
EEEEE ZZZZZ IIIII PPPP

E Z I P P

E Z I P P

EEE Z I PPPP

E Z I P

E Z I P

EEEEE ZZZZZ IIIII P

EZIP: Z-language Interpreter Program (Expanded)

Joel M. Berez and Marc S. Blank

October 26, 1984

[Addition of INTBL? by Marc - July 85]
[DIROUT addition & subsequent mods by Marc, May - June 85]

[Updated by Stu Galley 13 Jan 84, 17 May 84]
[Expanded ZIP by Marc Blank, January - March 85]

[INFOCOM INTERNAL DOCUMENT - NOT FOR DISTRIBUTION]

1



Chapter 1

Introduction to EZIP

EZIP is a program running on any of a large variety of machines, which embodies a Z-machine.
From the Z point of view, a EZIP may be thought of as providing two functions. It emulates
the hardware instructions found on a Z-machine. Also, it provides the software functions of the
operating system (ZOUNDS: Z-machine Operating User-Non-Destructive System) ordinarily
found on a Z-machine, including program startup and certain service facilities.

This document will describe both functions of EZIP without necessarily differentiating be-
tween them. For further information, refer to ”ZAP: Z-language Assembly Program,” by Joel
M. Berez, or to the appropriate not-yet-written document.

EZIP is the lowest level of Infocom’s multi-tier interactive fiction creation and execution
system. Most of the development system for creating and debugging these products runs on a
large mainframe computer in the MDL environment. The final output is a Z program that can
run under any EZIP.

EZIP was designed to be usable on any of a large number of medium to large microcomputer
systems. The minimum requirements are 128K of primary memory with one disk drive having at
least 140K bytes of storage. The design goal also requires no more than a few seconds response
time for a typical move.

These goals are achieved by designing a low-level specialized game execution language that
can be easily implemented on most microcomputers. To satisfy the core limitation, EZIP pages
the disk-resident program. For speed, all modifiable locations are permanently loaded into core
along with most tables and some frequently used code. Any extra core available should be used
by the EZIP program to buffer disk-resident code as it is used on an LRU or similar basis.

Disk space savings were achieved using an instruction set that is highly space-efficient for
interactive fiction. Also, all text is compressed by about one-third.

2



Chapter 2

EZIP Instruction Format

2.1 General Information

The Z-machine is byte-oriented (assuming 8-bit bytes). Instructions are of variable length and
a minimum of one byte.

Data, including instruction operands, are sometimes word-oriented. In this case each word
consists of two consecutive bytes, not necessarily beginning on a word-boundary.

Some common examples of word-oriented data are pointers and numbers. Note that al-
though small positive constants can be specified in single-byte format, arithmetic is always
done internally with 16-bit words.

Word-boundaries are used in some cases simply to allow pointers in those cases to have
twice the addressing range that ordinary byte-pointers would have. Where applicable, these are
identified as word-pointers. Note that a word-pointer is a distinct concept from word-oriented
data and, in fact, may point to anything.

2.2 Opcode Format

Bit # 7 6 5 4 3 2 1 0

2OP 0 m m o o o o o 2-operand (short-form)

1OP 1 0 m m o o o o 1-operand

0OP 1 0 1 1 o o o o 0-operand

EXT 1 1 o o o o o o extended (0-4 operand)

(m=mode bits, o=operator bits)

The operand format for an instruction depends solely on the opcode format used for the
instruction. As can be seen from the above chart, there are only four possibilities.

A given operator will generally use only one of these formats, with the exception that all
2-operand operators may be encoded in either 2OP or EXT format.

3



Note that the formats were arranged to make decoding easy:

opcode < 128 ==> 2OP

else opcode < 176 ==> 1OP

else opcode < 192 ==> 0OP

else ==> EXT

2.3 Addressing Modes

There are three types of operands: immediate, long immediate, and variable. Operands follow
the opcodes in the same order as the mode bits when reading from left to right (high-order to
low-order bits).

A long immediate is a 16-bit value that is not further decoded during operand fetching. It
may be a twos-complement number, a pointer, or have some other meaning to the operator. An
immediate is interpreted exactly as a long immediate with the low-order byte as given and a
high-order byte of zero.

A variable operand is a byte that is further decoded as being the identifier of a variable
whose value should be used as the actual operand. The number given is interpreted as follows:

0 pop a value from the stack

1-15 use local variable #1-15

16-255 use global variable #16-255

2.3.1 Single Operand (1OP)

Bits: 5 4 Operand

0 0 long immediate

0 1 immediate

1 0 variable

1 1 undefined

2.3.2 Double Operand (2OP)

Bits 6 and 5 refer to the first and second operands, respectively. A zero specifies an immediate
operand while a one specifies a variable operand:

Bits: 6 5 Operands

0 0 immediate, immediate

0 1 immediate, variable

1 0 variable, immediate

1 1 variable, variable

Note that this format does not allow for long immediate operands. If one is required, the
EXT format must be used.

4



2.3.3 Extended Format (EXT)

In this format there are no mode bits in the opcode itself. All of the mode bits appear in the
next byte following the opcode. In the special case of the XCALL instruction, there are two of
these mode bytes following the opcode. A mode byte is interpreted as four 2-bit mode-specifiers
read from left-to-right as follows:

Bits 1 0 Operand

0 0 long immediate

0 1 immediate

1 0 variable

1 1 no more operands

Note that extended format does not imply that a given operator takes a variable number
of arguments. This format is used in four cases: where a 2-operand operator cannot use 2OP
format; where an operator requires either three or four operands; where an operator is used
so seldom that it is undesirable to waste a 2OP, 1OP, or 0OP opcode; and, finally, where an
operator does indeed take a variable number of operands.

2.4 Instruction Values

Some instructions, such as the arithmetics, return a full word value. These instructions contain
an additional byte that specifies to where this value should be returned. This byte is interpreted
as a variable in a complementary manner to that described in the previous section.

0 push the value onto the stack

1-15 set local variable #1-15

16-255 set global variable #16-255

2.5 Predicates

Predicate instructions contain an implicit conditional branch instruction. The branch polarity
and location are specified in one or two extra bytes in the instruction format. (Note that these
bytes would follow the value byte, if any.)

The high-order bit (bit 7) of the first byte specifies the conditional branch polarity. If the
bit is on, the branch occurs if the predicate ”succeeds.” If the bit is off, the branch occurs if the
predicate ”fails.”

The next bit (bit 6) determines the branch offset format. If the bit is on, the offset is the
(positive) value of the next 6 bits. If the bit is off, the offset is a 14-bit twos-complement number,
where the next 6-bits are the high-order bits and another byte follows with the 8 low-order bits.
(Note that these are two consecutive bytes and not a word. Therefore byte-swapping would
have no effect.)

If the branch should not occur, execution continues at the next sequential instruction. Oth-
erwise, if the offset is zero, an RFALSE instruction is executed. If the offset is one, an RTRUE
instruction is executed. For any other offset, a JUMP is done to the location of the next
sequential instruction plus the offset minus two.

5



Chapter 3

EZIP Instruction Set

3.1 Instruction Metasyntax

Instructions will be individually described in the following format. A heading will show the
instruction name followed by its arguments (operands). The heading line is followed by ex-
planatory text.

On the right side of the heading line the valid opcode format(s) is shown followed by the
base opcode value (assuming mode bits are all zero). It is implicitly understood that for each
2OP format, there is also a legal EXT format with a base opcode 192 higher.

The opcode format information is optionally followed by /VAL and/or /PRED according to
whether the instruction returns a value or is a predicate.

The operands on the heading line are given names indicative of their use:

int twos-complement integer, used arithmetically

word word of bits for logical operations

any no special meaning attached

obj object number

flag flag number

prop property number

table pointer to a table

item element position in a table

var number of a variable

str pointer to a string (quad)

fcn pointer to a function (quad)

loc pointer to a program location

3.2 Arithmetic Operations

Any arithmetic operation that returns a value that does not fit in a 16-bit word is in error.

ADD int1,int2 2OP:20/VAL

Adds the integers.

6



SUB int1,int2 2OP:21/VAL

Subtracts int2 from int1.

MUL int1,int2 2OP:22/VAL

Multiplies the integers.

DIV int1,int2 2OP:23/VAL

Divides int1 by int2, returning the truncated quotient.

MOD int1,int2 2OP:24/VAL

Divides int1 by int2, returning the remainder.

RANDOM int EXT:231/VAL

Returns a random value between one and int, inclusive. Int of zero is an error. Int of
a negative number disables randomness, as follows. The absolute value of int is saved away
and RANDOM generates numbers in sequence from 1 to int for the remainder of the game
session. Note that the number RANDOM generates is not necessarily the number returned
by the instruction, since the returned value is always MOD int. The implementation of this
instruction allows scripts to play through the games without concern for the random number
generator. RANDOM with an argument of 0 resets RANDOM to its normal state (i.e. enables
randomness).

LESS? int1,int2 2OP:2/PRED

Is int1 less than int2?

GRTR? int1,int2 2OP:3/PRED

Is int1 greater than int2?

3.3 Logical Operations

BTST word1,word2 2OP:7/PRED

Is every bit that is on in word2 also on in word1?

7



BOR word1,word2 2OP:8/VAL

Bitwise logical or.

BCOM word 1OP:143/VAL

Bitwise logical complement.

BAND word1,word2 2OP:9/VAL

Bitwise logical and.

3.4 General Predicates

EQUAL? any1,any2{,any3}{,any4} 2OP:1,EXT:193/PRED

Is any1 equal to any2, any3, or any4? Note that this instruction differs from the usual
2OP/EXT format in that in the extended form, EQUAL? can take more than two operands.
The motivation here was to provide a short (2OP) form for the most common use of this
instruction, which would otherwise use EXT format.

ZERO? any 1OP:128/PRED

Is any equal to zero?

3.5 Object Operations

Objects have six pieces of information associated with them that may be accessed using the
following commands. The object itself is referenced by a two-byte number. Object number zero
is a special-case pseudo-object used where an object-pointer slot is empty.

Each object contains 48 1-bit flags, arranged as three words, and numbered from left to
right, 0 to 47 (not the usual numbering scheme in this document). There is also a string of text,
which is the short description referenced by PRINTD.

Three slots in an object contain pointers to other objects. These pointers are used to link
objects together in a hierarchical structure. The LOC slot points to the object that this object
is contained in. All objects contained in a particular object are chained together in an arbitrary
order via the NEXT slot. The FIRST slot points to one of the objects that this object contains,
which is the first object in the NEXT chain.

MOVE obj1,obj2 2OP:14

Put obj1 into obj2.

8



REMOVE obj 1OP:137

MOVEs obj to pseudo-object zero.

FSET? obj,flag 2OP:10/PRED

Is this flag number set in obj?

FSET obj,flag 2OP:11

Set flag in obj.

FCLEAR obj,flag 2OP:12

Clear flag in obj.

LOC obj 1OP:131/VAL

Return container of obj, zero if none.

FIRST? obj 1OP:130/VAL/PRED

Return ”first” slot of obj. Fails if none (equals zero) and returns zero.

NEXT? obj 1OP:129/VAL/PRED

Returns ”next” slot of obj. Fails if none (equals zero) and returns zero.

IN? obj1,obj2 2OP:6/PRED

Is obj1 contained in obj2? More precisely, is the LOC of obj1 equal to obj2?

GETP obj,prop 2OP:17/VAL

Returns specified property of obj. If obj has no property prop, returns prop’th element of
default property table.

9



PUTP obj,prop,any EXT:227

Changes value of obj’s property prop to any. Error if obj does not have that property.

NEXTP obj,prop 2OP:19/VAL

Returns the number of the property following prop in obj. Error if no property prop exists
in obj. Returns zero if prop is last property. Given prop equal to zero, returns first property
(i.e. is circular).

3.6 Table Operations

Tables are in fact only a useful logical concept and have no physical form in the Z-machine.
(However the assembler, ZAP, does ”know” about tables.) Table pointers are simply byte-
pointers to appropriate locations in the Z program. Since EZIP assumes nothing about tables,
these pointers may be arithmetically manipulated or even randomly generated (if the program-
mer finds that useful). Note that manipulating arbitrary program locations constitutes ”taking
the back off” and voids the warranty.

GET table,item 2OP:15/VAL

Interpreting the table pointed to as a vector of words, returns the item’th element. In other
words, returns the word pointed to by item times two plus table. (Tables begin with element
zero.)

GETB table,item 2OP:16/VAL

Similar to GET, but assumes a byte table. Returns the byte (converted to a word, of course)
pointed to by item plus table.

PUT table,item,any EXT:225

Inverse of GET. Sets the word pointed to by any.

PUTB table,item,any EXT:226

PUTB is to GETB as PUT is to GET. Uses only the low-order byte of any. Error if the
high-order byte is non-zero.

10



GETPT obj,prop 2OP:18/VAL

Gets property table prop from obj. Where GETP can only be used with single byte or single
word properties, GETPT can be used with properties of any length. It returns a pointer to the
property value that may then be used as a table pointer in any other table operation.

PTSIZE table 1OP:132/VAL

Given a property table pointer as may be obtained from GETPT, returns the length of this
”table” in bytes. Guaranteed to return a meaningless value if given any other kind of table.

INTBL? any,table,int XOP:247/VAL/PRED

Tests whether ”any” is an element of the ”table” which contains ”int” word-oriented ele-
ments. If so, it returns a pointer to that location within ”table” in which ”any” first appears
(i.e. a GET of INTBL?’s returned value and zero would return ”any”). If not, it returns zero.
NOTE: This is also a predicate instruction.

3.7 Variable Operations

A variable, as used in the following instructions, differs from a variable used as an operand.
The latter is evaluated to get the actual value of the operand. In contrast, these variables are
identified by the already evaluated operands. This allows for the possibility, for example, that
one variable may ”point” to another variable to be used.

These variable identifiers are interpreted almost as variables are during operand decoding
except in regards to the stack, where no pushing or popping occurs:

0 use the current top-of-stack slot

1-15 use local variable #1-15

16-255 use global variable #16-255

VALUE var 1OP:142/VAL

Returns the value of var.

SET var,any 2OP:13

Sets the specified variable to any.

PUSH any EXT:232

Pushes any onto the stack.

11



POP var EXT:233

Pops the top word off the stack and puts it into var. Note that ”POP ’STACK” will have
the effect of flushing the next to the top word of the stack.

INC var 1OP:133

Increments the value of var by one.

DEC var 1OP:134

Decrements the value of var by one.

IGRTR? var,int 2OP:5/PRED

Increments the value of var by one and succeeds if the new value is greater than int.

DLESS? var,int 2OP:4/PRED

Decrements the value of var by one and succeeds if the new value is less than int.

3.8 I/O Operations

EZIP, unlike ZIP, requires minimum terminal capabilities for I/O operations. These include
upper & lowercase, 80-column width, and at least 14 columns in length.

Because line lengths may vary, it is up to the particular implementation of EZIP to insure
that the line length is not exceeded on output. In general a Z-language program will only output
a newline character in cases where a line must be terminated. Most text strings will contain
only spaces.

EZIP maintains a line-length output buffer. Printing occurs only when a newline character
is output by the program or when the line is filled. In the latter case, the line is broken at the
last space, with the remainder being moved to the beginning of the next line. The buffer is also
emptied before each READ and INPUT operation (without going to the next line, if possible).
When, between calls to READ or INPUT, the output in the text screen (screen 0) has filled the
text area, a MORE prompt will be printed. A character will be read from the terminal before
additional output is printed.

12



READ table1,table2{,int}{,fcn} EXT:228

Reads and parses a line of input. Table1 is the buffer used to store the characters read.
The first byte (read-only) of this table contains the length of the rest of the buffer where the
input string is stored. All uppercase characters must be converted to lowercase before READ
is finished. This enables the program to reprint words from the buffer without being concerned
about case.

Table2 is used to store results of the parse. The first byte (read-only) of this table specifies
the maximum number of words (of text, not machine words) that may be stored here. The
second byte is used by READ to report the number of words actually read. The rest of the
table consists of fixed-length word entries.

READ will fill each entry with three items. First is a 16-bit byte-pointer to the word entry in
the vocabulary table, zero if not found. Next is a byte giving the word length as typed (number
of ASCII characters). Last is a byte giving the byte-offset of the beginning of the word in the
buffer table. (Because of the length byte, the first character in the buffer is at offset 1.) These
last two values are used by the program in conjunction with PRINTC to reprint words.

READ reads text until it encounters a newline character. If the buffer is full, the CORRECT
action would be to ring the bell when additional characters are typed. Other actions (like an
assumed newline) are considered inferior implementations and should be avoided where possible.
Words may be separated by standard break characters (space, tab, etc.) or by self-inserting
break characters (usually comma, period, etc.). The self-inserting characters for a given program
are specified in the vocabulary table (Chapter 4). Each of these characters not only separates
words but is also considered a word itself and may be found in the vocabulary word list.

When parsing a word, it must first be converted to Z string format (Chapter 4) after case
conversion, if any. It should be truncated to 9 (5-bit) bytes to fit into three machine words to
match the vocabulary table entries. (Note that as in all Z strings, the low-order bit of the last
(second) word will be on.) This may actually correspond to less than 9 ASCII characters. If the
encoded word is less than 9 bytes, it should be padded with the pad character (5). The words
in the vocabulary table are sorted to facilitate a binary search.

Before doing any of the above, READ must empty the output buffer. In addition, it should
zero the ”more” counter.

The optional arguments int and fcn are used to implement timed input. The optional
arguments to the INPUT instruction work analogously. The first specifies the time to wait
before timing out in 10ths of a second. The second specifies a routine to CALL (internally!)
when the timeout occurs. If this routine returns true (1), the input operation (READ/INPUT)
is aborted. If it returns false (0), the input operation continues where it left off. Note: The
intention is that the timeout routine will be short so as not to grossly interfere with the user’s
input. THE HANDLING OF THESE OPTIONAL ARGUMENTS IS NOT REQUIRED AT
THIS TIME. HOWEVER, THEY SHOULD AT THE LEAST NOT PRODUCE AN ERROR
IF USED!

USL 0OP:188

Updates the status line now instead of waiting for the next READ.

13



PRINTC int EXT:229

Prints the character whose ASCII value is int.

PRINTN int EXT:230

Prints int as a signed number.

PRINT str 1OP:141

Prints the string pointed to by str times two. The multiplication is necessary because str in
this instruction is a quad-pointer, guaranteed to point to a string that has been quad-aligned.

PRINTB str 1OP:135

Like PRINT, but str here is an ordinary byte-pointer.

PRINTD obj 1OP:138

Prints the short description of obj.

PRINTI (str) 0OP:178

Prints an immediate string. Interpreted as a 0-operation instruction but immediately fol-
lowed by a standard string (as opposed to a string-pointer).

PRINTR (str) 0OP:179

Like PRINTI but executes a CRLF followed by an RTRUE after printing the string.

CRLF 0OP:187

Prints an end-of-line sequence (carriage-return/line-feed in ASCII).

SPLIT int EXT:234

If option bit 0 in the mode byte is zero, this operation is ignored; otherwise it divides the
screen into two windows: #1 occupies int lines, preferably at the top of the screen, and #0
occupies the remainder of the screen. If int is zero, this operation restores the normal screen
format. Window #1 is special in that it never scrolls; if the program outputs characters beyond
the right-hand margin, they are not displayed. SWG 1/13/84

14



SCREEN int EXT:235

If option bit 0 in the mode byte is zero, this operation is ignored; otherwise it causes
subsequent screen output to fall into window #int. If int is 1, the output cursor is moved to the
upper left-hand corner; if int is 0, the output cursor is restored to its previous position. This
operation is ignored if the screen is not split, or if int is not zero or one. SWG 1/13/84

CLEAR int EXT:237

If option bit 0 in the mode byte is zero, this operation is ignored. If int is 1 or 0, it clears
window #int. If int is -1, it unsplits the screen (if it has been split) and clears the entire screen.
Other values for int are ignored.

ERASE int EXT:238

If option bit 4 in the mode byte is zero, this operation is ignored. Otherwise it erases the
line on which the cursor lies, according to int. If int is 1, it erases from the cursor to the end of
the line. There are no other legal values for int at the present time.

CURSET int1,int2 EXT:239

If option bit 4 in the mode byte is zero, this operation is ignored. Otherwise moves the
cursor to line #int1, column #int2 in screen 1. This operation is illegal if the screen is not split
or if screen 0 is active. This is also illegal if output is buffered (i.e. the BUFOUT instruction
has not been used with a zero argument).

CURGET EXT:240

This is not currently implemented, although the operation is reserved.

HLIGHT int EXT:241

If the appropriate option bit in the mode byte is zero, this operation is ignored. Otherwise,
it is interpreted as follows: 0 - no highlight, 1 - inverse video, 2 - bold, 4 - underline or italic at
the interpreter’s discretion. Note that the codes are set up as powers-of-two. This is intentional,
but it is NOT required at this time that the interpreter handle combination highlights (bold +
italic).

3.9 Misc. I/O Operations

BUFOUT int EXT:242

15



Determines whether or not output is line-buffered. If int is 1 (the normal case), output is
buffered a line at a time so that line breaks can be planned for. If int is 0, all currently buffered
output is sent to the screen, and all future output is sent to the screen as it is generated. Note:
Output redirected to a TABLE (see next instruction) is not buffered. Disabling buffered output
MUST be performed prior to using the CURSET opcode. Also note: The ”line position” counter
should NOT be cleared when a BUFOUT of 0 is performed. In this way, when buffered output
is re-enabled, line position is not lost.

DIROUT int{,any1}{,any2}{,any3} EXT:243

Selects or deselects a virtual output device according to int. Each virtual device is assigned
a code, and the game indicates its desire to select or deselect that device by passing a first
argument of int or minus int, respectively.

Virtual device 1 is the screen and is the default output device. It can be shut off by passing
-1 to DIROUT.

If int is 2, output is directed to a printer device for scripting. This interface replaces the
previous method of setting a bit in the mode word. When scripting, all user input and all output
in screen 0 should be scripted. Scripting is terminated when device 2 is deselected. When the
interpreter is scripting, it should set Bit 0 in the FLAGS word.

If int is 3, output is directed to the TABLE specified as any1. Each character to be printed
is PUTB’d into the TABLE starting at TABLE+2. When deselected, the number of characters
placed into the TABLE will be PUT into the 0’th element of TABLE. Output redirected to a
TABLE is not buffered.

If int is 4, a command file is created which consists of the commands input to the game
via READ and INPUT. The file is closed when device 3 is deselected. Note that this device is
currently optional. An interpreter which does not handle this device should ignore the request
for selection and deselection.

DIRIN int{,any1}{,any2}{,any3} EXT:244

Redirects input according to int. If int is 0, input is directed from the keyboard (this is the
default case). If int is 1, input is directed from a command file (this need not be implemented
on all interpreters, but might be useful for running scripts). No other values of int are legal.

SOUND int EXT:245

If the appropriate bit in the mode byte is zero, this operation is ignored. Otherwise, produce
the sound specified by int. The following sounds are defined: 1 - beep (equivalent of a morse
code dot) and 2 - boop (equivalent of a morse code dash). Others may be invented as required.

16



INPUT int1{,int2}{,fcn} EXT:246

This returns a single input from the device specified by int1. The only defined device is the
keyboard (code = 1) and the instruction returns the ASCII code for the next key pressed. Keys
which do not have a single ASCII value are ignored, with the following exceptions (assuming
that these keys exist on the target machine): Up-arrow = 14, Down-arrow = 13, Left-arrow =
11, Right-arrow = 7. More special codes may be added, but probably not. For a discussion of
the optional arguments, consult the notes following the READ instruction. As with the READ
instruction, INPUT should clear the output buffer (if output is buffered) and zero the ”more”
counter.

3.10 Control Operations

CALL fcn{,any1}{,any2}{,any3} EXT:224/VAL

Begins execution of the function (see Chapter 4) pointed to by fcn times four, supplying it
with any arguments given in the CALL instruction. Note that fcn is a quad-pointer and functions
are always quad-aligned. See RETURN for the method of returning from this instruction.

If fcn equals zero, the CALL is special. In this case, it ignores its other arguments (except
for the value specifier) and acts as if it had called a function that did an immediate RFALSE.

CALL1 fcn 1OP:136/VAL

Same as CALL, but a 1-op.

CALL2 fcn,any 2OP:25/VAL

Same as CALL, but a 2-op.

XCALL fcn,any1-4{,any5}{,any6}{,any7} EXT:236/VAL

Same as CALL, but with from 4-7 arguments supplied. This instruction is never invoked
with fewer than 4 arguments.

RETURN any 1OP:139

Causes the most recently executed CALL to return any and continues execution at the next
sequential instruction after that CALL.

17



RTRUE 0OP:176

Does a ”RETURN 1,” where 1 is commonly interpreted by Z programs as ”true.”

RFALSE 0OP:177

Does a ”RETURN 0,” where 0 is commonly interpreted by Z programs as ”false.”

JUMP loc 1OP:140

An unconditional relative branch to the location of the next sequential instruction plus loc
minus two (for compatibility with predicates). Note that unlike the predicate argument, this is
a full twos-complement word.

RSTACK 0OP:184

Does a ”RETURN STACK,” thereby returning from a CALL and taking the value from the
(old) top of the stack.

FSTACK 0OP:185

Flushes the top value off the stack.

NOOP 0OP:180

No operation, equivalent to a ”JUMP 2.”

3.11 Game Commands

SAVE 0OP:181/PRED

Writes the ”impure” part of the game to disk in some recoverable format. The seed for
RANDOM should not be saved or restored so that multiple RESTOREs from the same SAVEd
game will not necessarily lead to the same results. Other details of the user interface are left to
the discretion of the implementor. Note that this instruction is a predicate.

RESTORE 0OP:182/PRED

Recovers a previously SAVEd game and continues execution after the SAVE. If the RE-
STORE fails, execution should continue (if possible) after the RESTORE in the original game
with the instruction failing.

18



VERIFY 0OP:189/PRED

Verifies the correctness of the game program stored on disk by comparing the 16-bit sum of
the bytes in the program, from byte 64 to byte PLENTH*4-1, with PCHKSM. Note that for
the preloaded area, the unmodified pages on the disk should be used rather than the pages in
core.

RESTART 0OP:183

Reinitializes the game and generally acts as if it had just been started.

QUIT 0OP:186

The game should die peacefully.

19



Chapter 4

EZIP Data Structure

4.1 Program Structure

A Z-language program begins with the following words:

ZVERSION version of Z-machine used

ZORKID unique game identifier

ENDLOD beginning of non-preloaded code

START location where execution begins

VOCAB points to vocabulary table

OBJECT points to object table

GLOBALS points to global variable table

PURBOT beginning of pure code

FLAGS 16 user-settable flags

SERIAL serial number - 6 bytes

FWORDS points to fwords table

PLENTH length of program (in quads)

PCHKSM checksum of all bytes

INTWRD interpreter identification word

SCRWRD screen parameters word

(15 reserved words)

ZVERSION is interpreted as two bytes. Regardless of the state of the byte-swap mode, the
version byte is always first followed by the mode byte. All games produced for EZIP will have
a Z-machine version byte of 4; older games will have a version byte of 3. This should be used
to determine whether or not a game file is in the correct format for EZIP. Combined EZIP/ZIP
interpreters will need to have this information, of course. The mode byte contains eight option
bits as follows:

Bit # Interpretation

7-6 reserved

5 SOUND opcode

0 The SOUND opcode is ignored

20



1 The SOUND opcode is implemented

4 cursor addressing

0 CURSET/CURGET operations are ignored

1 These operations are functional

3 highlight/underline-italic

0 Underline-italic highlight not available

1 Available

2 highlight/bold

0 Bold highlight not available

1 Available

1 highlight/inverse video

0 Inverse video highlight not available

1 Available

0 screen operations

0 SPLIT/SCREEN/CLEAR operations are ignored

1 These operations are functional

Note that this byte is set by either a loader for a particular machine or the interpreter at
start-up time.

ZORKID identifies the game type and its version number. This is checked by RESTORE.
ENDLOD is a particularly significant pointer. A typical Z-machine has a limited amount

of primary memory available. Therefore programs are arranged so that most data/code can
remain on disk during execution. All locations below ENDLOD must be preloaded in core.
These include all modifiable locations in the program. (Attempts to modify other locations
should cause an error.) If more memory is available, any or all of the rest of the program may
be preloaded.

Due to restrictions on the number of bits available in pointers, the maximum size of a
program is 256k bytes. All modifiable data, including anything that a byte-pointer might point
to, will be below 64k in this address space. All major tables (VOCAB, OBJECT, etc.) are
guaranteed to be below ENDLOD.

The FLAGS word is used to hold user-settable flags that control various interpreter options:

Bit # Interpretation

15-3 reserved

2 request for status line refresh (set by EZIP only)

1 fixed-width font needed

0 interpreter currently scripting (set by EZIP only)

Bit #2 should be set by the interpreter whenever, in its opinion, the status line area has
become damaged or is suspect (perhaps due to target machine operating system intervention).
The game is responsible for refreshing the status line area (if any) and will also clear this bit
when the refresh is completed.

Bit #1 should be checked by every ”printing” operation before actually doing any output.
If it is on, the output must appear in a type face with all characters the same width, since the

21



game is making a crude picture with the characters. SWG 5/17/84
The serial number is a six-character ASCII string uniquely identifying each distributed copy

of a game. This string will be inserted when each distribution disk is created and will be read
by the game program when executed.

PLENTH and PCHKSM are both used by the VERIFY operation. PCHKSM is the 16-bit
sum of all bytes from 64 (decimal) to PLENTH*4-1.

INTWRD is composed of 2 bytes. The high byte is the interpreter id, an integer unique
for a given interpreter. These numbers starting from 1 (DEC-20) can be found somewhere else.
The low byte is the interpreter version identifier, an ASCII character which identifies the release
of the given interpreter. By convention, these are letters of the alphabet starting with A. This
word is set by the interpreter upon initialization.

SCRWRD is composed of 2 bytes, the high byte indicating the number of lines available
on the screen (255 meaning a printing terminal), and the low byte indicating the number of
characters on a line. This word is set by the interpreter upon initialization.

4.2 Global Table

This table contains a one-word slot for each global that will be used by the program with
its starting value. Note that the first slot (pointed to by GLOBALS) corresponds to variable
number 16.

Some interpreters implement a status line, which is a reserved line on the screen that con-
stantly displays status information about the game (updated before each READ or at each
USL). To provide the required information, the first three globals are predefined. Global 16
contains the object number of the current room, which can be used with PRINTD to get its
short description. In a score-oriented game (see ZVERSION mode-byte), global 17 contains the
number of moves that have been made in the game and global 18 contains the current score.
In a time-oriented game, they are minutes and hours, respectively. These two numbers and the
string may be printed in any convenient order along with any other desired information.

4.3 Object Table

The first 63 words of the object table form the default property table. This contains values that
will be returned by GETP when the corresponding property numbers (1 through 31) are not
found in a specified object.

The rest of the table contains the objects themselves, numbered sequentially from 1 to the
total number of objects. An object is formatted as follows:

byte value

0-1 first flag word, flags 0-15

2-3 second flag word, flags 16-31

4-5 third flag word, flags 32-47

6-7 LOC slot

8-9 NEXT slot

10-11 FIRST slot

12-13 property table pointer

The property table pointer points to another table associated with this object:

22



number of words in short description (1 byte)

short description string

property identifier (1 or 2 bytes)

property value (1-64 bytes)

.

.

.

property identifier

property value

0

There may be from 0 to 63 property pairs. Each property identifier has the property number
in the low-order 6 bits. The high-order bit, if set, indicates that there are more than 2 bytes
in the property value, in which case the following byte will have the two high bits set and the
low-order 6 bits will be the length of the property value. Otherwise, the second-high bit (64
bit) will be on for a length of 2 bytes, off for a length of 1 byte. For searching efficiency, the
properties are sorted in inverse order by property number. Note: The two high bits are set in
the extended property length byte so that PTSIZE can be implemented properly. Otherwise, it
would be impossible to interpret the byte preceding the start of the property value.

4.4 Vocabulary Table

This table contains the words that will be understood by READ, other information for READ,
and, optionally, some user-defined information ignored by EZIP:

number of self-inserting break characters (1 byte)

character #1 (1 ASCII byte)

.

.

.

character #n

number of bytes in each entry (1 byte)

number of entries (words) in vocabulary

word #1 (6-byte string)

extra entry bytes for word #1

.

.

.

word #m

extra entry bytes for word #m

Words are truncated or padded to cause them to fit into 6 bytes. READ performs the same
function, so comparisons work. Words in the vocabulary table are sorted according to this
6-byte value.

4.5 String Format

For maximum storage efficiency, text is encoded in 5-bit byte strings. Characters are packed
into 16-bit words from left-to-right (high-to-low), skipping the high-order bit. The last word in

23



each string has the high-order bit set, which is otherwise clear. If the last word is not filled,
it is padded with the standard pad character (5), which conveniently is interpreted as a no-op
during printing.

The 5-bit code actually encompasses three different character sets: 0, 1, and 2. At any instant
during string interpretation (printing) there is a particular permanent mode. A temporary mode
can also exist for one character at a time. Each character read is interpreted in terms of the
temporary character set if there is one, and otherwise the permanent character set.

The first 6 values are universal over all character sets. 0 means space. 1, 2, or 3 means to
use one of the special words (see below). 4 and 5 are shift characters. Each permanently or
temporarily changes the character set to one of the other two:

New Character Set (P=perm, T=temp)

Old C.S. 4 5

0 1T 2T

1 1P 0P

2 0P 2P

In character set 0, 6 through 31 represent a through z. In character set 1, they represent
A through Z. In character set 2, 6 means that the ASCII value specified by the following two
bytes, high-order byte first, should be used. 7 represents a new-line character (carriage-return
line-feed combination in ASCII). 8 through 31 represent 0 through 9, period, comma, !, ?, , #,
’, ”, /, \, -, :, (, and ).

At the beginning of each string, the initial permanent character set should be 0, with no
temporary mode selected. The encoding algorithm used to create the string also specifies that
whenever the current character to be encoded is not in the current permanent character set,
the following character is examined. If there is a following character (i.e. not at end of string)
and that character is in the same set as the current one, a permanent shift is used. Otherwise
a temporary shift is used.

4.5.1 Fwords Table

The fwords table, pointed to by FWORDS and below PRELOD, contains 96 word-pointers
to ordinary strings. These strings represent frequently used substrings (usually words) within
other strings. Whenever a 1, 2, or 3 byte is encountered in a string that it is being decoded, the
following byte is used as a word-offset into the fwords table to select one of the string pointers.
The first, second, or third group of 32 words in the table is used, according to whether the
initial byte was 1, 2, or 3, respectively. The string interpreter routine is recursively called to
handle this new string. When done it returns to continue handling the original string.

Note that the substring is treated as a complete self-contained string. This means that it
starts in permanent character set 0, with no temporary set. In the original string, the permanent
set is retained across the call to the substring. (Of course, there will be no temporary character
set to remember.) The substrings in the fwords table are guaranteed not to contain fwords
themselves. Therefore, the string interpreter routine need not necessarily be totally reentrant.

4.6 Functions

A function is a subroutine that is accessed via the CALL and RETURN mechanism. It may
optionally have up to 15 local variables, up to 3 of which may be set by the CALL instruction
(7 with the XCALL instruction).

24



A function may be preloaded or disk-resident (or both). It begins on a quad-boundary. The
first byte specifies the number of local variables to be used by the function (0 to 15). This is
followed by one word for each such variable giving its initial or default value. The first one,
two, or three variables may be initialized to values supplied in the CALL instruction instead of
these. Note that this format allows for optional arguments.

The value words are followed by the first instruction to be executed when the function is
called. Execution will continue from that point until a RETURN is executed.

25


