of the tables Inform writes into the Z-machine have formats which are not imposed by the Z-machine specification but by Inform's own conventions, and these are covered here. These conventions are based on (but different to) those used in the middle-period Infocom games.

Adjectives are numbered downwards from $ff in order of their appearance in defined grammar. The adjective table contains 4-byte entries:

<dictionary address of word>	 00	<adjective number>�----2 bytes-----------------		----2 bytes-----------

To make life more interesting, these entries are stored in reverse order (i.e., lowest adjective number first). The address of this table is rather difficult to deduce from the file header information, so the constant #adjectives_table is set up by Inform to refer to it.

The grammar table address is stored in word 7 (i.e. bytes 14 and 15) of the header. The table consists of a list of two-byte addresses to the entries for each word. This list is immediately followed by these entries, one after another. An entry consists of one byte giving the number of lines and then that many 8-byte lines. These lines have the form

 <objects>	 <sequence of words>	<action number>�--1 byte-	 ----6 bytes-------- 	--1 byte-------

<objects> is the number of objects which need to be supplied: eg, 0 for "inventory", 1 for "take frog", 2 for "tie rope to dog". The sequence of words gives up to 6 tokens following the verb, to be matched in order. The token values are given by the table:

noun	0�held	1�multi	2�multiheld	3�multiexcept	4�multiinside	5�creature	6�special	7�number	8�(noun=Routine)	16 + parsing-routine-number�(Routine)	48 + parsing-routine-number�(scope=Routine)	80 + parsing-routine-number�(attribute)	128 + attribute number�(adjective)	adjective number�...reserved...	9-15, 112-127

Parsing routines have addresses which are too large to store in a single byte. Instead they are numbered from 0, and their (packed) addresses are stored in the

preactions table of the story file. (This is called "preactions table" because of what the original Infocom parser used it for; the Inform library parser has no such concept as 'preaction'.)

The sequence is padded out to 6 bytes with zeros. (This is a tiresome convention, as it means that the value 0 can only be understood by looking back at what has come before, but it's too late to change it now.)

Actions are numbered from 0 upwards in order of appearance in the grammar. (Whereas fake actions are numbered from $ff down, but that's another story.) The packed addresses of the corresponding action routines are stored in the

actions table. Once again, Inform puts this table in its conventional place, but its address is difficult to work out and so the constant #actions_table is set up to hold it.

Verbs are numbered from $ff downwards in order of appearance, with synonyms getting the same number (thus, "get'' and "take'' have the same verb number); they are entered into the dictionary as they are defined in grammar.

In the dictionary header, Inform defines only three characters as 'separators' which break up words in tokenisation: these are full stop, comma and open-double-quote. (In theory the Z-machine allows any list here, but these three are conventional in old Infocom story files.)

Inform writes dictionary entries consisting of the word itself, plus three data bytes. (This makes them 7 bytes long in Standard games, 9 in Advanced.) The entries are in alphabetical order, and look like:

<the text of the word> <flags>	<verb number>	<adjective number>�----4 or 6 bytes------	--1 b--	----1 byte---	----1 byte--------

The text is stored in the usual text format, thus allowing up to 6 or 9 characters. These data bytes can be safely accessed (portably between either format of game) by, e.g.

address->#dict_par1

which reads the flags byte of the word at address.

The flags (chosen once again to conform loosely to Infocom conventions, not for any sensible reason) have the eight bits

7		6 5 4	3	2	1	0�<noun>		<adj>	<spec>	<meta>	<verb>

<verb>, <noun> and <adj> mean the word can be a verb, noun or adjective; the <spec> bit means the word was inserted by a Dictionary command in the program, except that <verb> words also have the <spec> bit set (ours not to wonder why).

Verbs declared as "meta" have the <meta> bit set. (These are such out-of-world experiences as "save'' and "score''.)

Note that a word can be any combination of these at once. It can even be simultaneously a verb, adjective and noun, and will be understood as such in different contexts.

9 - Porter's notes

The following ports have (generally) successfully been made:

the Commodore Amiga under SAS/C	Christopher A. Wichura�the Acorn Archimedes under Norcroft C	(the author)�the Atari ST	Charles Briscoe-Smith�Linux under gcc (essentially as per Unix)	Spedge, aka Dark Mage�the Apple Macintosh	Robert Pelak�the Mac, under the Programmer's Workshop	Brad Jones�OS/2 32-bit mode under IBM's C Set++	John W. Kennedy�386+ IBM PCs, eg. Microsoft Visual C/C++	Toby Nelson�small IBM PCs under QuickC	Bob Newell�Unix under gcc (or big IBM PCs under djgpp)	Dilip Sequeira�VAX mainframes under Digital's VAX C	(the author)

(Apologies to anyone left out.) Recent ports have been relative painless, and on many machines (particularly those with 32-bit integers and flat memory maps) the code has simply compiled and worked first-time without trouble. Executables from most of the above ports may be found ready-compiled in the archive ftp.gmd.de.

Porters are asked to name such executables, when they post them, with a filename which clearly indicates the machine and the revision number (e.g. by ending .5.4); and to email the author, if possible, with details of any modifications they needed to make, so that the main source can be improved. In particular, diffs (that is, differences between the source code as last posted, and the source as compiled for the machine in question) would be a great help.

See the header.h file for some make-files for different compilers.

The code assumes that long int is at least 32 bits long, though plain int can be either 16 or 32.

The general procedure is as follows: all code special to your port should appear inside #IFDEFs, with a constant for your port being defined at the head of the file. A block of definitions should appear in the header file along with the others. For instance, here is the block for Unix:

#ifdef UNIX�#define MACHINE_STRING "Unix"�#define Source_Prefix ""�#define Source_Extension ".inf"�#define Include_Extension ".h"�#define Code_Prefix ""�#define Code_Extension ".z3"�#define V5Code_Extension ".z5"�#define Transcript_Name "game.txt"�#define Debugging_Name "game.dbg"�extern char Temp1_Name[], Temp2_Name[];�#define Temp1_Hdr "/tmp/InformTemp1"�#define Temp2_Hdr "/tmp/InformTemp2"�#define DEFAULT_MEMORY_SIZE LARGE_SIZE�#define US_POINTERS�#endif

Notice that since some abysmally poor C compilers (such as VAX C, which has the affrontery to call itself ANSI) require that all # directives begin on the first column of the source code, you should abide by this as well.

MACHINE_STRING should name the machine. The prefixes and extensions are defaults for filenaming conventions. Under Unix, then, "frog'' will mean frog.inf it it's a source file, frog.h if an include file (such as a library file), frog.z3 or frog.z5 it it's to be written as a Standard or Advanced game respectively. The Transcript_Name and Debugging_Names hold names for the transcribed text and debugging information files (both optionally produced). Arrangements for naming temporary files (used for temporary storage space during compilation) are more vexed on some machines; under Unix, they are given unique names depending on the current process, for instance. Code to work out these names is defined in files.c, conditionally compiled when UNIX is defined. If there is no such multi-tasking issue, or you can't be bothered, you can just write something like

#define Temp1_Name "Inftmp1.tmp"�#define Temp2_Name "Inftmp2.tmp"

Set the DEFAULT_MEMORY_SIZE to LARGE_SIZE if you can; but if this is too consumptive for a small model of your machine, choose SMALL_SIZE. (In any case this default can be over-ridden on the command line.)

There are a few options:

TEMPORARY_FILES means 'use temporary files for scratch workspace'. The alternative is to use a good deal of extra RAM, say 256K or so, and possibly to have trouble allocating it since it will need to have large contiguous chunks.

US_POINTERS uses unsigned rather than signed char * pointers when calculating things like checksums; you may need this if your compiler signs char by default.

TIME_UNAVAILABLE indicates that the ANSI what's-the-date-today routines can't be used. (The serial number of a game will then be 940000 unless otherwise set by a Serial directive in it.)

PROMPT_INPUT indicates that the usual ANSI command-line arguments system cannot be used, which makes Inform ask questions instead. This is tiresome, so if you can find an alternative, take it.

GRAHAM indicates that you are Graham Nelson (not to be recommended).

All claims of memory are routed through my_malloc and my_calloc in files.c. The Quick C port shows what can be done in the case when your compiler will not allow you to allocate more than 64K contiguously without great trouble.

If two copies of Inform on different machines are given identical source code (and have identical version numbers, and identical ideas about what today's date is) then they should produce identical game files. If your port can pass this test for the 'Advent' example game, it's probably in good shape. A quicker test is to try typing "verify'' into a game produced by your port; often accidents of porting are shown up by wrong checksums in this way.

Don't worry if you can't get some of the more unusual switches to work, such as the gargantuan -u, but please cope with the user asking for it by giving some suitable error message.

10 - Geography and history of the source code

The Inform source code is written in ever stricter and more pragmatic ANSI C. It consists of a header file header.h and eight files of code:

asm.c express.c files.c inform.c inputs.c tables.c zcode.c symbols.c

 (see the attached map).

A tourist's map of the Inform archipelago

Main (top level) ——— inform.c

— Initialisation

— Command line switches

— Top level line parser

—— Compiler

——— Assignments and conditions —— express.c

——— Expression evaluator

—— Assembler directives ——— asm.c

—— Line assembler

——— Constant evaluator

——— Make attributes/properties

——— Make objects and classes —— tables.c

——— Make globals

——— Make verbs

——— Make dictionary

——— Make actions

——— Print diagnostics

— Construct output file

——— Text translation —— zcode.c

——— Z-code database

——— Reserved words table

— Abbreviations optimiser

——— Symbols table maker —— symbols.c

——— Preprocessor stack —— inputs.c

——— Character-level parsing

——— Error reporting

——— File handling —— files.c

——— Fatal errors

——— Debugging information file

——— Memory management

———— Comments — header.h

———— #defines

———— Integer types

———— Structures

———— Extern declarations

Inform runs in two passes, like an assembler. Mostly it does the same things on pass 2 as pass 1 (but is able to sort out forward references); but there are exceptions (the dictionary is insertion-sorted and hashed on pass 1, then strung together in the right order on pass 2, for instance).

It tokenises one line at a time (and does not make elaborate parse trees, which is why it is not good at hanging elses). Lines are divided up between directives, assembler opcodes and statements. Statements are normally converted back into sequences of assembler lines, which are held on the 'preprocessor stack' to be processed next (before the next statement from the source). Some complex statements even compile to simpler ones and so on down. In this way the original source becomes a stream of assembly language.

Objects and classes are stored in a compressed format similar to their final format, to save on memory.

Only one error is allowed through per original source statement (which prevents assembly-language errors caused by poor error recovery in some cases).

The modification history of Inform 1 to 5 is as follows. Note that some of the earlier remarks are archaic and out-of-date, representing features now superceded. Apologies to those whose corrections went in without their names being recorded!

Inform 1

The first archive release (0.5) was on April 30th 1993.

Inform 2

The second archive release (0.6) had the following improvements:

One #ifdef ARCHIMEDES altered to correct a bug in non-Archimedes version

Checking on the MAX_ACTIONS limit put in ("Curses" exceeded 100!)

Checking on MAX_STATIC_STRINGS put in; -m information extended

-x (hash printing) option introduced

-a (list assembly lines only) option, and ATRACE/NOATRACE introduced

Void prototypes explicitly declared (void)

Defunct Inform directives "STRING" and "SET" removed

Opcode data now made static, and faster opcode-parsing routine put in

Preprocessor stack rewritten, and now checking for overflow

Showdict produces more useful output

Filename extension #defines added

Command line parsing improved

Some ASCII assumptions removed

Typedefs added to force integers to be 32-bits long

Memory management heavily reformed, at the expense of a certain charm

USE_TEMPORARY_FILES version: if this is #defined, scratch files amounting to at most about 100K and 50K respectively are used to hold the code and static strings areas; this saves about another 150K.

(At worst three files are simultaneously open under this regime.) The temporary file names re #define'd below. They are automatically deleted.

Inform 3

The third release (1.0) is generally tidied and reorganised: most of the sillier variable and routine names have been made more comprehensible.

It is also 3 to 6 times faster; thanks due to Dilip Sequeira for profiling output, and also David Moore for his... comments.

	(November 1993)

Program improvements in the third release:

@xx string indirection via the synonyms table added

Objects allowed to have multiple internal names

New constant form #n$word... added

And #r$routine...

New high-level commands "write" and "give" for easier object amending

Fatal errors fractionally more informative

Non-fatal errors quite a lot more informative, and better worded

Grievous bug in stack long slot routines fixed

The checksum and length words are now properly set (though few interpreters need them)

Error checking on exceeding MAX_VERBS

-e (economy mode) added: causes abbreviations to be worked out, slowly (this is why it is only an option)

#SWITCHES directive added

-i (ignore switches) and -o (print offsets) added

Checking added on whether routines have too many local variables (the Z-machine crashes in a very strange way if so!)

Minor bug in printing object tree fixed

Two unused bytes spare at end of property defaults table are now zeroed

Temporary files now deleted after use

Checking on excessively long variable names added

STATUSLINE directive added (for games with hours/minutes on the status line)

The former SMALL_MEMORY compilation option is now mandatory. (Previously, Inform could be compiled so that it read source files into an enormous buffer, rather than reading them twice through a bit at a time. This could only be useful on machines with huge memory and very slow filing systems, of which there are few, and it complicated the code.)

The way input file names are processed has been reformed: they are now not altered if they contain a '.' or a '/'

INCLUDE directive added, so that Inform #includes files like C

Old -p (both passes) directive renamed -b, and new -p (percentage breakdown)

Warnings added: variables not used; checking that Main behaves properly; small bug in line counting fixed; checking on number of function arguments

Meta-verbs added

-f (frequencies) and -t (assembly trace) switches added

Small bug to do with stubbed routines removed

Possibly unused bytes (due to word alignment) in data, now zeroed (so that different machines will not produce different game files)

-f now calculates bytes yielded by abbreviations

New SERIAL directive for machines without access to today's date

Now handles more complicated multiple expressions within the same command

New STRING command added for writing to the synonyms table

New FONT command for proportional fonts control

New DEFAULT and STUB directives, for stubbing undeclared CONSTANTs and code

Checking on no. of attributes and properties added, and property-counting

Speed improvements in the third release:

The following have been rewritten in the interests of speed and not being O(n^2) for the sake of it: the line reader and tokeniser, management of local variables, the dictionary builder, the text translator, the line parser and the symbols table (courtesy of hash coding by Dilip).

	Curses	Dejavu	(compiling times (seconds) on my machine)�Release 2	300	45	(including 1-2 seconds for printing statistics)�Tokeniser & locals	205	26�Dictionary	 89	19�Symbols hashing	74	17�Tokeniser II	 69	16�Abbreviations	55	16�Hashing reserveds	49	14

Compatibility improvements in the third release:

The sort_number routine has been rewritten at the suggestion of Jon Drukman in order to defend against compilers determined to sign chars; and so have some structure definitions and variable types

Subtraction of pointers is now done by an easily altered macro (the point being that you can't always subtract by casting to int, if int is 16 bit or if you have a dire MSDOS-like memory map)

File naming improved slightly

The two points where ASCII is used now go through translate_to_ascii

Some stupid alterations made for VAX C compatibility (in the idiot world of VAX C, # commands must start on column 1, x=-1 is read as x-=1, typedef isn't ANSI, the word "signed" is rejected, values like MAX_INT are wrongly set and string consts don't concatenate)

A general rewrite has been made to sort out 16-bit from 32-bit integers: Inform now properly works when int is 16 bit by default.

VAX version now working (so presumably Inform does not rely on the order of bytes in a word)

Long constants explicitly declared so (to keep Borland C++ happy)

Because some C compilers (especially PC ones) don't like large static arrays there's now an ALLOCATE_BIG_ARRAYS option (#define PC forces it) which uses calloc to allocate memory from the heap for them.

Altogether Inform is going to need about 200K of workspace, and that's that: in a big flat memory machine, this will split about equally between static arrays and dynamic allocation. With ALLOCATE_BIG_ARRAYS set it will be almost entirely dynamically allocated.

If PROMPT_INPUTS is defined (and the VAX and PC versions force this), Inform gets file names and options by prompting for keyboard input, rather than using a Unix-style command line.

If TIME_UNAVAILABLE is defined, Inform doesn't try to use strftime and doesn't enter today's date for the serial number: the programmer will have to use a SERIAL directive in Inform, instead.

Improvements made for Release 3a: (Dec 7th 1993)

The AMIGA port option added (following Christopher Wichura)

#define US_POINTERS option added

A few constants (eg. MAX_BANK_SIZE) slightly increased, as "Curses" needed it when very close indeed to maximum possible size

A few void routines which weren't explicitly called (void) now are

The use of local text buffers by routines has been reformed, so that although there's now about 6K more of array allocation, the stack needed during runs of Inform is very much smaller (previously machines with less than 32K stack couldn't manage).

The tokeniser now recognises tab characters (outside string literals) as spaces (Inform previously gave errors when it found these).

The begin_pass routines are now more legible

Inform 4

Miscellaneous improvements made for Release 4: (January 20th 1994)

Checking on file I/O errors (previously Inform only checked errors which occurred on opening files, so never noticed disc space running out)

Lamentable wrong-verify-code bug in R3a (caused by misplaced #endif) fixed, and checksum calculation rewritten in a truly paranoid way for better portability to machines signing char's

"p[syns]=0x80" made to work when char's are signed (-128 to 127); a few redundant initialisations of variables removed

Minor tracing bug in R3a (only) fixed

Source code reformatted to 79 columns wide for troglodyte monitors

New typedef of "zip" (for char / unsigned char) to simplify the the US_POINTERS option

Heavy reorganisation and division into seven separately-compiled files; variables sorted into extern and static throughout

Optimisation on void-context function calls (saving about 300 bytes on a v-3 file of size 128K!)

Conditional compilation added: #IFDEF, #IFNDEF, #IFNOT, #ENDIF

Slow and memory-intensive abbreviations optimiser added: -u switch

Text transcription (-r) added

Property and attribute "alias" introduced (using code suggested by Art Dyer)

Properties and attributes formally separated as types, and a warning introduced for the common accident of missing out a comma in a property list

Warning put in for over-long property data (in Version 3 files)

Property operators ".", ".&", ".#" added

Direct array and property assignments (eg., a->2=3;) added

Expression evaluator tracing improved (and "etrace full" added)

Expressions generally reformed, and complicated conditions added

Braces made optional for simple if clauses

Negative constants now tokenised correctly and allowed

Unary minus, ++ and -- added; x+-1 optimised to x-1

"Children" and other in-lined object functions added

Recondite bug in expressions with nested function calls fixed

Preprocessor stack fully rewritten in a cleverer way (and it worked first time!)

New-style "for", "objectloop" added (they didn't, though); bug in the old "do...until" code fixed

Assignments can now take the form of a comma-separated-list

Braces made optional for arbitrary (nested) new-style constructs

Fixed miscellaneous bugs and finally rewrote the expression evaluator in a tokenised way, losing about 50 calls to strcmp per operator - which made no noticeable difference to run time but I feel better

my_malloc and my_calloc given the correct int type - size_t

Rare bug with large constant initial values for global variables when int is 2-byte, fixed

Microsoft Visual C/C++ port added (following Toby Nelson)

Line tracing format made more legible (at long last)

strcmp no longer used with possibly null strings (which is allowed by ANSI to crash the machine, and does under Unix)

New Version-5 features in Release 4:

-v3 and -v5 switches, and VERSION directive, added to switch between producing version 3 (Standard) and version 5 (Advanced) games

Rewritten statistics routines; changes to some array limits

New Advanced opcodes added

Optimisation of calls in v-5 code to make use of variant opcodes

STYLE command for bold-face, underlining, reverse video

READ command replaces the old v-3 opcode of the same name, and emulates it (with an optional status-line-routine) in version 5

Dictionary routines rewritten for either 6- or 9-character accuracy

New constants #dict_par1, -2, -3 and #version_number

SAVE, RESTORE commands replace the old v-3 opcodes, so as to emulate them in v-5

#IFV3 and #IFV5 directives added

Different file extensions/prefixes for version 5 files

BOX command added

Inform 5

Many minor improvements and bug fixes; object classes; inheritance; embedded routines in object definitions; cosmetic improvements

June 1st 1994; revised June 12th (5.1), and again June 19th (5.2)

A few corrections by Christopher Wichura for the AMIGA option, and Amiga makefile commented above - 25/1

Variable name in grow_branch() changed on advice of David Ingram (it was called opcode, which was also a typedef'd name) - 14/2

Check on exceeding MAX_ROUTINES put in (finally!) - 26/2

Minor bug to do with property data exceeding 10 bytes fixed - 13/3

Assembler slightly rewritten, and the new opcode naming system introduced: a few minor changes, numerous (unuseful) additions - "

Versions 4 and 6 (-v4, -v6) added for completeness - 16/3

Some minor tidying up of code suggested by Bob Newell, and the USE_TEMPORARY_FILES option finally made to work on PCs - 17/3

Bob's Quick C port added - 17/3

Nasty (but extremely unlikely) bug to do with data area fixed, and memory allocation for this made more flexible - 30/3

Really miserable, vile bug in the expression evaluator to do with exactly the case function(a-1,b) fixed - 14/4

Errors added for duplicated and misplaced "else"s - rather important since Inform handles hanging elses slightly naively - 15/4

Charles Briscoe-Smith's Atari ST port added - 20/4

John Kennedy's OS/2 port added

Robin Watts' Archimedes throwback code added

Bob Newell's fix for the brace underflow bug added (about time too)

Robert Pelak's Macintosh port added - 26/4

Testing on size of quoted strings added (previously Inform could crash if they were more than 2K long) - 27/4

-j (list objects as made) switch added - 27/4

Better reporting of output file opening errors - 27/4

Code generator fixed to produce only safe calls to get_prop_len (calls with non-existent properties crash some interpreters) - 1/5

Code for drawing quotation boxes made smaller and better - 1/5

Updated the gcc makefile on Dilip's advice - 2/5

Put error check in for misplaced "switches" directive, after such a mistake confused me for ages - 17/5

Embedded routines in object declarations added - 18/5

##Action form added - 18/5

Forward references to constants now understood (a thorny problem because of the long/short storage dilemma) - 18/5

Classes and inheritance, embedded routines, fake actions added

Dictionary routines fixed to allow e.g. "y2" and "pipe-dream" - 19/5

-n (print property/attribute numbers as allocated) added

<Action ...> added; dictionary address constants reformed - 20/5

"Nearby" declarations, and object locations defaulted to "nothing"

Bare strings understood as print_ret

<<Action...>> added - 21/5

Additive properties; "name" made additive; more logical punctuation of object definitions - 26/5

At this point the code sat in the incoming directory at ftp.gmd.de for a while and was discovered and looted, after which the following improvements were made, producing Inform 5.2:

Old "inform.c" file divided about equally into two, making new file "express.c" for the expression evaluator - a long overdue change

Minor bug (to do with 32 properties being exceeded in V5) fixed

Memory allocation tracing (-m) and freeing improved

The old ALLOCATE_BIG_ARRAYS option is now mandatory

Memory $ commands (on the command line) added: memory consumption reduced: symbols table memory allocation reformed

Two minor, convoluted bugs in line counting for error reports fixed

Temporary files not left lying around after errors have occurred

Grammar table extensions added

Revision 5.3 (as appeared in Acorn User magazine's cover disc)

Bob Newell's Quick C port revised, and his compatibility improvements incorporated (with the result that some ints are now int32s, and array typing is more careful with double indirection: this explains why several apparent char *'s come from int32 ** structures)

The #inclusions of the header now written in more orthodox C form

Bug in reporting the missing-comma-after-] error, noticed by Teo Kwang Liak, fixed

Header for Amiga version corrected by Christopher Wichura

Revision 5.4

Archimedes temporary-file prefixing added

Three memory settings moved int -> int32, one cast in symbols fixed, the huge printf divided into two, some of Robert Pelak and Bob Newell)

Tab characters ignored when quoted strings split across lines (this overlooked case pointed out by Andrew McMurry)

tracing_mode now set to 0 (as it should have been before)

@@decimal-number syntax added to text translation, so that untypeable chars (e.g. accented letters, graphic chars) can be put in text

Error added for spurious code after #include line

Opcode names standardised by agreement with Mark Howell; with the very last transuranic opcode added

-n (property number) tracing improved, in the course of...

...fixing an unfortunate bug in additivity of property inheritance which resulted in some copies of Advent crashing

The * syntax for "-g debug on this routine only" added

Really foolish bug in tokeniser (first token buffer 1 byte too short with lines beginning with long-named function calls) fixed

Extensive support for the Infix debugger added

String literals longer than 509 chars, the ANSI safe limit, divided (at request of Brad Jones)

Constant form 'word' now allowed in object/class property defns

'scope=' token support added, and 'name=' consequently renumbered

Bug in input routines which didn't allow '"' fixed

Error messages generally revised and clarified

Bug to do with crashing on a long initial token which isn't a string removed, and error messages protected against excessive length

Slight updates in releasing 5.4 (Oct 1994):

Minor variable definition mishap fixed

More ANSI printing of hex addresses which overflow 16-bit ints

Bug to do with default property values on 16-bit-int machines fixed

The Sibelius Bug fixed (this caused some if statements not to put braces properly around single statements, when the first character of the corresponding source line was a TAB). (This bug is so known because Bob Newell had a sudden flash of inspiration and fixed it on his laptop while killing time in a hotel in Minot, North Dakota, where he was staying to record a radio programme of Scandinavian music, including Sibelius' Concerto for Violin and Orchestra in D minor. The opening cadenza is reminiscent of tab stops...)

More of Bob's int32/int corrections made

Maintenance, Dec 94 and Jan 95:

The empty string "" now causes an error (rather than going wrong)

Extend "first" grammar comes out in the right order now, and doesn't waste a grammar line (as it used to)

Inheritance of attributes numbered 32 and over from classes used to have regrettable side-effects (unexpected extra attributes sometimes appeared), but hopefully no longer

Expression evaluator mended. Arithmetic like a-b-c now implicitly brackets as (a-b)-c, not a-(b-c). This is obviously preferable. Similarly a->b->c now means (a->b)->c, which I think is the right thing to do but just might be a dangerous change for code already in existence: well, I'll take the risk

Boring expression tracing bug fixed

MAX_ROUTINES checking was out by one: now mended

Opcode same_parent now renamed jin (since it turns out to jump if in) and the "in" condition correspondingly more efficiently coded to use this opcode, saving compilation time and code space (slightly).

Games with large quantities of extra grammar could crash Inform in v1404 and before, owing to a verb name table overflowing without being checked. This table space is expanded (as it's cheap on memory anyway), and its size is a new memory setting, MAX_VERBSPACE.

The display of memory settings has been alphabetically sorted

�

The Specification of the Z-Machine and Inform assembly language

Updated edition, 18/1/95

Contents

� VERZEICHNIS \o "2-2" \b Specifications �1 - Introduction	� GEHEZU _Toc318615950 � SEITENREF _Toc318615950 �1��

2 - Resources available	� GEHEZU _Toc318615951 � SEITENREF _Toc318615951 �2��

3 - History and the six versions	� GEHEZU _Toc318615952 � SEITENREF _Toc318615952 �3��

4 - How text is encoded	� GEHEZU _Toc318615953 � SEITENREF _Toc318615953 �4��

5 - How instructions are encoded	� GEHEZU _Toc318615954 � SEITENREF _Toc318615954 �5��

6 - The early Z-machine	� GEHEZU _Toc318615955 � SEITENREF _Toc318615955 �8��

7 - The late Z-machine	� GEHEZU _Toc318615956 � SEITENREF _Toc318615956 �10��

8 - Complete table of opcodes	� GEHEZU _Toc318615957 � SEITENREF _Toc318615957 �14��

9 - Dictionary of opcodes	� GEHEZU _Toc318615958 � SEITENREF _Toc318615958 �18��

10 - Header format through the ages	� GEHEZU _Toc318615959 � SEITENREF _Toc318615959 �29��

11 - A few statistics	� GEHEZU _Toc318615960 � SEITENREF _Toc318615960 �32��

�

1 - Introduction

The legend that every cipher is breakable is of course absurd,�though still quite widespread among people who should know better.

	J. E. Littlewood, A Mathematician's Miscellany

There is an obvious resemblance between an unreadable script�and a secret code; similar methods can be employed to break�both. But the differences must not be overlooked. The code is�deliberately designed to baffle the investigator; the script�is only puzzling by accident.

	John Chadwick, The Decipherment of Linear B

The Z-machine is an imaginary computer originally devised by Joel Berez and Marc Blank in 1979 to run the Infocom adventure games. Since the demise of Infocom, much effort by many people has gone into deciphering and implementing it portably, so that modern-day players can run the classic Infocom games. The Z-machine is also the run-time code format of the Inform compiler, which means that there are now more Infocom-format games in play than the ones Infocom actually wrote.

It is well-adapted to its task. Its behaviour is (very, very nearly) exactly specified and it has been accurately implemented on virtually every small computer. It maintains a hierarchy of objects and possessions, and does the computationally-intensive part of parsing input itself.

The purpose of this paper is to fully document the Z-machine, discuss to what extent it is presently implemented and detail how to use Inform as an assembler.

Only a few of the pieces in this jigsaw were placed by myself, and the credit belongs to many people. Old hands at the decipherment game will no doubt find the opcode table tiresomely familiar: but, as with a chemist finding Mendeleyev's periodic table on a laboratory wall, so will the hacker be reassured by the sight.

I gratefully acknowledge the help of Paul David Doherty and Mark Howell, who each read a draft of this paper and sent back detailed corrections. Mistakes and misunderstandings remain my own.

To begin, three general points. The fascination with the letter Z began with 'Zork': apparently "zork" was a nonsense word used at MIT for the current uninstalled program in progress, and stuck. The Z-machine runs what we shall call Z-code. Just as we shall use the term "Z-machine" for both the machine and its loaded program, so ZIP (Zork Implementation Program) was used to mean either the interpreter or the object code it interpreted. Code was written in ZIL (Zork Implementation Language), which was derived from MDL (informally called "muddle"), a particularly unhelpful form of LISP. It was then compiled by ZILCH to assembly code which was passed to ZAP to make the ZIP. We refer to code as "Z-code" to avoid confusion with "Zip", the name of Mark Howell's interpreter (by far the best available).

Secondly. In talking about "the Z-machine", what do we really mean: the design Infocom had in mind, the syntax which seems to be in their surviving game files, or what is actually done by various interpreters, theirs or ours? Aided by the patient detective work of my predecessors (e.g. disassembling Infocom-written interpreters, and going through all existing game files) I shall try to give all three specifications. (Inform assembly-language programmers will need to bear in mind that it is the third that really counts.)

For the standard format (version 3) there are many existing games and there isn't much conflict. But for later versions, there are few games, not all the opcodes were ever used and the interpreters publically available disagree about what to do with some of the obscure ones. To some extent this account is an attempt to settle arguments.

Finally, note that the Z-machine does not provide the bulk of a game's parser, or its 'operating system'. The parser has to be coded, and the tables it uses (which some investigators think are part of the Z-code format) are in fact the same across different Infocom games only because they contain similar parsers. So those are not specified here. An account of the parsing tables as generated by Inform can be found in the

Inform Technical Manual. For the usual format of Infocom's parsing tables, see the C source code to Mark Howell's utility "Infodump''.

Hexadecimal numbers are written with an initial dollar, as in $ff, while binary numbers are written with a double-dollar as in $$11011, according to Inform conventions. The bits in a byte are numbered 0 to 7, 0 being the least significant and the top bit, 7, the most.

	Graham Nelson

	Magdalen College, Oxford

	September 1994

This update corrects a number of misprints (and one serious misconception, to do with same_parent) and contains about 20 minor extensions. Thanks are due to MH, PDD and Stefan Jokisch for suggesting these.

	January 1995

2 - Resources available

...the dead hand of the academy had yet to stifle the unbridled enthusiasms of a small band of amateurs in Europe and America.

	Michael D. Coe, Breaking the Maya Code

(This document representing the dead hand of the academy.)

The four publically available interpreters that I know of are:

"Zip'', the fastest and most accurate, which is currently being updated to interpret even version 6;

"InfoTaskForce'' (henceforth ITF), which is almost as good for most purposes but slightly inaccurate in some screen-handling matters and does not provide the necessary features for "undo'' in Version 5 games;

"Pinfocom'', which is competent on version 3 games but unable to cope with higher versions;

"Zterp'', similarly primitive.

Bryan Scattergood has made a considerable enhancement of ITF for his Psion and Archimedes interpreters. However, the ITF no longer seems to exist as such.

The only existing compiler is Inform, since Zilch no longer exists. Mark Howell's toolkit of utility programs includes a disassembler called "txd'' and a vocabulary dumper called "infodump'', together with other less generally useful programs.An enhanced version of Zip which will be a source-level debugger for Inform games, called Infix, will soon be available.

The Infocom story files are, with a few exceptions (the samplers) copyright and are currently being sold by Activision in the collections 'The Lost Treasures of Infocom'. They represent excellent value for money. They should not be present at any archive site, and if they are then this is so illegally.

A few other story files, such as 'Curses' and 'Advent', are freely available.

Most of the above programs have publically available source code (in C) and many have executables as well; the if-archive at the anonymous ftp site ftp.gmd.de is the best place to find them. A curse of these programs is that they almost all use different names for the opcodes internally (that is, in their source code). Mark Howell and I (authors of the disassembler and assembler, respectively) have agreed on what we think is a reasonable standard, and these are the opcode names documented here. They are used from Inform 5.4 and in recent editions of txd.

3 - History and the six versions

Confusion now hath made his masterpiece

	Shakespeare, Macbeth

There were six main versions of the Z-machine, and several minor variant forms. These are recognisably similar but with labyrinthine differences, like different archaic dialects of the same language. (And, of course, the job of decipherment is made harder by the fact that the archaeological record suddenly stops in about 1989 when the civilisation in question collapsed.)

Broadly, these fall into two groups: early (versions 1 to 3) and late (4 to 6). This paper will give an expository account of versions 3 and 5 (as representative of these two groups) but will conclude with brief tables and specification for all versions.

The six versions are:

(Version 1	Early Apple][games for DOS 3.2, and the TRS-80 Models I/II

(Version 2	Early Apple][games for DOS 3.3, and the TRS-80 Models I/II

(Version 3	"Standard'' series games

(Version 4	"Plus'' series games

(Version 5	"Advanced" series games, or, as the marketing division would have it, "Solid Gold Interactive Fiction" - a reference to the colour (though not composition) of the boxes they came in

(Version 6	Later games with graphics, mouse support, sound effects, etc.

Infocom called their own interpreters ZIP (versions 1 to 3), EZIP/LZIP (V4), XZIP (V5) and YZIP (V6).

Versions 1 and 2 are thought to be extinct, though collectors have a few fossils and Zip and ITF implement them anyway. Many Version 3 games are still in circulation, and enough worthwhile Version 4 and 5 ones to make the format important.

Most of the Infocom games exist in several different releases, and some were written for one version and then ported to later ones. 'Zork I', for instance, exists in at least ten editions, two early, seven in version-3 (with release numbers between 5 to 88 in chronological order) and one in version 5 (release 52 - the releases go back to 1 when the version changes).

There are few version 6 games, and they are of (arguably) poorer quality. Few interpreters exist for them, because they are inherently difficult to port to different machines. However, there will be a brief discussion of the version-6 format here and in effect a full specification in the dictionary which follows the opcode table.

The definitive guide to all Infocom story files known to exist is Paul David Doherty's "fact sheet'' file, which can be found at ftp.gmd.de.

The Z-machine as originally constructed was surprisingly similar to that in use when Infocom ground to a halt. Version 1 (1979-80) had essentially the same object format, for instance, and a similar header, but encoded text with a different character table and had no concept of synonyms. Its addresses were all word-addresses and not byte-addresses, so presumably a small amount of memory was wasted in null bytes to fix parities everywhere.

Version 2 was quite a minor enhancement, presumably made only because a new interpreter had to be written anyway. Synonyms appeared, but only in one 32-word bank, and the six-digit serial number appeared in the header, though it wasn't always the date in those days: Release 7 of 'Zork II', for instance, is numbered UG3AU5. (Other bizarre serial numbers, such as 000000, are presumed to be the result of software pirates covering their tracks.)

Version 3 changed the text encoding alphabets again, and tripled the number of synonyms possible. (Consequently the previous "caps lock" style permanent changes of alphabet were dropped.) The "verify" code and verify checksums appeared; and a new opcode to print the status bar at the top of the screen was introduced. (Previously, this was updated only when input was taken from the keyboard.) The earliest Version-3 releases ('Deadline', then 'Zork I' and 'II') were in March and April 1982; the latest (the 'Minizork', a cassette-based Commodore-64 sampler of 'Zork') in November 1987.

A primitive form of screen-splitting (which, presumably, was devised in a hurry in 1984 and then accidentally became the foundation for the character graphics designs of later versions) was allowed by some interpreters, in order to give 'Seastalker' a sonar display. In order that 'Seastalker' should run on less enlightened interpreters, the game itself contained code to check whether this feature was available before using the opcodes. And 'The Lurking Horror' (1987) has sound effects (on some machines) - another sign of things to come.

Nevertheless by 1982 the Z-machine had stabilised to a reasonably clean design. It was very portable, contained everything reasonably necessary and most of its complications were optimisations to squeeze a few more bytes out of the 100K or so available on an early-1980s floppy disc. (Actually the Zilch's code generator, although very good at exploiting these tricks, had little larger-scale optimisation, and some of its code makes disheartening reading. But then the same could be said of Inform.)

By 1985 there were two basic pressures to change. One was that home computers were larger, and several fundamental restrictions (the game size being only 128K, the number of objects only 255, the attributes only 32, the properties only 30) were beginning to bite. The other was the drive for more gimmicks - character graphics, flashier status bars, sound effects, different typefaces, and so on. The former led to logical, easy to understand structural changes in the machine. The latter, in contrast, made a mess of the system of opcodes.

More does not mean better: just because the price of paper falls is no reason to double the size of the modern novel, for instance. Nor is literature (pace e. e. cummings) much improved by using four different typefaces and illustrating it with typewriter pictures. Also, the relieving of size restrictions only increased design time - or lowered its quality.

Nonetheless, two excellent games resulted from the lifting of size restrictions. In August 1985 the first version-4 game ('A Mind Forever Voyaging') reached production, and it was followed most notably by 'Trinity' (which had previously been shelved as too ambitious for the version-3 format). Still, most of the new 1985/6 games remained in version-3: after all, there were still plenty of 8-bit home computers around, too small for version-4 games: and, despite critical acclaim, the new games consequently did not sell as well.

Version 5 games began to appear in September 1987 with 'Beyond Zork' and 'Border Zone'. Both of these games needed new features - character graphics gone wild in the case of the former, and real-time keyboard interaction in the latter. The number of opcodes grew ever faster as a result.

Although five old games were re-released in Version 5 editions (with an in-game hints system added, and benefiting from 9-letter word dictionaries, but otherwise as written), the direction was all too clearly away from the old text game into graphics. Having gradually moved this way ('Beyond Zork' can look like a parody of an early mainframe maze game, for instance) there was nothing left but to complete the process, and so Version 6 was born. After something of a hiatus in 1988, the last few increasingly-unrecognisable Infocom games appeared: 'Zork Zero', 'Shogun', 'Journey', 'Arthur'.

Infocom gradually ceased to exist during 1987-9 for financial reasons generally said to be unrelated to their games output. Whether they would have continued to release text games of the classical style is arguable.

4 - How text is encoded

This technique is similar to the five-bit Baudot code, which was used by early Teletypes before ASCII was invented.

	Marc S. Blank and S. W. Galley, How to Fit a Large Program Into a Small Machine

Text is stored as a sequence of 2-byte words. Each of these is divided into three 5-bit pieces, plus 1 bit left over, arranged as

--first byte-------	--second byte---�7	6 5 4 3 2	1 0	7 6 5	4 3 2 1 0�bit	--first--	--second---	--third--

The bit is set only on the last 2-byte word of the text, and so marks the end.

These pieces are called 'Z-characters' and have values in the range 0 to 31.

There are three alphabets, in which the numbers 6 to 31 mean:

A0	abcdefghijklmnopqrstuvwxyz�A1	ABCDEFGHIJKLMNOPQRSTUVWXYZ�A2	 ^0123456789.,!?_#'"/\-:()

 (Here the new-line character is written as a circumflex ^).

Character 0 is a space in all alphabets. Characters 1, 2 and 3 are used for abbreviations: thus, 1 followed by 14 means "print entry 14 in the synonym table"; 2 followed by 5 means "print entry 32+5=37..."; 3 followed by 20 means "print entry 64+20=84..." and so on.

The Z-machine provides these for commonly occurring strings to be printed out as if they were characters, thus saving memory. Though they are actually abbreviations, by accident of history they have come to be called 'synonyms'. (Well chosen synonyms tend to make about a 10% space saving.)

By default, a character is presumed to be in A0, i.e. to be a lower-case English letter. However, the character 4 means that the next one (only) is in A1; and 5 means the next is in A2.

(Note for purists: actually the full rule is

	A0	A1	A2�4	[A1->]	[A1->]	[A0->]�5	[A2->]	[A0->]	[A2->]

but since alphabet changes are (in versions 3 and onward) not permanent, it seems pointless ever to use 4 and 5 in alphabets 1 and 2.)

Notice that character 6 in A2 is blank. It isn't a space: it simply isn't there. The sequence 5 followed by 6 indicates that the next two characters define an ASCII value. This is the way to get at the characters not in any of the three alphabets. For example, the familiar message

*** You are dead ***

takes four Z-characters to produce each of the asterisks.

Finally, note that the end-bit only comes up once every three characters, so that a way is needed to safely use up any spare characters in the last 2-byte block. This is done by padding out with 5's. (5 followed by 5 does nothing.)

This is especially the case with dictionary entries. Some dictionary entries, like "i", ought only to take one 2-byte block, but in order to make all entries the same number of 2-byte blocks long and so alphabetically sortable by number, they are padded out by as many 5's in a row as needed (possibly as many as eight of them). Dictionary entries are not permitted to use synonyms and their letters are in lower case (though they can contain characters from A2).

In practice the text compression factor is not really very good: for instance, 155000 characters of text squashes into 99000 bytes. (Text usually accounts for about 75% of a story file.) But the encoding does at least encrypt the text so that casual browsers can't read it.

Footnotes:

The versions 1 and 2 formats are slightly different: see below.

In versions 5 and 6, the three alphabet blocks need not be the default ones A0 to A2 tabulated above, but instead can be chosen by the story file itself by means of an entry in the game's header.

In version 6, it is expected that the ASCII codes for tab (9) and control-K (11) are printed slightly differently: a tab at the start of a line should be a paragraph indentation suitable for the font being used, but anywhere in the middle of a line should be a space; and 11 should be rendered as a gap between two sentences.

5 - How instructions are encoded

We do but teach bloody instructions Which, being taught, return to plague th' inventor

	Shakespeare, Macbeth

This account is to be read in conjunction with the opcode table and dictionary, so it does not tabulate or individually discuss opcodes. Experimenting with Inform as an assembler, while tracing is turned on, may be helpful. Except for the printing instructions print and print_ret, which are simply opcodes followed by an encrypted string, an instruction consists of the following:

Opcode	1 byte (possibly 2 in versions 5-6)�(Types of operands)	1 byte; only for VAR form opcodes�Operands	Between 0 and 4, each taking 1-2 bytes�(Store)	1 byte; variable to store a result�(Branch)	1-2 bytes; offset to branch to

(not all opcodes take "store'' or "branch''; a few take both).

Operands, variables and the stack

Z-code understands four kinds of operand, and describes these in 2-bit fields:

$$00	Large constant (>=256 or <0)	2 bytes�$$01	Small constant (0 to 255)	1 byte�$$10	Variable	1 byte�$$11	Omitted altogether	0 bytes

Variables are described in one byte. $00 means the top of the stack, $01 to $0f are the local variables of the current routine and $10 to $ff are the global variables, 0 to 239. Writing to the stack pointer, or variable $00, pushes something onto the stack; and reading from it pulls it off. The stack can also be manipulated with the use of opcodes. Any spurious values left on the stack at the end of a routine (i.e. when a return occurs) are removed automatically, as a safety measure and to avoid wasting instructions clearing the stack. (Presently, Inform-written games never rely on this, but Infocom ones do.) The stack is guaranteed to be at least 512 bytes long, and some interpreters are more generous. There isn't any way for a Z-code program to check stack overflowing, so recursion requires care.

Opcodes

In versions 1 to 4, Z-code opcodes are 1 byte only. To begin with, look at the top two bits. If these are $$11, we shall call it "variable"; if $$10, "short" (0OP or 1OP, i.e. 0 or 1 operands); and otherwise "long" (2OP: 2 operands). In versions 5 and 6, there are also "extended", EXT, opcodes two bytes long.

For short opcodes, look at the next two bits (4 and 5). These give the kind of operand which the code has. If this is $11, there isn't an operand and the opcode has no argument at all. In this event, the opcode number is the bottom 4 bits (see table of 0OP opcodes).

If the type wasn't $11, then an operand follows of the given type (large constant, small constant or variable), and the bottom four bits gives the opcode number (see table of 1OP opcodes).

Long opcodes have two operands. The bottom 5 bits of the opcode say what it is (see table of 2OP opcodes).

The alert reader will notice that this only leaves bits 5 and 6 spare to hold the operand types. As there are two operands to specify, this ought to take up 4 bits, which obviously won't fit. So a more economical form is used instead. Bit 6 refers to the first operand, and bit 5 to the second. A value of 0 means a small constant and 1 means a variable. Now, type $11 (not really there) operands can't happen, so that's no problem, but there might well be type $00 (large constant) operands, for example in assembling

@mul x #666 sp;

In this event, the opcode must instead be assembled as a "variable" opcode.

So we must now describe the "variable" or VAR opcode form. In addition to the possible opcodes which can arise from overflowing "long" opcodes, there are others which can only be "variable". In the former case bit 6 is clear and in the latter it is set. In either case the bottom 5 bits contain the opcode number: see the 2OP or VAR tables accordingly.

Some of these are only of "variable" type because the available codes for the other types had run out; print_char, for instance. Others, especially call, need the flexibility to have between 1 and 4 operands.

In the "variable" type opcode, all eight bits of the opcode have been used up, so we have to add another byte describing the operands. This is divided into four 2-bit fields. For example, $$00101111 means large constant followed by variable (and no third or fourth opcode).

Once the opcode is out of the way, the operands are simply stored in one or two-byte form as appropriate.

Numbers and addresses

These are two-byte words, stored in the order high-byte then low-byte. These can be interpreted as signed, with the top bit indicating the sign in the usual way (e.g. -1 is $ffff), or as unsigned. Numerical comparison, multiplication, addition, subtraction and printing of numbers is signed; bitwise operations, division and remainder after division are unsigned. (Addresses, in particular, are always treated as unsigned, which means that they can't safely be compared by jl and jg in one instruction.)

When holding an address such a number can be a byte address, which puts it necessarily in the bottom 64K of the memory map, or a packed address. Routines and static strings will be at addresses in memory which can be pointed to by packed addresses. Given a packed address p, the formula to obtain the corresponding 'real address' in bytes is:

b = 	2p	versions 1-3�	4p	versions 4-5�	8p+o	version 6

where the offset o in Version 6 is given in the game header (this can be used to stretch the memory map another 64K or so beyond the apparent 512K limit).

Strings, stores and branches

print and print_ret are followed by text: this is assembled in the usual way immediately after the opcode (which may well be at an odd address, but this doesn't matter) and execution resumes after the last 2-byte word of text (the one with top bit set).

"Store" opcodes return a value: for example, mul multiplies its two arguments together, and call calls a routine which must return a value. Such instructions are followed by a single byte giving the variable (stack pointer, local or global as usual) to put it in. This may look like an extra operand but is not: there is no need to tell the Z-machine what type it has, since it must be a variable.

Finally, there are instructions which test a condition. More opcodes than just the obvious branch instructions do this; e.g. save does so (in version 3), the test in question being whether or not the save was successful. Branches are stored in two different ways for economy reasons: nearby ones in a single byte at the end of the instruction, farther ones in two such bytes.

The top bit of the first byte of a branch is the "flag". If this is clear, then a branch occurs when the condition came out false. If it is set, then the branch occurs when it was true.

If the next bit (bit 6) is set, then the branch is in abbreviated 1-byte format and the offset is in the bottom 6 bits (0 to 5). If not, the offset is in the bottom 14 bits (0 to 5 of the first byte, and all of the second). This offset can be positive or negative. (E.g., all 1's means -1 in the usual way.)

In the abbreviated form, an offset of 1 in fact means "return true from the current routine" and an offset of $20 (i.e., -31) means "return false". An offset of 1 is never useful but -31 might arise, and so it is essential to use the long form for such branches.

Working out what the offset ought to be is more complicated than it appears because the PC has already moved on from the start of the instruction when it reaches the branch. The bizarre formula in question is

Offset = Destination address - Address of this instruction - Length + B

where

Length = number of bytes in instruction (not counting the branch)

and B is 1 for short branches, 0 for long ones.

(For its own code Inform compiles branches in the long form, considering the economy to be not worth the nightmarish computation needed to make the long/short decision. (One problem is that the number of bytes in each instruction must be the same in both passes, so that the decision needs to be made before the value of the offset is known... in a 2-pass compiler this is insoluble. Another is that the offsets are affected by the size of the branch, confusing matters on forward branches.) However, its assembler mode allows you to make an explicit choice.)

jump instructions similarly encode their address operand as an offset, but always as a two-byte (signed) constant. A few instructions both store results and branch: if so, the store comes first.

Extended set of opcodes

The extended (or EXT) set only applies in versions 5 and 6. These are two byte opcodes, of which the first byte is always 190, the second the opcode number. Subsequently, they behave exactly as VAR...

...except that, actually, two of them don't. Two of them, call_vs2 and

call_vn2, have up to 8 operands and so have two bytes of type information instead of one. (These are provided for calling functions with up to 7 arguments instead of only 3, the limit in earlier versions.)

(Inform's assembler is unable to use these two opcodes.)

6 - The early Z-machine

Since the majority of extant Infocom story files use it, this section talks about version 3 unless otherwise stated. The following section will indicate how the late Z-machine differs.

The early Z-machine has a memory map at most 128K long.

An example memory map of a small game (produced by Inform)

	Start	Contains	

Dynamic	00000	header

	00040	synonym strings

	00042	synonym table

	00102	property defaults

	00140	objects

	002f0	object descriptions and properties

	006e3	global variables

	008c3	arrays

 Static	00b48	grammar table

	010a7	actions table

	01153	preactions table

	01201	adjectives table

	0124d	dictionary

Paged	01a0a	Z-code

	05d56	static strings

	06ae6	end of file

The Header

The first 64 bytes contain a header, to be detailed fully later. It contains (mainly) addresses of other tables and flags, and is both a vehicle for the game to tell the interpreter what to do, and for the interpreter to tell the game what it can do.

To briefly run through the essential points of the version-3 header: the first 4 bytes are

03	<Flags>		<Release Number>�			----2 bytes-----

 (The first byte is the version number.) Next come seven word addresses, at words 2 to 8:

2	<Start of Routines>	Where routines begin, in bytes

Actually, in some games, read-only data seems to continue here: this pointer actually tells the interpreter where the "resident" data ends, i.e. the part of the game which is kept in memory at all times rather than loaded off disc as and when required. (Of course modern interpreters should almost certainly not be swapping pages from the disc anyway, now that 128K is no longer a scandalous amount of memory.)

3	<Main Routine>		Initial value of program counter

(Under Inform, it's conventional to regard this as the address of the "main" routine, in bytes, +1, though this means that "Main" is unlike all other routines, can't have local variables and can't be returned from. From an interpreter's point of view, it's just where execution begins. Note, though, that this is uniquely a code address in bytes and not a packed address: thus it must occur in the lower 64K of the file. Inform always sets word 3 to be word 2, plus 1, because it requires Main to be the first routine defined, which ensures that this occurs.)

4	<Dictionary>		The dictionary table address, in bytes�5	<Object tree>		Object table address, in bytes�6	<Variables>		Global variables address, in bytes�7	<Save area size> 	The total number of bytes in a saved game

Saving the game is done by saving this many bytes from the beginning of the machine. (Saved games also contain the current state of the Z-machine stack; the stack is not stored anywhere in the Z-machine's memory.)

8	<More flags>

This is followed by the six bytes from byte 18 to 23, which are the version number string. (By custom these hold the compilation date in the form YYMMDD.) Then more words:

12	<Synonyms table> Synonym table address in bytes�13	<Length>	Length of file, in words�14	<Checksum>	Sum of bytes from 64 upwards, mod $10000

The length and checksum are needed to perform "verify", something which most games only do when explicitly asked.

Synonyms

We are now at byte address $0040 and by convention we reach the synonyms. Usually, the actual strings (the expansions of the synonyms) are stored here, one after another, making up 96 strings. When that is out of the way, the actual table begins (and this is what the synonyms address points to). The table contains 96 word addresses in sequence.

Note: extremely annoyingly (from the point of view of the compiler writer), these are word addresses and not packed addresses: thus a synonym string must lie in the bottom 128K of memory. (Inform has to go to a considerable amount of extra trouble because of this.) Of course in the original design synonym strings had to be resident (hence low in memory) anyway for speed reasons.

Object Table

Next is the object table. In fact it begins with what is sometimes called the "global properties table", though it is actually a table of default values of properties. This is a list of 31 2-byte numbers. There is no property 0, so the first word is always 0000. (Recall that there are 30 properties in versions 1 to 3.)

After these 62 bytes, the objects begin, beginning from object 1. An object entry consists of 9 bytes, looking like:

<the 32 attribute flags>	<parent> <sibling> <child>	<properties>�---32 bits in 4 bytes--- 	---3 bytes------------------		---2 bytes--

The three parent-sibling-child bytes are 00 when the object pointed to is "nothing". The properties pointer is the byte address of the list of properties attached to the given object.

When all these 9-byte entries are out of the way, the property lists begin. (Inform keeps these in the same order as the objects they are attached to but the specification does not require this.) An individual property table has the brief header

<text-length> <text of short name of object>�-----byte----	--some even number of bytes---

 (where the text-length is the number of 2-byte words making up the text, which is stored in the usual format).

Then the properties held are listed, in descending numerical order. (This order is essential.) An individual property is stored as

<size byte>			<the actual property data>�---between 1 and 8 bytes--

The size byte is arranged as 32 times the number of data bytes, plus the property number. Each list of properties is ended by a 00 size byte. This is why there is no property 0.

Global variables and the status line

When all the property tables are done, we come to the global variable table. Global variables are numbered from 0 to 239, and this table begins with 240 initial 2-byte values for them. After this is conventionally left space for all the arrays, dynamic strings and so on which they point to.

Note that the first three global variables are special, because they're used in generating the game's "status line''. The first is the location variable, that is, the number of the object whose name is printed on the left hand side of the status line.

The second and third variables either represent score/turns or hours/minutes (according to whether the appropriate bit in the header is set or not).

We have now reached the top of the save area. Everything higher in memory than here is never altered (and not saved when the game is saved, hence the name).

Grammar and parsing tables

Next is the table of grammar, an actions table, a preactions table and then an adjectives table. Note that this is not a part of the specification at all, and the Z-machine knows nothing about these tables. The old Infocom files have certain standards about their formats because they used roughly similar parsers; Inform follows these conventions to some extent (see the Inform Technical Manual for the formats it writes here).

The dictionary

And next the dictionary table, which has the following short header:

n	<list of ASCII codes>	entry-length	number-of-entries�byte ------n bytes--------	byte		2-byte word

The codes listed are word-separators: typically (and under Inform mandatorily) these are

. , "

A space character (32) does not appear because these characters will not only divide words but also come out as words in their own right: thus,

> fred,go

will be lexically analysed as three words:

"fred" "," "go"

Each word entry has 4 bytes of text (i.e. 6 Z-characters, padded out with as many "pad'' characters, that is 5s, as necessary), and then a few extra bytes of data: almost invariably (and under Inform mandatorily) three.

Dictionary entries appear in alphabetical order (precisely, this means in numerical order, regarding the first 4 bytes as an unsigned integer). They use only alphabets A0 and A2 (i.e., they don't use upper case letters).

The contents of the data bytes are not specified by the Z-machine, which never does anything with them. (See the

Inform Technical Manual for what Inform does with them.)

The code area and static strings

Next is the code area. (In fact some Infocom games, though no Inform ones, put some static data next before the code begins.) The code area simply contains a list of routines; the specification does not require the first routine to be where execution begins, and indeed it is not in some existing files (though it always is under Inform).

All routines (and static strings) must occur at addresses which can be packed addresses (meaning, at even byte addresses in Version 3). The bytes sometimes left over in between them are unspecified (but under Inform, always 0).

A routine begins with one byte indicating the number of local variables the routine has (from 0 to 15), and then with that many 2-byte numbers giving their initial values. When a function call takes place, the arguments -- however many there are -- are written into the first few local variables, over-riding the default values here. Unlike global variables, these bytes are not used for the current values of the variables: they are kept on the stack.

(Inform never makes use of these initialisation numbers, and simply stores zeros.)

Executable code follows this header. There is no special marker for the end of a routine; it is simply expected that in every case a legal return instruction will be hit.

Finally, from the end of the code to the top of memory are the static strings. These are put up here to be out of the way, where they won't clog up the bottom 64K of memory. There's no table of their addresses, or pointer to where they begin; each is referred to by a packed address in code or data given earlier.

7 - The late Z-machine

Versions 4 and 5: Architecture

The bulk of this section is given over to a detailed discussion of the differences between version 3 and version 5, since those are the two forms Inform can produce. (Version 4 is nearer to version 5 than 3.) We begin with the architecture.

The memory map doubles to 256K, a change which is surprisingly easy to make. But the processor remains 16-bit, so packed addresses are now multiples of 4. However, this only really affects addresses of routines and static strings (which are now aligned to longword boundaries, not word-boundaries).

As mentioned in "� REF S6 * FORMATVERBINDEN �The early Z-machine�", an annoying exception is that the synonyms table contains word addresses still, and so assumes that the synonym strings lie in the lower 128K. This is understandable because the Z-machine used to rely on virtual memory (swapping pages of memory on and off of disc), and the synonyms need to be accessed at virtually all times: keeping them together in low memory (just after $0040) is therefore efficient, and giving them addresses divisible by four would waste bytes in the save-game-area.

The only important change to the header, then, is that the length is in longwords, being a packed address.

A minor new feature in Version 5 is that the game can change the alphabet tables used for text decoding, putting a pointer to them in the header at $34-5: this is usually left as $0000, meaning the default alphabets. See "� REF S10 �Header format through the ages�". Also, it seems to be expected that the interpreter tells the game the dimensions of the screen by writing them into the header itself, in play. Thus it is fairly safe to consult

Byte 32	Screen height�Byte 33	Screen width

and it's hard to cope without this information, since games after Version 3 have to construct their own status lines. (It isn't clear that the various interpreters all understand the same thing by "height" and "width", though.)

No status line is automatically generated by the Z-machine: this is now the responsibility of the code. Accordingly, the first three global variables no longer have any special significance.

There is effectively no limit on the number of possible objects, since an object number is no longer expected to fit into a single byte. This has the knock-on effect that in most games many properties will have to allow for a word and not a byte (which is why Inform defaults property definitions as

long in version-5 mode), but the only architectural effect is that object definitions grow in size. Since the number of attributes is increased from 32 to 48, and of properties from 30 to 62, this would be needed anyway: and here is the new form:

<the 48 attribute flags>	<parent> <sibling> <child>	<properties>�---48 bits in 6 bytes---		---3 words, i.e. 6 bytes----		---2 bytes--

giving a 14-byte block. As before, the properties field is the byte address of the property table.

The property table is also altered. A property is now stored as

<size and number>	<the actual property data>�--1 or 2 bytes---	--between 1 and 64 bytes--

The property number now occupies the bottom 6 bits, not 5, of the first size byte, which is why more properties are available. But this only leaves two bits. If these are $$00, the size is taken as 1, and if $$01, then it is taken as 2. (These are the most common sizes in practice.) Otherwise the top bit is set, which means that the second byte is present, and contains the size in its bottom six bits.

However, when present the second byte must also have the top bits set to $$10. The reason for this is that the size must be parsable either forwards or backwards - the Z-machine needs to be able to reconstruct the length of a property given only the address of the first byte of its data.

There are very many (e.g. 2000) property entries in a story file, so this optimisation is probably worthwhile.

The formats of the parsing tables are generally different in later versions, but this isn't part of the Z-machine specification. Whereas Version 3 games have dictionaries store words in 6 Z-characters, all Version 4 and above games take 9 Z-characters. (I.e., four and six bytes of encoded text respectively.) This increases the length of entries. Otherwise, the specification is the same. The extra resolution makes it reasonable to include hyphenated words, which might not have been sensible earlier because of the number of five-bit blocks they would have needed. These modifications appear at first sight to make much larger, less efficient code, but this is misleading. The original version-3 'Curses' was only 3% larger when first compiled as version-5, and a good part of that was the extra dictionary resolution. There is one sensible structural change to the way actual code is written: in Version 5 (not Version 4, though) the header of a function no longer contains initialisation values for its local variables. In practice these were very often zero, wasting a large number of bytes across the whole story file. On the other hand, one peculiarity of the machine is that functions can be called with 0, 1, 2 or 3 arguments, and routines in version-3 games used to be able to put a default value in their headers for any argument not supplied by the caller. This they can no longer do, so that they are unable to tell how many arguments actually were supplied: and so a new branch instruction check_arg_count exists to test this. Another improvement is in subroutine calls. In Version 3 code, a call instruction is always VAR and has a variable argument list, which wastes a byte even when there are no parameters. Also, every function call returns a value, and in Version 3 this value had to be written somewhere even when it wasn't wanted - wasting another byte. (In fact Inform used to return this to the stack, and then pop it from the stack - wasting another one. Nowadays it stores unwanted return values in a scratch global variable.) In Version 4 (and to a greater extent in Version 5), new forms of the call instruction are provided which automatically throw away the return value.

This leads to the nightmarish position that there are eight variant forms of

call in the Version 5 machine. Inform christens six of these as follows:

call_vs <address> <0 to 3 arguments> <place to put answer>

(which is just as in version 3 call, and compatible with it),

call_vn <address> <0 to 3 arguments>

which is the same but throws away the answer, and

call_1n <address>	address ();�call_1s <address> <answer>	answer = address ();�call_2n <address> <a1>	address (a1);�call_2s <address> <a1> <answer>	answer = address (a1);

Two of the others are called call_vs2 and call_vn2 by Inform: these are provided for function calls with up to seven arguments, circumventing the usual restriction on function calls to have at most three: and, uniquely, they have two bytes of type bits, arranged as eight two-bit fields. (Inform does not compile these instructions, and does not make use of them when coding function calls, because it would be extremely unportable to lower versions.) Note that the standard opcode name for all eight opcodes is

call, and this is what appears in disassembly, but that Inform uses these eight names internally and for assembly.

Versions 4 and 5: Reliable extra features

We now discuss those important extra features which can more or less be relied upon to be safely interpreted. Roughly speaking, don't rely on interpreters other than Zip to correctly perform an opcode not actually used in any existing Infocom game.

But we must begin with unfortunate clashes with version 3. Chief among these is pop which used simply to throw away the top of the stack. In version 5 no such instruction exists (there is less need for it anyway given the new n form of the call opcodes).

Also, the read opcode (although it has the same basic form,

read text_buffer parse_buffer;

as before) does a subtly different job: it appends the result of parsing the text to the parse_buffer, rather than over-writing the parse buffer. It also no longer prints any kind of status bar. (To avoid confusion of the syntax, Inform calls the version-3 opcode sread and the version-5 opcode

aread; and its higher-level command read translates into sensible code for either.)

And since there is no longer any Z-machine "status bar", the old opcode to display it (show_status) disappears and in theory becomes illegal.

Cutting and pasting bits of parse buffer is a common job for Z-code parsers, and there are new opcodes to help with shuffling tables around. One can also (using tokenise) parse from any string, with any supplied dictionary table (not necessarily the default one). One may also encode_text to Z-machine text format - which might be useful for constructing dictionary entries at run-time.

A few opcodes have been moved around, irritatingly, and there have been three casualties. not has moved. save and restore now appear in the extended set, as a result of which they are no longer branch instructions (presumably to avoid coping with branch offsets being different for extended opcodes), and now take a less convenient syntax:

save <variable>;�restore <variable>;

These put return codes in the variable. They return 0 if they fail;

restore returns 1 if successful, save returns either 1 or 2. The ambiguity is because a successful restore results in execution continuing from immediately after the save instruction which produced the save game file... so in order that the program could know whether a restore had just taken place, or only a save of a game after which normal execution continued, the return value is altered.

Being in the extended set does give them extra functions but not very useful ones. It is possible to imagine saving a "preferred settings" file, for instance.

(Inform compiles a little code to make save and restore emulate the version 3 opcodes, for portability between versions. To get at the raw opcodes, they must be assembled in @ mode.)

Character graphics before Version 6

Now for the graphics routines. The simplest of these allows for different text styles: boldface, underlining and reverse video (e.g. white on black if text would normally be black on white). These effects are modelled on the VT100 (design of terminal) and cannot safely be combined, even though the codes for them look like bit masks:

set_text_style	0	Default: Inform calls this "Roman"�	1	Reverse video�	2	Boldface�	4	Underlined (or italic)

An interpreter providing coloured text may implement these with colour changes: my own represents bold as blue lettering instead of black on white, for instance, which is quite pleasant.

Some ports of ITF paint entirely-reversed next lines when scrolling the screen in Reverse video, but this is incorrect. Some interpreters do not implement "bold face". A stone tablet with keywords picked out in bold might be impossible to decipher to some players.

(There is another option, 8, which forces use of a fixed-spaced font, used in 'Beyond Zork'.)

An upper (usually status line) screen can be split off from the main screen with:

split_window <n>

creating one which is n lines tall. There are then two screens, 0 (the main screen) and 1 (the upper one). Text output can be switched between them by

set_window	0	to lower�	1	to upper

The lower window is just a text stream and its cursor position cannot be set: on the other hand, when it is returned to, the cursor will be where it was before it was left.

Within the upper window, anyway, the cursor can be moved by

set_cursor <line> <column>

where $(1,1)$ is the top left hand character. Printing on the upper window overlies printing on the lower, and is always done in a fixed-space font, and does not appear in a printed transcript of the game.

However, before printing to the "status line" screen, it is essential to change the printing format - this is the buffer_mode opcode alluded to earlier. Before printing, execute

buffer_mode 0

and when returning to the normal screen,

buffer_mode 1

Otherwise, if the cursor comes near the edge the interpreter may continue trying to split lines at word breaks; some ports of ITF make a horrid mess in this case, though Zip manages.

Also, the status line screen must be tall enough to include all the cursor positions you want to write to. If it is not quite tall enough, different interpreters flounder about in different ways: some will scroll the upper window, some won't.

A common thing to want to do is to erase areas of screen - especially a status bar which is being redisplayed. Opcodes

erase_window $ffff	erases whole screen, both windows�erase_line	erases from cursor to end of line [Achtung!]

are provided for this. If you are in reverse video mode, they erase to the reversed colour: a particularly unpleasant effect is achieved by

set_text_style 1; erase_window $ffff;

Unfortunately erase_window (which is intended to erase window n, or all windows if $n=-1$) is not fully implemented by ITF and cannot safely be used except in this drastic way. (E.g., the Version 4 file 'Trinity', for instance, only uses it thus.)

erase_line is only sometimes implemented and does slightly unpredictable things in reverse video mode, which is a nuisance since it would otherwise be ideal for blanking out an out-of-date status bar. However, no existing V4 or V5 game uses this opcode and so it may not be relied upon. (It's interesting to note that the Version-5 edition of 'Zork I' - one of the earliest Version 5 files - blanks out lines by looking up the screen width and printing that many spaces.)

There are new arithmetic opcodes:

art_shift x y z	z = x arithmetically shifted y bits�log_shift x y z	z = x logically shifted y bits

Version 5 games effectively have "undo" provided for them, though the logic is tricky to get right (from a programmer's point of view). The two relevant opcodes are save_undo and restore_undo, which work in exactly the same way as save and restore except that they save the game internally to spare memory. The idea is that if the game is saved before any action, then the last action can be undone by restoring this memory-saved game.

save_undo provides one more return code than save: it returns -1 if the interpreter is unable to manage internal saves (presumably this was provided for machines tight on memory). Now, of course, an interpreter which knows about save_undo enough to return this code probably knows enough to implement it fully.

Zip does provide this, but the ITF interpreter currently does not (and save_undo returns 0). This is probably the biggest feature it lacks. In any case, "undo" is such a worthwhile feature and so easy to code that games probably ought to provide it in hope.

Changing input/output streams and reading the keyboard in real time are, similarly, more reliable under Zip.

Architecture: version 6

The architecture of the Version 6 Z-machine is extremely similar to that of Version 5. Packed addresses are expanded again and this allows the memory map to stretch yet further. ('Shogun', for instance, is about 335K long.)

Pictures and sampled sounds are not stored in the Z-machine itself and it is simply expected that the interpreter has them to hand. They were thus stored in different formats for different machines.

A few opcodes are changed (mostly the character graphics ones) and many new ones are added: see the dictionary.

The graphical features are the most disheartening to interpreter writers, but most of them seem to be optional. For instance, the interpreter can declare itself unable to draw pictures, or to produce sound effects. It is not impossible to imagine that a fairly portable version-6 interpreter could be constructed, and Zip is currently going down this road.

The display is expected to be arranged in pixels. Coordinates are usually given in the form (y,x), with $(1,1)$ in the top left. There is a generalised colour scheme intended to look like the basic IBM PC colours (which is to say, not very pleasant). There are eight, instead of two, windows, and they have more elaborate possibilities; but essentially similar to the two windows in version 4 onward.

There may be a mouse, but if so it is not expected to do much beyond move an arrow around and have one or more buttons. Similarly, there may be a concept of "menus" - which seems primarily furnished for Apple Macintoshes.

8 - Complete table of opcodes

 This table might be called a variorum edition of the Z-machine specification: it contains all 120 or so possible opcodes for every version of the Z-machine, from 1 to 6 and (taken with the accompanying dictionary) documents them and their corresponding Inform assembly language syntax.

A few opcodes do not in fact occur in any existing files, but they can be deduced by disassembling Infocom-supplied interpreters. This table specifies also which opcodes occur in V1 to V5 files, at least.

Inform names (and can assemble) all the opcodes, even the version-6 ones. This may be useful for preparing test files. The names here are the set used by Inform 5.4 and later, extended from a system worked out by Mark Howell for his disassembler, which we have agreed on as a standard. We hope that this will provide interpreter writers and others with a common lexicon. It would be helpful if interpreter sources use these names internally.

Reading the opcode tables

The two columns "St" and "Br" (store and branch) mark whether an instruction stores a result in a variable, and whether it must provide a label to jump to, respectively.

The "Opcode" is written

TYPE:Decimal

where the TYPE is 2OP, 1OP, 0OP, VAR or EXT: two operands, one operand, no operands, variable number of said, and variable number of said but occurring in the "extended" set. The extended set of opcodes are two-byte opcodes where the first byte is (decimal) 190.

Briefly, single byte opcodes have types as follows:

0 to 31, 32 to 63, 64 to 95, 96 to 127:	forms of 2OP, the opcode number�	being the value mod 32�128 to 143, 144 to 159, 160 to 175:	forms of 1OP, the opcode number�	being the value mod 16�176 to 191:	0OP, the opcode number�	being the value mod 16�192 to 223:	2OP opcodes implemented in the�	VAR form, the opcode number�	being the value mod 32�224 to 255:	VAR, the opcode number�	being the value mod 32

The decimal number is the lowest possible decimal opcode value. The hex number is the opcode number within each TYPE.

The "V" column gives the version information. If nothing is specified, the opcode is as stated from version 1 onwards. Otherwise, it exists only from the version quoted onwards. Before this time, its use is illegal. Some opcodes change their meanings and these have more than one line of specification. Others become illegal again, and these are marked [illegal].

In a few cases, the version is given as "3/4" or some such. The first number is the version number whose specification the opcode belongs to, and the second is the earliest version in which the opcode is known actually to be used. A dash means that it is never used at all (in versions 1 through to 6): thus, for instance, piracy and art_shift never occur.

The table explicitly marks opcodes which remain unused in all six versions of the Z-machine as ------. In principle, the interpreter is at liberty to crash if it finds them, though in practice ignoring them is more polite.

However, the extended set, which could in principle run from $00 to $ff, stops at $1c: subsequent codes $1d to $ff were never used, even in version 6.

Inform assembly language

An Inform line beginning with an @ is sent direct to the assembler. The syntax is as laid out in the tables below. (Remember that opcodes can only be used if the game version number is right.)

<variable> and <result> must be variables (or sp, the stack pointer); <label> a label (not a routine name). In a branch instruction, the logical effect can be negated using a tilde ~ before the label name, so for instance

@je a b ~Different; ! Jump to Different if a not equal to b

The programmer must specify whether a branch is in the "near" or "far" form, the default being "near". A question mark ? before the label (and the tilde, if there is one) forces it to be far, it otherwise being "near" (which is cheaper and more likely).

<string> must be literal text in quotation marks "thus" and it is translated in the usual Inform way. When function is listed, a constant is expected to be a packed address of a function. Inform assembles these in the right way if you just name a function at the appropriate point. Generally speaking any Inform constant term (such as 'a' or 'beetle') can be used as an operand but a compound expression (which would obviously incur extra assembly) cannot.

Opcode names changed since Inform 5.2

In order to bring Inform into line with the agreed standard names for opcodes, the following changes have been made to opcode names:

From	To	

compare_pobj�same_parent	jin�colour	set_colour�retsp	ret_popped�show_score	show_status�scanw	scan_table�aparse	tokenise�encrypt	encode_text�check_no_args	check_arg_count

Note that same_parent is renamed jin by Inform v1405 and later. (A full confession as to why can be found in the dictionary.)

Two-operand (long) opcodes 2OP

St Br Opcode Hex V Inform name and syntax

 ------ 0 ------

 * 2OP:1 1 je a b <label>

 * 2OP:2 2 jl a b <label>

 * 2OP:3 3 jg a b <label>

 * 2OP:4 4 dec_chk <variable> value <label>

 * 2OP:5 5 inc_chk <variable> value <label>

 * 2OP:6 6 jin obj1 obj2 <label>

 * 2OP:7 7 test bitmap flags <label>

* 2OP:8 8 or a b <result>

* 2OP:9 9 and a b <result>

 * 2OP:10 A test_attr object attribute <label>

 2OP:11 B set_attr object attribute

 2OP:12 C clear_attr object attribute

 2OP:13 D store <variable> value

 2OP:14 E insert_obj object destination

* 2OP:15 F loadw table index <result>

* 2OP:16 10 loadb table index <result>

* 2OP:17 11 get_prop object property <result>

* 2OP:18 12 get_prop_addr object property <result>

* 2OP:19 13 get_next_prop object property <result>

* 2OP:20 14 add a b <result>

* 2OP:21 15 sub a b <result>

* 2OP:22 16 mul a b <result>

* 2OP:23 17 div a b <result>

* 2OP:24 18 mod a b <result>

* 2OP:25 19 4 call_2s function arg1 arg2 <result>

 2OP:26 1A 5 call_2n function arg1 arg2

 2OP:27 1B 5 set_colour foreground background

 2OP:28 1C 5/- throw value stack-frame

 ------ 1D ------

 ------ 1E ------

 ------ 1F ------

One-operand opcodes 1OP

St Br Opcode Hex V Inform name and syntax

 * 1OP:128 0 jz a <label>

* * 1OP:129 1 get_sibling object <result> <label>

* * 1OP:130 2 get_child object <result> <label>

* 1OP:131 3 get_parent object <result>

* 1OP:132 4 get_prop_len property-address <result>

 1OP:133 5 inc <variable>

 1OP:134 6 dec <variable>

 1OP:135 7 print_addr byte-address-of-string

* 1OP:136 8 4 call_1s function arg1 <result>

 1OP:137 9 remove_obj object

 1OP:138 A print_obj object

 1OP:139 B ret value

 1OP:140 C jump <label>

 1OP:141 D print_paddr word-address-of-string

* 1OP:142 E load value <result>

* 1OP:143 F 1/4 not value <result>

 5 call_1n function arg1

Zero-operand opcodes 0OP

St Br Opcode Hex V Inform name and syntax

 0OP:176 0 rtrue

 0OP:177 1 rfalse

 0OP:178 2 print <string>

 0OP:179 3 print_ret <string>

 0OP:180 4 1/- nop

 * 0OP:181 5 1 save <label>

 5 [illegal]

 * 0OP:182 6 1 restore <label>

 5 [illegal]

 0OP:183 7 restart

 0OP:184 8 ret_popped

 0OP:185 9 1 pop

* 5 catch <result>

 0OP:186 A quit

 0OP:187 B new_line

 0OP:188 C 3 show_status

 4 [illegal]

 * 0OP:189 D 3 verify <label>

 0OP:190 E 5 [first byte of extended opcode]

 * 0OP:191 F 5/- piracy <label>

Variable-operand opcodes VAR

St Br Opcode Hex V Inform name and syntax

* VAR:224 0 1 call function ...args... <result>

 icall address <result>

 4 call_vs function ...args... <result>

 VAR:225 1 storew table word value

 VAR:226 2 storeb table byte value

 VAR:227 3 put_prop object property value

* VAR:228 4 1 sread text-buffer parse-buffer

 5 aread text parse time function

 VAR:229 5 print_char ascii-value

 VAR:230 6 print_num value

* VAR:231 7 random range <result>

 VAR:232 8 push value

* VAR:233 9 1 pull <result>

 5/- pull stack <result>

 VAR:234 A 3 split_window lines

 VAR:235 B 3 set_window window

* VAR:236 C 4 call_vs2 [not properly assembled]

 VAR:237 D 4 erase_window window

 VAR:238 E 4/- erase_line value

 6 erase_line pixels

 VAR:239 F 4 set_cursor line row

 6 set_cursor line row window

 VAR:240 10 4/- get_cursor table

 VAR:241 11 4 set_text_style style

 VAR:242 12 4 buffer_mode flag

 VAR:243 13 3 output_stream number

 5 output_stream number table

 6 output_stream number table width

 VAR:244 14 3 input_stream number

 VAR:245 15 4 beep

 5/3 sound_effect number effect volume routine

* VAR:246 16 4 read_char 1 time function <result>

* * VAR:247 17 4 scan_table x table len form <result> <label>

* VAR:248 18 5/- not value <result>

 VAR:249 19 5 call_vn function ...args...

 VAR:250 1A 5 call_vn2 [not properly assembled]

 VAR:251 1B 5 tokenise text parse dictionary flag

 VAR:252 1C 5 encode_text ascii-text length from coded-text

 VAR:253 1D 5 copy_table from to size

 VAR:254 1E 5 print_table ascii-text width height skip

 * VAR:255 1F 5 check_arg_count argument-number

Extended opcodes EXT

St Br Opcode Hex V Inform name and syntax

* EXT:256 0 5 save table bytes name <result>

* EXT:257 1 5 restore table bytes name <result>

* EXT:258 2 5 log_shift number places <result>

* EXT:259 3 5/- art_shift number places <result>

* EXT:260 4 5 set_font font window <result>

 EXT:261 5 6 draw_picture picture-number y x

 * EXT:262 6 6 picture_data picture-number table <label>

 EXT:263 7 6 erase_picture picture-number y x

 EXT:264 8 6 set_margins left right window

* EXT:265 9 5 save_undo <result>

* EXT:266 A 5 restore_undo <result>

 ------- B ------

 ------- C ------

 ------- D ------

 ------- E ------

 ------- F ------

 EXT:272 10 6 move_window window y x

 EXT:273 11 6 window_size window y x

 EXT:274 12 6 window_style window flags operation

* EXT:275 13 6 get_wind_prop window property-number <result>

 EXT:276 14 6 scroll_window window pixels

 EXT:277 15 6 pop_stack items stack

 EXT:278 16 6 read_mouse table

 EXT:279 17 6 mouse_window window

 * EXT:280 18 6 push_stack value stack <label>

 EXT:281 19 6 put_wind_prop window property-number value

 EXT:282 1A 6 print_form formatted-table

 * EXT:283 1B 6 make_menu number table <label>

 EXT:284 1C 6 picture_table table

Notes:

The opcodes 5, 6, 7, 8 in the extended set were very likely in the V5 specification, and are named in some interpreter sources (though only very haphazardly implemented) but they do not occur in any existing V5 story file.

The notation "5/3" for sound_effect is because this plainly version-5 feature was used also in one solitary Version-3 game, 'The Lurking Horror' (the sound version of which was the last V3 release, in September 1987). A V3 interpreter may ignore this but may not crash.

The opcode 0 (in the 2-operand set, i.e. the actual byte 00) was possibly intended for setting break-points in debugging. It was not nop. (At time of writing, the Infix debugger uses the actual nop instruction as a break-point.)

read_mouse and make_menu are believed to have been used only in 'Journey' (based on a check of 11 V6 story files). picture_table is used once by 'Shogun' and several times by 'Zork Zero'.

9 - Dictionary of opcodes

The highest ideal of a translation... is achieved when the�reader flings it impatiently into the fire, and begins�patiently to learn the language for himself.

Philip Vellacott

This dictionary is alphabetical and includes entries on every opcode listed in the table above, as well as brief notes on some Inform internal synonyms which might otherwise be confused with opcodes. Although concise it essentially documents correct interpreter behaviour.

The following have been corrected since the first edition: aread, erase_line, get_cursor, get_wind_prop, input_stream, picture_data, random, set_cursor and split_window. picture_table, the last opcode to be discovered, has been added.

add

	Signed 16-bit addition.

and

	Bitwise and.

"aparse"

	Obselete name for tokenise.

aread

	Advanced form of read. This behaves just as the standard form does if the last two operands are not supplied, except that: (i) the status line is not redisplayed, and (ii) if the parse buffer supplied is zero, no attempt is made to parse the input.

	The parse buffer is appended to, not over-written as in version 3.

	If all four operands are supplied, then every time seconds while the player is working on her input, the function is called: if it returns 1 (true) then the reading process is interrupted. (The function obviously needs to run pretty quickly.)

	The function is called with one argument: the time value.

art_shift

	Does an arithmetic shift of number by the given number of places, shifting left (i.e. increasing) if places is positive, right if negative. In a right shift, the sign bit is preserved as well as being shifted on down. (The alternative behaviour is log_shift.)

beep

	Beeps in a more or less irksome fashion and possibly flashes the display

buffer_mode

	If set to 1, text output is buffered up so that it can be word-wrapped properly. If set to 0, it isn't.

call

	The only call instruction in version-3, Inform reads this as call_vs in higher versions: it calls the function with 0, 1, 2 or 3 arguments as supplied and stores the resulting return value.

call_1n

	Executes function(arg) and throws away result.

call_1s

	Stores function(arg).

call_2n

	Executes function(arg1, arg2) and throws away result.

call_2s

	Stores function(arg1, arg2).

call_vn

	Like call, but throws away result.

call_vs

	See call.

call_vn2

	Call with a variable number (from 0 to 7) of arguments, then throw away the result. This (and call_vs2) uniquely have an extra byte of opcode types to specify the types of arguments 4 to 7.

call_vs2

	See call_vn2.

catch

	Opposite to throw, and occupying the same opcode that pop used to in versions 3 and 4, but now with a store argument. catch gives the stack frame of the current routine: see throw for what to do with it subsequently.

check_arg_count

	Branches if the given argument-number (1 being the first of these) has been provided by the function call to the current routine. (Default values would otherwise be difficult to provide in versions 5 and 6.)

"check_no_args"

	Obselete name for check_arg_count.

clear_attr

	Make object not have attribute.

clear_flag

	A name once used for one of the not-really-present extended v5 opcodes.

"colour"

	Obselete name for set_colour.

"compare_pobj"

	Obselete name for jin.

copy_table

	Copies size bytes from the first table to the second. If the second table is given as 0, then it zeroes the bytes in the first table. If the length is positive, it copies backwards:

copy_table $1000 $1001 20

	would push the first 20 bytes forward by one. However, if the length is negative, it copies forwards. Thus the same operation with -20 would result in the byte at $1000 being copied into the 20 following bytes.

dec

	Decrement variable

dec_chk

	Decrement variable, and jump if now equal to value

div

	Unsigned 16-bit division

draw_picture

	Displays the picture with the given number from the library of pictures which the interpreter is expected to have (which is not resident in the Z-machine itself). The Z-machine knows nothing of what picture format is being used. By default, this appears at the current cursor position in the current window. Y and X pixel coordinates from the top left can be given instead, though (the top left having coordinates $(1,1)$).

	Pictures are numbered from 1 and need not be numbered contiguously.

encode_text

	Translates an ASCII word to the internal (z-encoded) text format, suitable for dictionary use. The text begins at from in the ascii-text and is length characters long, which should contain the right length value even though in fact the interpreter translates the word as far as a 0 terminator. A 6-byte z-encoded string results: this is the dictionary resolution in versions 4, 5 and 6 and usually represents 9 characters of ASCII.

"encrypt"

	Obselete name for encode_text.

erase_line

	Before version 6: erase the current cursor line in the current window. (Badly interpreted by ITF.) In version 6: if the value is 1, do just that: if not, erase the given number of pixels minus one across from the cursor (clipped to the window size). In both cases, don't move the cursor.

erase_picture

	Like draw_picture, but wipes the appropriate region to the background colour for the given window.

erase_window

	Erases window with given number (to the background colour in version-6), or if -1 it unsplits the screen and clears the lot. The cursor moves back to top left. (In version 6, -2 means clear the whole screen but don't unsplit it.)

extended

	This byte (decimal 190) is not really an instruction, but indicates that the opcode is "extended": the next byte contains the number in the extended set.

get_next_prop

	Gives the number of the next property provided by the quoted object. This may be zero, indicating the end of the property list; if called with zero, it gives the first property number present. (If called with the number of a property not present, the Z-machine may legitimately crash.)

get_prop

	Read property from object (resulting in the default value if it had no such declared property).

get_prop_addr

	Get address of property data for given object's property.

get_prop_len

	Get length of property data.

get_child

	Get first object contained in given object, branching if there are none (i.e., if this is nothing, or 0).

get_cursor

	Puts the current cursor row into the first word of the given table, and the current cursor column into the second word.

get_parent

	Get parent object (note that this has no "branch if nothing" clause).

get_sibling

	Get next object in tree, branching if this is nothing (i.e. 0).

get_wind_prop

	The eight windows (in version 6) have 16 properties, numbered 0 to 15, which can be read using this call and (mostly) written using put_wind_prop. The 16 properties are:

0 y coordinate	6 left margin size 	12 font number

1 x coordinate 	7 right margin size 	13 font size

2 y size 	8 newline interrupt function	14 attributes

3 x size 	9 interrupt countdown 	15 line count

4 y cursor 	10 highlight mode

5 x cursor 	11 colour data

	These properties are all explained elsewhere except for 8 and 9, about "newline interrupts". If the countdown is set non-zero, it begins to count downwards, once per new-line. When it then hits zero, the interrupt function is called. This is provided so that text can be shaped past crinkly margins (e.g., to roll nicely around a picture) because the interrupt function can fix the margins at the crucial moment. The interrupt function should not attempt to print anything to the same window!

	Window coordinates are relative to the screen; cursor coordinates are relative to the window.

	Font size contains two bytes: height then width, in pixels. Colour data similarly gives foreground, then background colour.

icall

	This is an Inform internal name for "call to a function whose address is supplied, not its name". It allows calculated calls; but takes no arguments. It stores the result as call does.

inc

	Increment variable.

inc_chk

	Increment variable, and branch if now equal to value.

input_stream

	Switches the input stream (the source of the player's commands). 0 is the keyboard, and 1 a command file (the idea is that a list of commands produced by output_stream 4 can be fed back in again: Zip provides this useful feature).

insert_obj

	Moves object to destination (it need not be removed from the tree first).

je

	Jump if a = b.

jg

	Jump if a > b (note: not a>=b). Comparison is of signed a, b.

"jge"

	Inform used to call jg this, which was rather confusing, and now it is withdrawn.

jin

	Jump if object a is in b (this has previously been called compare_pobj and, confusingly, same_parent).

jl

	Jump if a < b (note: not a<=b). Comparison is of signed a, b.

"jle"

	Inform used to call jl this, which was rather confusing, and now it is withdrawn.

jump

	Jump (unconditionally) to the given label. It is safe to jump into a different routine but care is advisable. (The operand to jump is always a 2-byte signed offset: not an absolute routine address.)

jz

	Jump if a = 0.

load

	Results in the value of the given variable: so load v1 v2 actually does "v2 = v1". This is better done with store or push as appropriate and Inform never uses it in compiled code.

loadb

	Stores table->index.

loadw

	Stores table-->index.

log_shift

	Does a logical shift of number by the given number of places, shifting left (i.e. increasing) if places is positive, right if negative. In a right shift, the sign is zeroed instead of being shifted on. (The alternative behaviour is art_shift.)

lstore

	Inform names this to force store to take the "long" form; it is only used internally.

make_menu

	Provided for the benefit of the Apple Macintosh, and who are we to object. Interpreters which don't provide menus are supposed to set a bit to say so in the header, but anyway this instruction can simply do nothing and not branch if there are no menus (or if there are too many already).

	The menu number to be added has to be more than 2 (since 0 is the Apple menu, 1 the File menu, 2 the Edit menu). If the table supplied is 0, the menu is removed. Otherwise it is a table of tables. Each table is an ASCII string: the first item being a menu name, subsequent ones the entries.

mod

	Remainder after unsigned 16-bit division.

mouse_window

	Constrain the mouse arrow to sit inside the given window. By default it sits in window 1. Setting to -1 takes all restriction away. (The mouse clicks are not reported if the arrow is outside the window and interpreters are presumably supposed to hold the arrow there by hardware means if possible.)

move_window

	Moves the given window to pixels (y,x): $(1,1)$ being the top left. Nothing actually happens (since windows are entirely notional transparencies): but any future plotting happens in the new place.

mul

	Signed 16-bit multiplication.

new_line

	Print carriage return.

nop

	Probably the official "no operation" instruction. Ironically, since there is hardly ever any point in using it (self-modifying code is illegal in the Z-machine since the code is outside the save area) interpreters sometimes do not bother to implement it... and crash. (In any event, no V1 to V5 datafile actually uses this opcode.)

not

	Bitwise not (i.e., all 16 bits reversed). Note: in versions 3 and 4 this was a one-operand instruction (as would be expected) but in versions 5 and 6 it was pushed into the extended set to make room for call_1n. (Inform knows which to compile to.)

	(Note also that although this opcode seems to belong to V3, it is not in fact used until V4.)

or

	Bitwise or.

output_stream

	Text can be output to a variety of different "streams", possibly simultaneously. 0 does nothing. +n switches stream n on, -n switches it off. The output streams are: 1 (the screen), 2 (the game transcript), 3 (memory) and 4 (script of player's commands). Thus, one can turn the screen off and print only to the transcript, for instance. Zip does now provide 4, which is extremely useful in debugging games. Other interpreters do not.

	Case 3 is more complicated. Here the syntax is:

output_stream 3 table

	and the text is printed into the table+2, the first word always holding the number of characters printed. Printing is never buffered in this stream, whatever the state of buffer_mode.

	In Version 6, the total number of pixels width is kept in a field in the game's header. Also, the width field may optionally be given, and the text will then be justified as if it were in the window with that number (if width is positive) or a box -width pixels wide (if negative). Then the table will contain not ordinary text but formatted text: see print_form.

	In version 3 (which does not have this opcode) transcripting is caused purely by setting the header bit. In higher versions games do this as well anyway, despite using the opcode.

picture_data

	Asks the interpreter for data on the picture with the given number. This is a branch instruction: if the picture number is not valid, no branch is made. Otherwise information is written to the table and a branch occurs.

	If the number is zero, the first word of the table is simply written as the highest legal picture number, and the second word is the highest legal picture number.

	Otherwise, the first word of the table contains the height and the second the width.

picture_table

	(Warning: this is only a conjecture.) Given a table of picture numbers, load in these pictures from disc into a cache for convenient rapid plotting later. (For instance, the peggleboard sprites in 'Zork Zero'.)

piracy

	Branches if the game disc is believed to be genuine by the interpreter (which is assumed to have some evil way of finding out). Earlier specifications suggested this to be an unconditional branch instruction. interpreter writers are urged to code it as such, and Z-code programmers not to use it at all.

pop

	This exists only in versions 3 and 4, and simply throws away the top of the stack. (The need for it was largely circumvented by the call-and-throw-away-result instructions.) The same opcode was then used for catch which tends to crash the machine if used naively.

pop_stack

	In Version 6, an honest pop instruction was finally re-invented. This throws the given number of items off the system stack, unless a stack is given as a second argument, in which case it pops off that one instead.

print

	Print the quoted (literal) string.

print_addr

	Print (Z-encoded) string at given byte address.

print_char

	Print ASCII character.

print_form

	Prints a formatted table of the kind produced when the output stream is 3. This is an elaborated version of print_table to cope with fonts, pixels and other impedimenta. It is a sequence of lines, terminated with a zero word. Each line is a word containing the number of characters, followed by that many bytes which hold the characters concerned.

print_num

	Print (signed) number in decimal.

print_obj

	Print short name of object (the Z-encoded string in the object header, not a property).

print_paddr

	Print the (Z-encoded) string at the given packed address.

print_ret

	Print the quoted (literal) string, and print a new-line, and then return true (i.e., 1).

print_table

	Prints a rectangle of text on screen spreading right and down from the current cursor position, of given width and height, from the table of ASCII text given. (Height is optional and defaults to 1.) If a skip value is given, then that many characters of text are skipped over in between each line and the next. So one could make this display, for instance, a 2 by 3 region of a giant 40 by 40 character graphics map.

pull

	Pulls value off the stack (crashing if it underflows). In versions 5 and 6, the stack in question may be specified as a user one. A user stack is just a table of words in the save area somewhere, whose first word always holds the number of spare slots on the stack (so the initial value is the capacity of the stack). User stacks are not well interpreted.

push

	Pushes value onto the system stack.

push_stack

	Pushes the value onto the user-specified stack, and branches if successful. If the stack was full already, nothing happens and no branch is made.

put_prop

	Write value to the given property of the given object (this crashes the machine if the object has no such property). The interpreter stores a word or a byte as appropriate.

put_wind_prop

	Writes a window property (see get_wind_prop). This should only be used when there is no direct command (such as move_window) to use instead, as some such operations may have side-effects.

quit

	Exit the game. (Any "Are you sure?" question must be asked by the game, not the interpreter.) It is not legal to return from the main routine (that is, from where execution first begins): this must be used.

random

	Returns a random number between 1 and range (supposing range to be positive). If range is negative, it is used as a seed for the random number generator (different interpreters do this in different ways), to make the generator predictable. Random then returns 0. (Some version 3 games, such as 'Enchanter' release 29, had a debugging verb #random such that typing, say, #random 14 caused a call of random with -14.) This feature is unfortunately badly implemented in existing interpreters. If range is zero, some interpreters crash (though they absolutely should not). Correct behaviour is to reset the generator to some suitable seed value (say, taken from a real-time clock). Again, random should then return 0.

read

	The two forms of read are called aread and sread by Inform, for the sake of clarity (Advanced and Standard read). read is actually a high-level Inform command which compiles suitably portable code for either version.

read_char

	Reads a single character. The stream (the first operand) is always 1, meaning the keyboard for some reason. Time and function are optional and dealt with as in aread. Function keys return special values from 129 onwards:

	up down left right f1 ... f12 keypad 0...9 menu click double mouse click single mouse click

	The last three values (155-7) only apply in version 6. However, in version 5, "Beyond Zork'' supports the mouse but recognises only 254 (note: not -2, as the upper byte is 0) for "mouse click''. Meanwhile, perhaps the most exotic v5 story file in existence, the beta test version of the German translation of "Zork I'', uses the codes 155 onwards for:

	ae oe ue Ae Oe Ue sz (open quote) (close quote)

read_mouse

	The four words in the table are written with the mouse y coordinate, x coordinate, button bits (low bits on the right of the mouse, rising as one looks left), and a menu word. In the menu word, the upper byte is the menu number (from 1) and the lower byte is the item number (from 0).

remove_obj

	Remove the object from the tree; it may later be moved back in. When removed it has parent 0 but behaves in all other respects like a normal object.

restore

	See save. In version 3, the branch is never actually made, since either the game has successfully picked up again from where it was saved, or it failed to load the save game file. From version 5 it can have optional parameters as save does, and returns the number of bytes loaded if so. If the restore fails, 0 is returned, but once again this necessarily happens since otherwise control is already elsewhere.

restore_undo

	Like restore, but restores from the internal RAM saved game made by save_undo. (The optional parameters of restore may not be supplied.)

restart

	Restarts the game. (Any "Are you sure?" question must be asked by the game, not the interpreter.)

ret

	Returns the value given.

ret_popped

	Pops top of stack and returns that. This is equivalent to ret sp, but is one byte cheaper.

"retsp"

	Obselete name for ret_popped.

rfalse

	Return false (i.e., 0).

rtrue

	Return true (i.e., 1).

"same_parent"

	The previous edition of this specification said "compare parent objects of the two given: branch if equal" but this is altogether wrong. In fact, it branches if the first object is inside the second (the condition called in by Inform). This opcode is now, less embarrassingly, called jin.

save

	On versions 3 and 4, this attempts to save the game (all questions about filenames are asked by interpreters) and branches if successful. From version 5 it moves to the extended set, as a result of which it is no longer a branch instruction, and works in a different way (see the explanation above). This returns 0 for failure, 1 for "save succeeded" and 2 for "the game is being restored and is resuming execution again from here, the point where it was saved".

	The extension also has (optional) parameters, which save a region of the save area, whose address and length are in bytes, and provides a suggested filename: name is a pointer to an array of ASCII characters giving this name (as usual preceded by a byte giving the number of characters).

save_undo

	Like save, except that the optional parameters may not be specified: it saves the game into a cache of RAM held by the interpreter. (This is typically done once per turn, in order to implement "UNDO", so it needs to be quick.) It may also return -1, meaning that the interpreter is unable to offer this feature. (Alas, most interpreters do not understand this opcode well enough to be able to confess to being unable to act on it.)

scan_table

	Is x one of the words in table, which is len words long? If so, return the address where it first occurs and branch. If not, return 0 and don't.

	The form is optional (and only used in version 5?): bit 8 is set for words, clear for bytes: the rest contains the length of each field in the table. (The first word or byte in each field being the one looked at.) Thus $82 is the default.

"scanw"

	Obselete name for scan_table.

scroll_window

	Scrolls the given window by the given number of pixels (a negative value scrolls backwards, i.e., down) writing in blank (background colour) pixels in the new lines. This can be done to any window and is not related to the "scrolling" attribute of a window (which controls text scrolling, a different matter).

set_attr

	Give object the attribute.

set_colour

	If coloured text is available, set text to be foreground-against-background, where colour numbers are borrowed from the IBM PC: 2 - black, 3 - red, 4 - green, 5 - yellow, 6 - blue, 7 - magenta, 8 - cyan, 9 - white: in addition, 0 means keep the current colour setting, 1 means use the default and -1 means the colour of the pixel under the mouse arrow

	One of the V5 games, 'Beyond Zork', uses this (Paul David Doherty reports it as used "76 times in 870915 and 870917, 58 times in 871221'') and from the structure of the table it clearly logically belongs in version 5.

	Text styles such as bold and underline may also be realised with colour changes, if this is used.

set_cursor

	Move cursor in the current window to (x,y) character position (relative to $(1,1)$ in the top left). (In version 6 the window is supplied and need not be the current one.) Each window remembers its own cursor position. Using this call may result in any buffered text being printed out first (if word-wrapping is going on, for instance).

	In V6, set_cursor -1 turns the cursor off, and either set_cursor -2 or set_cursor -2 0 turn it back on. It is not known what, if anything, this second argument means: in all known cases it is 0.

set_flag

	See clear_flag.

set_font

	The (text) font in the given window is changed. All windows (and this includes both windows in Version 5, contrary to common interpreter practice) seem to be expected to start with a non-fixed-space font. Anyway font 0 means "keep current one" (this seems less than altogether useful), font 1 means "default", font 3 refers to character graphics fonts (in versions 5 and 6) and font 4 means a fixed space font.

	No such opcode exists in versions 3 and 4: turning on and off the fixed space font is done by altering a bit in the header as usual. This remains the best way for interpreters to work even in higher versions.

set_margins

	Sets the margin widths (in pixels) on the left and right for the given window which are by default 0. These are only used by windows which have word-wrapping (i.e., buffer_mode 1) and do nothing for others.

set_text_style

	Sets printing style: 0 means normal, 1 means inverse video, 2 means bold, 4 means underline. (In version 6, 8 means change to a fixed-width characters font.) In principle the interpreter should clear flags in the header according to which of these it is unable to provide (in practice, few bother, and it doesn't much matter).

set_window

	Moves text output to one of the windows. 0 is the default (lower) window and 1 means the upper one. This only just counts as a version-3 instruction: it was used by 'Seastalker' on some machines. In version 6 this is much more fulsome. There are 8 windows, 0 to 7, which can do almost anything. In addition, the window number -3 means "the current window", in this and all the other calls.

"show_score"

	Obselete name for show_status.

show_status

	(In version 3 only) Display and update the status line now (don't wait until the next keyboard input). Ideally this should not crash in version 5, since the v5 release of 'Wishbringer' (V23) contains this opcode by accident.

sound_effect

	'The Lurking Horror' used this opcode, but no other version-3 game did: the v5 game 'Sherlock' also used its full form. See beep, the Inform name for the simpler form of this opcode in versions 4 and 5.

	This produces the given sound (1 meaning a high-pitched beep, 2 meaning a low one and other values corresponding to noises held by the interpreter). The low byte of volume holds the volume in the form 1 to 8. The high byte (always zero in v3) holds the number of repeats. (Possibly -1 might also be a default value meaning "loudest possible''; -1 repeats means "forever''.). The effect can be: 1 (prepare), 2 (start), 3 (stop), 4 (finish with). (Preparation means in effect loading the sample file off disc.)

	In v5, the routine is called (with no parameters) after the sound has been finished (it has been playing in the background while the Z-machine has been working on other things). This is used by 'Sherlock' to implement fading in and out, which explains why mysterious numbers like $34FB were previously thought to be to do with fading. (This discovery due to Stefan Jokisch.) The routine is not called if the sound is stopped by another sound or by an effect 3 call.

split_window

	Divides the screen into two windows, an upper one (of the stated number of lines) which is in effect a big status bar, and a lower one (all the rest). This only just counts as a version-3 instruction: it was used by 'Seastalker' on some machines. In V6, this seems to be used just to bound the cursor movement. 'Journey' creates a status region which is the whole screen and then overlays it with two other windows.

sread

	Standard (version 3) form of read. No prompt is displayed, and input is taken from the keyboard until a carriage return is typed. Beforehand, byte 0 of the text-buffer should be its length. After, byte 1 holds the number of of characters typed; the raw text itself, stored without any terminator, is held in bytes 2 onwards. Similarly, byte 0 of the parse-buffer should hold its length. After, byte 1 holds the number of words typed (note that the separating characters, usually commas and full stops (but this is stored in the dictionary header) become separate words in their own right); and byte 2 onward contains 4-byte blocks, one for each word. These blocks have the form of a byte address of the dictionary entry if the word is known, 0 otherwise; followed by a byte giving the number of letters in the word; and finally a byte giving a pointer in the text-buffer to the first letter of the word.

	Note that (in v3) this automatically redisplays the status line before the keyboard is listened to.

store

	Set variable to value.

storeb

	table->byte = value.

storew

	table-->word = value.

sub

	Signed 16-bit subtraction.

test

	Jump if any of the flags in bitmap are set (i.e. if bitmap & flags ~= 0).

test_array

	See clear_flag (ITF makes this come out unconditionally false, though).

test_attr

	Jump if object has attribute.

throw

	Opposite of catch. This causes the game to behave as if the current routine was that whose stack-frame is given (which was found using catch at the right moment). Thus the next return to happen will return as if from the "caught" routine. This is useful for getting out of large recursive tangles in a hurry, if an error has occurred. (This opcode plainly belongs to the V5 specification, but is not actually used in any V5 game.)

tokenise

	The parser (strictly speaking, the lexical analyser) from aread. The given text is parsed into the given parse table. Unlike in version 3, aread appends to the parse table, not over-writes it.

	If a non-zero dictionary is supplied, it is used (if not, the ordinary game dictionary is). If the flag is set, unrecognised words are not listed as zero in the parse table: this is presumably so that if several tokenises are done in a row, each fills in more slots without wiping those filled by the others.

	Parsing a user dictionary is slightly different. A user dictionary should look just like the main one, except that it should have no "separator" characters listed (the ones listed in the main one are valid instead), and that it need not be alphabetically sorted. If the number of entries is given as $-n$, then the interpreter reads this as "n entries unsorted". This is very convenient if the table is being altered in play: if, for instance, the player is naming things.

verify

	Some version-3 interpreters are said not to implement this. It counts a (two byte, unsigned) checksum of the file from $0040 onwards and compares this against the value in the game header, branching if correct.

vje

	Internal Inform name for the variable-length form of je (for compiling conditions such as a==1 or 2 or 4).

window_size

	Change size of window in pixels. (Does not change the current display.)

window_style

	Changes the four attributes for a given window. The bits in question are: 1 - word wrapping (if this is off text is clipped to the window size instead), 2 - scrolling, 3 - text to be sent to the printer (if transcripting is switched on), 4 - text is buffered.

	The operation, by default, is 0. 0 means "set to these settings". 1 means "set the bits supplied". 2 means "clear the ones supplied", and 3 means "reverse the bits supplied" (i.e. exclusive or).

10 - Header format through the ages

 The initial block of 64 bytes in the Z-machine, the "header", is of particular fascination to Infocom hackers and many tables have been drawn up of its contents. The one below, I believe, summarises everything known. (I am particularly indebted to Paul David Doherty.) Once again "V" refers to the earliest version in which the feature appeared; "Dyn" is marked if the entry is dynamic, i.e. changes as the game plays; "Int" if it is written by the interpreter (otherwise it is set in or by the game file). Bits in a byte are numbered from 0 ($01) up to 7 ($80).

Hex	V	Dyn	Int	Contents

0	1			Version number (1 to 6)

1	3			Flags 1:

	3		*	Bit 0	(unused: possibly a flag to indicate byte sex, i.e. LSB-MSB or MSB-LSB in 2-byte words at a time when two different forms of game file was considered: no such forms ever emerged)

				1	Status line type: clear for score/moves, set for time in hours/minutes

			*	2	(unused: set in V3?)

			*	3	The legendary "Tandy" bit (see below)

			*	4	The interpreter sets this if it cannot produce a status line

			*	5	Interpreter sets if it can split the screen (only 'Seastalker' uses this in V3)

			*	6	Interpreter sets if it uses non-fixed-space fonts

				7	(unused)

	4		*	Flags 1: Interpreter sets bits to say what it can do:

	4		*	Bit 0	(always set)

	5		*		Colours available?

	4		*	1	(always set)

	6		*		Picture displaying available?

	4		*	2	Boldface available?

	4		*	3	Underlining available?

	4		*	4	Fixed-space font available?

	6		*	5	Sound effects available?

				6,7	(unused)

2	1			Release number

4	1			Start of code area (bytes)

6	1			Byte address of initial value of program counter

8	1			Dictionary address (bytes)

A	1			Object table address (bytes)

C	1			Global variables table address (bytes)

E	1			Size of save area (bytes)

Hex	V	Dyn	Int	Contents

10	1	*		Flags 2:

	1	*		Bit 0	Printer transcripting happens when the game sets this bit

	3	*		1	The interpreter is forced to use a fixed-space font when the game sets this bit (does not apply in version 6?)

	6	*	*	2	If the interpreter thinks the status line needs redrawing (because, e.g., the player has dragged a menu across it) it sets this bit. The game should notice, redraw the status line and clear the bit itself.

	5			3	If set, game wants to use pictures

	3			4	Set in the Amiga version of The Lurking Horror so presumably to do with sound effects

	5				If set, game wants to use the UNDO opcodes

	5			5	If set, game wants to use a mouse

	5			6	If set, game wants to use colours

	5			7	If set, game wants to use sound effects

	6			8	If set, game wants to use menus (In each case except bit 6, if the interpreter cannot manage the given feature, it should clear the relevant bit again.)

				9	(unused)

		*	*	10	Possibly set by interpreter to indicate an error with the printer during transcription

				11-15	(unused)

12	2			Serial number (six characters of ASCII, conventionally the compilation date in the form YYMMDD)

18	2			Synonyms table address (bytes)

1A	3+			Length of file (in words (V3) or longwords (V4,5,6))

1C	3+			Checksum of file (sum of bytes from $0040 to length by unsigned 16-bit addition)

1E	4		*	Interpreter number, identifying the machine as one of:

				1	DECSystem-20	6	IBM PC

				2	Apple Iie	7	Commodore 128

				3	Macintosh	8	Commodore 64

				4	Amiga	9	Apple IIc

				5	Atari ST	10	Apple IIgs

				11	Tandy Color

				The latest versions of the portable interpreters I have seen are:

				InfoTaskForce 2 Version A

				Zip 6 Version B

1F	4		*	Interpreter version (a single ASCII character, conventionally running through capital letters from A)

Hex	V	Dyn	Int	Contents

20	4		*	Screen height (lines): 255 means "infinite", i.e. never worry about screen overflow and never produce [MORE]

21	4		*	Screen width (characters)

22	5	*	*	Leftmost screen coordinate

23	5	*	*	Rightmost screen coordinate

24	5	*	*	Highest screen coordinate

25	5	*	*	Lowest screen coordinate

26	5	*	*	Width in these coordinate terms of a character in the current font

27	5	*	*	Similarly, font height 	(Note: it is perfectly permissible for 22 to 25 to be character grid positions, and the width and height both to be 1: or they could all be in pixels.)

22	6		*	Screen width in pixels

24	6		*	Screen height in pixels

26	6	*	*	Font height in pixels

27	6	*	*	Font width in pixels (defined as width of a '0')

				(Note: 22-27 are similar in V6 to V5, with the coordinates now being pixels, but the highest and leftmost slots are dropped (both values being 1) to give room for 2-byte values, i.e. for resolutions of more than 255 pixels.)

28	6			Functions extra offset (longwords): this may be 0. It is added to all function addresses and effectively allows the program to exceed the 256K maximum address space by the size of the save area

2A	6			Static strings extra offset (longwords): similar (needed since static strings come last, after the functions)

2C	6		*	Default background colour

2D	6		*	Default foreground colour

2E	6			Address of terminating characters table (bytes)

30	6	*	*	Slot used when the output_stream is to memory, to record total width of text in pixels

32	---			(these 2 bytes unused in any version)

34	5			Character set table address (bytes), or 0 if the default character set is to be used

36	6			Mouse data table address (bytes)

38	6		*	8 bytes of ASCII: the player's user-name on Infocom's own mainframe, used for debugging purposes and possibly allowing users access to special features.

Some early version-3 files do not contain length and checksum data, hence the mysterious 3+.

Flag usage

Some of the versions at which the Flags 1 and 2 bits were introduced have been lowered in this revision of the specification. Stefan Jokisch points out that 'Sherlock' uses the "game supports sound'' bit, that scripting was present in version 1 and that 'Beyond Zork' uses the "game supports mouse'', "...colours'' and "...pictures'' bits. (For instance, try typing "COLOR'' at the 'Beyond Zork' command line and a technical nymph will appear on your keyboard if your interpreter won't allow colours.) 'Beyond Zork' interprets the "pictures'' bit as permission to use its graphic font rather than ASCII characters.

The "Tandy" bit

Some early Infocom games were sold by the Tandy Corporation, who seem to have been sensitive souls. 'Zork I' pretends not to have sequels if it finds this bit set. And to quote Paul David Doherty:

In 'The Witness', the Tandy Flag can be set while playing the game, by typing $DB and then $TA. If it is set, some of the prose will be less offensive. For example, "private dicks" become "private eyes", "bastards" are only "idiots", and all references to "slanteyes" and "necrophilia" are removed.

We live in an age of censorship.

The character set table

Is 78 bytes long, arranged as 3 blocks of 26 ASCII values for what characters to print when translating text. (The first two characters of block 3 are ignored anyway as they correspond to newline and the literal escape code.) This feature is implemented by Zip but not ITF, which means that the German translation of 'Zork I' (which uses the character set for non-English letters like 'sz') is illegible on it.

The terminating characters table

Is a zero-terminated list of character codes which cause read to finish (other than new-line). An entry of 255 means that any function key terminates input.

The mouse data table

Seems to have been intended to grow at some future time, because the first word is the length of it. But the only data is the second and third words: the mouse x and y coordinates respectively. The interpreter writes these and they alter.

11 - A few statistics

 To give some idea of the sizes found in typical story files, here are a few statistics, mostly gathered by Paul David Doherty, whose "fact sheet" file contains many more.

(i) Length

The shortest files are those dating from the time of the 'Zork' trilogy, at about 85K; middle-period version 3 games are typically 105K, and only the latest use the full memory map. In versions 4 and 5, only 'Trinity', 'A Mind Forever Voyaging' and 'Beyond Zork' use the full 256K. 'Border Zone' and 'Sherlock', for instance, are about 180K. (The author's short story 'Balances' is about 50K, an edition of 'Adventure' takes 80K, and 'Curses' about 240K. Under Inform, the library occupies about 34K regardless of the size of game.)

(ii) Code size

'Zork I' uses only about 5500 opcodes, but the number rises steeply with later games; 'Hollywood Hijinx' has 10355 and, e.g. 'Moonmist' has 15900 (both these being version 3). Against this, 'A Mind Forever Voyaging' has only 18700, and only 'Trinity' and 'Beyond Zork' reach 32000 or so. (Inform games are more efficiently compiled and make better use of common code - the library - so perform much better here: the version 3, release 10 of 'Curses' (128K long, and a larger game than any Infocom v3 game) has only 6720 opcodes.)

(iii) Objects and rooms

Obviously, this varies greatly with the style of game. 'Zork I' has 110 rooms and 60 takeable objects, but several quite complex games have as few as 30 rooms (the mysteries, or 'Hitch-hikers'). The average for version-3 games is 69 rooms, 39 takeable objects. 'A Mind Forever Voyaging' contains many rooms (178) but few objects (30). 'Trinity', a more typical style of game, contains 134 rooms and 49 objects: the version-5 'Curses' has a few more of each. Of the version-6 games, only 'Zork Zero' scores highly here, with 215 rooms and 106 objects. The average for version 4/5 games is 105 rooms and 54 objects.

(iv) Dictionary

Early games such as 'Zork I' know about 600 words, but again this rises steeply to about 1000 even in v3. Later games know 1569 ('Beyond Zork') to the record, 2120 ('Trinity'). (This is achieved by heroic inclusion of unlikely synonyms: e.g. the Japanese lady with the umbrella can be called WOMAN, LADY, CRONE, MADAM, MADAME, MATRON, DAME or FACE with any of the adjectives OLD, AGED, ANCIENT, JAP, JAPANESE, ORIENTAL or YELLOW.) V6 games have smaller dictionaries.

� FVREF "Überschrift 2" �2 - In The Beginning�		� AKTUALDAT \l �02.03.1995�

�SEITE �

� FVREF "Überschrift 1" �The Craft of Adventure�		Page � SEITE �2� of � ABSCHNITTSEITEN �24�

� FVREF "Überschrift 2" �10 - Header format through the ages�		� AKTUALDAT \l �02.03.1995�

� FVREF "Überschrift 1" �The Specification of the Z-Machine and Inform assembly language�	Page � SEITE �30� of � ABSCHNITTSEITEN �33�

