Contents

PrEEACE. ..ottt ettt ettt et e et e e b e e bt e et e e bt e enbeeteeeentteeenreeeens 4
StANAATAISATION.eeuviieeiiie e et e e ee e e stteeesabee e sbeeesssaeassaaeansseeanssaesssseessssaensseaennes 4
S0 What 18 "StANAATA" ?.........eiiiiiiieie ettt et e e e nbaeeeenneeas 5
D[] 15) s DU 6
Where are all the grammar tables?...........ccoiiiiiiiiiiiicie e 6
ACKNOWIEAZEIMENLS.c.uiiiiiieeciie ettt eee et e et e e e e et e e ssaeeessaeesssaeesnssaensseeenssaeennns 7

Overview of Z-machine arChiteCTUIE.cuieruiiiiieiieie ettt ettt et e seaeesbaee e 8

L. THE MEIMOTY TNAP.....ueieetiieiiireeieeeeteeesteeesteeetteeeaeeessaeeasseeeasseeessseeessseeesseesnsseesssseesseeesssseeessannnns 11
1.1 REZIONS Of MEIMOTY.....iiiiiiiiieiieiie ettt ettt ettt ettt e s be et e sabeebeessseenseesnseenseesnseensseeennes 11
L2 AQAT@SSES. . e euvieeiiieeiiee ettt e ettt e ettt e et e e st e e et eeeaaeeesbeeesseeesaaeeasaeeetaeeensaeeanaaeeantbaaeeeannnaaeeaeaanns 12
REMATKS. ...ttt ettt ettt ettt e e ab e et e e bt e e e nbaeeenreeas 13

2. Numbers and arithmeETiC.........eeeeuiieeiiieeiie ettt e et e e ee e e aa e e s taeessaaeeeeeesnssaaeaeeeenssneeas 14
2.1 NNUITIDETS. ...ttt ettt ettt et e et e et e et e esbeesabeesbeessbeenseeesseenseessseenseenseesnseensseenseeas 14
2.2 SIZNEA OPETATIONS.uveeeiieeriiieeeiiieesieeetteeetteeeteeesreeessseesasseeessseeansseessssaessseesssseessseeessseeessseeens 14
2.3 ATTERIMELIC ©ITOTS. ... vietieeiiieiieeteeitte et esite et et e etteettesate e teeeaaeesseessseenseessseenseessseensaennsseasnnsseens 14
2.4 Random NUMDET ENETALOT........ccveeeeuieeeiieeeitieeeieeeeieeeeieeesteeessteeessseeesseeesaeeessseessaeessssesnssees 14
REMATKS. ...ttt ettt ettt et e b e et e et e e e enbaeeenneeas 15

3. How text and characters are encoded...........cccviieiiiiiiiieciie et eiaaeee s 16
K B 1o < AT OSSO UUPRRRPPRRINt 16
R TN (o) T2 1o 1< £ TP RURPUSRN 16
3.3 ADDIEVIALIONS. ...iieutieeiieeiie ettt ettt e ettt e e et e bt e eeae e teeeabeesaeeenseesaeenseenseeenbeenssesnseennsaeeennseeens 17
Bi4 ZISCIL @SCAPEC...ceeeuuetieeeeiiieeeeetttee e et ee e e ettt e e ettt e e eeaaaeeeesatteeeeennsseeeaanssaeesensseeesassaeeeannsseaeseeenns 17
3.5 AIPRADET tADIC......eieiiieiiieie et ettt et e et eeab e e e enbeeeennaaeen 17
3.6 Padding and INCOMPIELENESS.eeeiviiiiiieeiiieeiee et e erteeeiee e ee et eesteeesteeesssaeesssaeenssnaeeeeeas 19
3.7 DICHONATY tIUNCATION.teeeiiietieeiteesiteeteestteeeteesteeeeteeteeesbeesseessseeseessseenseesnseenseessseessnsseesnsseeenns 19
3.8 Definition of ZSCII and UnNIiCOAE...........eeeiiieiiiieiie ettt staee e e ee e e 20
REMATKS. ..ottt ettt ettt e et e e nae e nbe e e e enbaeeenbeeas 26

4. How InStructions are €NCOACA........cccuvieiiiieiiieeiieeeeeeeite et e et e e eteeesteeestaeeenaaaeeeeesnnaaeaeeeennsnnens 28
4.1 TNSEIUCTIONS. ...eitteiieeiieetie ettt esite et et e et e esteeeabeesteeesbeessaesaseeseeenseesaesaseenseeenseensaeenseenseesnseenseennss 28
4.2 OPCTANA LYPOS..eeeurieieirieiitieeeieeesteeeeteeesteesitteeasteessaeeaseeessseeeassaeessseeessseeassseeesssssseeeessssssseeens 28
4.3 Form and OPerand COUNL...........eciuierieeiiieriieeieeeie et esite et estteeteesateenbeesseeesseessseennseeesasseeesnnneeas 29
4.4 Specifying OPETANd tYPES....ccccuieiiieeeiieeeiieeeiteeeite e sttt e esteeeseaeessaaeessaeessbeeessseeesnseeensseeenssaeeeens 29
4.5 OPCIANGS.eoutieiieeitieiie ettt ettt et et e e bt e et e e bt esaaeesbeeesbeesbeessseesseeeaseenseeesseeseeensaeeannaaeeannaeas 30
L N 0] (<1 F PP PPPPRPR 30
4.7 BIANCHES.uiieiiieiie ettt ettt ettt et ettt et e et e e bt e sate e ateenbe e seesabe e beeenbeesaeenbeeeneeenbeeseeenns 30
4.8 TEXE OPCOMES. .eeeuetieetiieeitiie ettt e eiteeeitte e ettt e e teeesaeeessaeeessseeessseeesseeesseesssseeensseeseanssseaeasansssseaeens 31
REMATKS. ...ttt ettt ettt e et e et e e nae et e e e nbaeeenbeeas 31

5. HOow routines are €NCOAEM.........cccuviiiiiieeiieeciie ettt re e e e e sae e e e nsba e e e e e ennnaeaeens 33
5.1 SHAT POSTEION. ...euviieuiieeiiieiie ettt et ettt et te et e et e et eesteeeebeesaeeenseesaeenseessaeenseenssesnsaennsseaennseeans 33
I & [T T 1< USSP 33
5.3 FArSt INSTUCTION. ..eeutiiiiiieiieeiie ettt ettt ettt et e et eteeebeesteeesbeesseeenseessaeenseessaesnsaesnsaeaennseeens 33
5.4 MaIN TOULINE (V0)...iiiiiiiiiiieeiiie ettt e et e et e e te e e steeessteeessbee e sseeesseeesseeesseeeseansssneeaeans 33
5.5 Initial execution point (Other VEISIONS).......ccueeruieriieriierieeiieeieeritesteeiee e ereesaeereeseseeeeeaeees 33
REMATKS.eeiiiieeeie ettt e et e e e e et e e s ate e e e nbae e stee e sbeeesbae e naraeaaeeennnraaaeens 33

6. The game state: storage and routing Calls.............oocuieiiiiiiieniieiiee e 34
6.1 SAVEA STALES.....uiieeiiieeiiie ettt eeee et e et e et e e et eeeaaeeeaaeeebaeeebaeeebeeeenbaeeanraeeenraaaeens 34
6.2 Storage of global variables............cocuiiiiiiiiiiieiie e e 35
LT T N 4 (] T PRSP 35
0.4 ROULINE CALIS......eiiiiiiiiiiieeit ettt ettt ettt e et e e s tae e teesabeeeenbbeesansaeesanseaeenns 36

6.5 STACK fTAIMIES. ..o e aaeeaeaeaanas 37

6.6 USET STACKS (V0)...ii ettt ettt et e e e e et e e e e be e e s abeeesseeensaeesnsaeesnsseessseeens 37

REMATKS.eeiitieeeee ettt et e e st e e st e e et e e e ntee e na e e e ttae e nnbaaaaeeennnraaaeens 37
7. Output streams and file handling.............coooviiiiiiiiiiiii e 39
7.1 OULPUL STICAIMNS....viieeeiiiiee ettt e eeitee e e ettt e e e st eeeeseteeeeeasteeeeesnsbaeessssaeesesnsseeesannsseaaaaaeeesesennnns 39
7.2 BUITETINE. ...ttt ettt ettt e et e st e et e et e e st e eabeenseesnbeesaesnsneaeensaeeas 40
7.3 Selection (V1 and V2)....o.eoi ittt ettt et e e e et e e save e e snsaaaae e e ennnaeeeeeannes 40
7.4 Selection (Jater VEISIONS).....cccuuiiiuieeeiieeeiieeeiieeetteeeeteeeeetaeeeeteeeesseeesseeeeseeesenssseeeeeasnssaeeeeeanses 41
7.5 Dealing with Unicode or invalid Characters............cccuveeiiieeiiieiiieeeiee et e 41
7.6 File RANALIING.....cooviiiiiiiieieeee et ettt ettt e et et esbeeeabeeeennbeeeennreeeans 41
REMATKS.eeiieeeee ettt e et e e st e e st e e e nbe e e be e e st e e etbae e nnaaaaae e e nnraaaeens 43
8. The SCIeen MOMEL......c.eeiiiiiiieiieie ettt et e et e et e et esabeenbeesaaeensneeens 44
T B 2101 USRS 44
8.2 SHATUS LINC..cneiientieiie ettt ettt ettt et e st e e bt e s it e et eeeab e e bt e snbeebeeenteebeesnneeenn 45
8.3 TEXE COLOUTS.....utieiuiieeeiiie ettt eeiee et e ettt e ettt e et e e et eesabeeessseeessseeesnseeesseesassaeanssaeensseessseesnsneeannes 46
8.4 SCTEEN QIMEIISIONS. ... veeutieeiieetieeiieette et e etteetteeteeseteeteesseeesseessseenseesseeenseenssesnsseeeensseesnnsseeennens 49
8.5 Screen MOAEL (V1, V2) ettt ettt et e et e e et a e e e nntaeaeeeenssnes 49
8.6 SCIeen MOAECL (V3)..ii ittt ettt e e e e etb e e e treeetaeeeaaeesaaeesanasaeeeeennnes 49
8.7 Screen MOAECL (VA4, V5) .ottt ettt et e et e e e aa e e e e nsaaeeeeennnees 50
8.8 SCIeen MOAECL (VO)...ccueiiieiiieeeeee ettt ettt e et e e eta e e etaeeeaaeesanasaeeeeennnes 53
REMATKS.eeieieeeee ettt e et e e st e e st e e st e e e st e e e st e e e ttee e nnrreaaeeennnraaaeens 59
0. SOUNA CETRCES. ... eeiiieiieeie ettt et sit e et e e et e et e e s et e eabeesateenbeeensbeeeennseeeensaeeeans 63
0.1 SOUNA ETFRCES. ..nutieeiiie ettt e e e st e e st e e e saeeesabeeesbeeessaeeenssaeennseesnneeens 63
0.2 NUMDETING OF ...ttt ettt et e st e e bt e sabe e bt e sabeebeesabeenseasnseaeensneeas 63
0.3 VOIUIMEC......eiieeiieeciie ettt ettt e ettt e et e e et e e et eeesbeeessbeeesbeeesaeeensseeensseesnsaeeeeesssseaeeeanns 63
9.4 Sound playing autONYMOUSLY......cccuiiiiiieiieeiieie ettt ete et eebeesseeeseesaeees 63
REMATKS.eeitieeeie ettt e et e e st e e st e e et e e e s e e e st e e ettae e nnaaeaaeeennraaaeens 64
10. Input Streams and AEVICES.ccueiiuiieriieeieeiie ettt ettt ettt et s e et e e saeeebeessaeenseesseeenseennneeas 66
10.1 Keyboard only 1N V1. ...oooiiiiiiieiie ettt ettt e et e e e e e e e ennnee s 66
1O.2 TNPUL SEEEAMIS. ..ceeuitieeiiieeitie et ee ettt ettt ettt e sit et e st e et e ettt e s bbeesabteesabeeesabeeesabeeesabeeesaseaeeens 66
10.3 IMOUSE SUPPOTL...eeeeeeueiiieeeiiiieeeeiiteeeeitteeeestteeeeetaeeeessaateeeeensaeeeessseaeessnsseeesannsseeessnsseeessnnseeens 66
10,4 MENIU SUPPOTT..ceenetieeitieeiiieeitee et ee ettt e ettt e et e e sttt e e sabteesabeesateesbaeessbteesbeeesabeeesaseeeesnnnsseeeeennns 67
10.5 Terminating characters and timed INPUL...........coociiiriiieiiie e 68
10.6 SINGIE KEYPTESSES....eieurieeiiietieeiietie et eite et e e et e tteste et esabeebeessbe e beesaseeseesnseenseasnseessnsseens 68
10.7 Reading ZSCII from the Keyboard.............ceeeriiiiiiiieiiiecciie ettt 68
REMATKS. ...ttt ettt et ettt e et e et e et ee e nbeeeenbeeas 69
11. The format 0f the header..........cooviiiiiiiiie e e e e e e seteeeeaaeenees 70
T1.1 Header fOTMAL.........cccuiiiiiiiiieiie ettt ettt ettt e et e st e e b e ssaeeeasbeeesnsaeeeanneeeenns 70
REMATKS.eeitieeeie ettt e et e e st e e st e e et e e e s e e e st e e ettae e nnaaeaaeeennraaaeens 74
12, The ODJECT tADIC.......eiiuiieiieeii ettt ettt et et e e st e e bt e sabe et e e snsaeeeensaeeesnsneeeenseeeas 75
| B 1) T PSR SPPPRPR 75
12.2 Property defaults table...........cooiiiiiiiiiiieciieie ettt 75
R T @ o [S1e] A 1 (<RSP SPPP 75
12.5 Well-foundedness Of the tree.ooiiiiiiiiiiiieiie et 77
REMATKS.eeitieeeie ettt e et e e st e e st e e et e e e s e e e st e e ettae e nnaaeaaeeennraaaeens 77
13. The dictionary and lexical analysis.........ccccueerieriiiiiiiniieiiecie et e e s 78
| T B 1) T PSR SPPPUPR 78
I3.2 HEAACT....ccueieieeie ettt ettt et ettt e et e et e e e at e e bt e enbeenseeenbeenbeeenbeaeensaeeas 78
LR R I 5 13w (T (Y B (o Y% 3 TSRS 78
13.4 ENtries (1At VEISIONS). .cccuvieeiureeeitieeeiteeeeiteeeeteeeeteeeeereeeeaseeeessesessseeessseessseessseessseesassssseeaeens 78
I3.5 OTARIING.....eeeeeiiieeciie ettt ettt e et e e et e e et e e et e e e sbeeesaaee e sseessseesnseesnsseesnsseesnseeesannssseeeeens 79
13.6 LeXical @NalySiS....ccuieiuieiiieiieiiieiie ettt ettt sttt ettt e et et e st e et e enbeensaeenns 79

REIMATKS. . oo e et e e e e e et eaeeeeanas 79

14. Complete table 0f OPCOAES......cuiiiiieiiieiieie ettt ettt e e et ee e e eeeeneee s 80

T4, T COMNEIILS. ¢ttt ettt et ettt e b e e et e bt e sat e et e e sab e e bt e ssbeembeeeabeeeebbeeeenneeeanns 84
14.2 Out Of 1aNZE OPCOLS.ccueiieiiieiieeiieeiteeie ettt ettt et stt e e bt esteeebeessaeenbeesataesseesensaeesnnseeaans 84
Reading the 0pcode tables.......ccuviiiiiiiiiii et e e e e e araaeee s 85
Inform assembly 1angUAZE.........c.cooouiiiiiiiiie e e s 85
REMATKS. ...ttt ettt st e st e e aaeeas 88
15. DIictionary OF OPCOAES.cc.uiiiiiiiieiieeit ettt ettt ettt ettt e st e ebeessbeenseessteenseesseeenseas 89
T RSOSSN 89
LSt h et h e bttt h e bttt e h e bttt e b e e bt e nhte e nateesatees 89
3 OSSP PSTS 89
16. Font 3 and character raphiCs.........ccueiiieiuierieeiieiieeieeeee ettt ettt eeteestaeeeeanaee s 113
L TSROSO 113
REIMATKS. ...ttt ettt ettt st 117
Appendix A. Error messages and debUg@INg.........c.coecveiviiiiiiiieieiiie e eeiee et 119
Appendix B. Conventional contents of the header..............ccccoovieiiiiiiiiiiiie e 120
Appendix C. Resources available............cooviiiiiiiiiiiiiieecie et saaea e s 122
PUDIIC INEETPTELETS. ..ottt ettt ettt e st e et e et e et esabeebeeenseenseesnseesaeeenns 122
TeStING COMPIIANCE.eeeueiieeiiieeiiie ettt ettt e etee e et e e ettt e e s bt e e e sbee e sbeeessseeesseeeeennnssaaaeeeensssees 122
COMIPILETS. ...ttt ettt ettt et et et e e b e et besate e aeeeabeesaesabeeseeenbeeseesnseeseeenseeenses 122
ULIIEY PIOZTAINIS.eeeueiieeiiieeiieeeiteeeiteeetteesteeeeaaeeeesbeesssseeesseeansseesssseeansseeansaeesssseesssaeenssseeessnnnes 123
SHOTY FTLES. ..ttt ettt ettt et et e e b et et e e bt e et e e te e et e e bt e enbeeeennreeas 123
DOCUMEILS. ...ttt e sttt e bt e e bt e s bt e e e e et e e e e s enneeee 124
Appendix D. A short history of the Z-machine..............ccccoecuieiiiriiiiieiiieee e 125
APPENAIX E. STALISTICS. . .tiiiiiiiiiiieciie e e ettt e et e eee e st e e steeesaaeeesabeeensseeeesssssaeaeesnnssaaeesannes 129

Appendix F. Canonical Story Fles.......couoviiiiiiiniiiiiieieeeeeee et 132

Preface

The Z-machine was created on a coffee table in Pittsburgh in 1979. It is an imaginary
computer whose programs are adventure games, and is well-adapted to its task,
implementing complex games remarkably compactly. They were still perhaps 100K long,
too large for the memory of the home computers of their day, and the Z-machine seems to
have made the first usage of virtual memory on a microcomputer. Further ahead of its time
was the ability to efficiently save and restore the entire execution state.

The design's cardinal principle is that any game is 100% portable to different computers:
that is, any legal program exactly determines its behaviour. This portability is largely made
possible by a willingness to constrain maximum as well as minimum levels of performance
(for instance, dynamic memory allocation is impossible).

Infocom's catalogue continues to be sold and to be played under interpreter programs, either
original Infocom ones or more recent and generally better freeware ones. About 130 story
files compiled by Infocom's compiler Zilch survive and since 1993 very many more story
files have been created with the Inform design system.

Eight Versions of the Z-machine exist, and the first byte of any "story file" (that is: any Z-
machine program) gives the Version number it must be interpreted under.

Standardisation

The majority of opcode names used in this document were agreed between 1994 and 1995
as a standard set by Mark Howell, author of the disassembler Txd (part of the Ztools suite
of utility programs), and Graham Nelson, author of the assembly level of Inform. They do
not correspond to Infocom's opcode names.

The first vesion of this Standard was drawn up in November 1995, drawing on a rougher
description written in 1993 and, before that, sketches of table formats by Mike Threepoint
and others. It formalised what different interpreter writers regard as the Z-machine,
guaranteeing a reliable and well-featured platform for writers of new games. The initial 0.2
Standard was followed by the 1.0 Standard, which contained mostly corrections and
clarifications, but also added some new features.

This third version of the Standard was initially put together by Kevin Bracey and Jason C.
Penney and proposed on the Z-Machine Mailing List in December 2001. After much
discussion, and nine drafts, the final list of changes to the Standard was uploaded to the if-
archive in May 2006. This 2014 document adds no new material to that final draft, and is
merely a merging of those changes to the main Standard.

The main additions in the 1.1 Standard are:

¢ Better colour support, giving games access to 32,768 colours as opposed to the
previous 11. Version 6 games may also make use of the new 'transparent' background
colour.

*

2

Version 6 games may now hint to the interpreter that it is safe to make changes to the
display in a backing store and flush them to the screen later, rather than making
changes directly to the screen. In a program carrying out a complex layered graphical
composition, this may speed up the process.

The save and restore opcodes have a new optional operand that allow the game to
control whether the interpreter prompts for a filename or executes the intructions
silently.

The optional operand removed from set_font in the previous Standard has been
reinstated.

There are three companion documents are attached to this Standard.

2

Quetzal by Martin Frost, defines a standard format for saved-game files, the purpose
of which is to allow a player to save a game using one interpreter, and then restore
and continure playing on a new interpreter, or even an entirely new machine.

Blorb by Andrew Plotkin is a standard for a "resources" file to accompany or
encapsulate a Z-machine game, neatly packaging up sound and graphics in modern
formats.

The Treaty of Babel is a standard for bibliographic information for interactive
fiction games. The aim is to provide a unified way to identify and describe story files
of many different internal formats. The Treaty is not "owned" by any individual, but
by a committee of representatives from each of the pieces of software which have
signed up.

Standard interpreters are not required to support these standards, since they do not affect Z-
Machine behaviour, but interpreter-writers are strongly encouraged to consider it.

So what is "standard"?

To call itself "Standard", an interpreter should (as far as anyone knows) obey this document
exactly for every Version of the Z-machine it claims to interpret. Interpreters need not
provide optional features suggested in the "remarks" sections, and need not make their
source code public. Each edition of this document has a Revision number, somewhat like
the JFIF identification number used by the JPEG standard. A standard interpreter should
communicate its revision number in three ways:

2

*

To someone downloading it from the Internet: by including it in its filename.

To the player: for instance by means of an "information" option on a menu, or in an
initialisation sequence.

To the game: by writing it into bytes in the header which were always left zero before
this standard was devised (see S11). A game compiled with Inform library 5/12 or
later prints the revision number in its banner (if this isn't 0.0).

Few arbitrary choices have been made in writing this document. Where Infocom's own
shipped interpreters disagree, or contain manifest bugs, it has usually been possible to
decide which was "correct". Elsewhere, minimum levels of performance have been invented
where necessary. (For example, a minimum call-stack size is needed for programmers to be
sure of what level of recursion is safe.)

Those paragraphs which genuinely extend the Infocom format are marked ***[n.m], where
n and m are the major and minor version numbers for the Standard in which the feature was
added. In any event, Infocom's original shipped interpreters do not conform to this standard
document, because of bugs or because of slight variations between the Inform output format
and Infocom's.

Notation

Hexadecimal numbers are written with an initial dollar, as in $ff, while binary numbers are
written with a double-dollar as in $$11011, according to Inform conventions. The bits in a
byte are numbered 0 to 7, 0 being the least significant and the top bit, 7, the most.

Story files are mechanically best identified by their release number and serial code, which
are written into the header information at the bottom of Z-machine memory. The release
number can be anything between 0 and 65535 but is usually between 1 and 100. The serial
code can consist of any six textual characters but is usually the date of compilation,
arranged YYMMDD: thus 970619 refers to June 19th, 1997.

Paul David Doherty, in his extensive investigations into Infocom's released games,
introduced the notation

Release number.Serial code

to identify particular story files: for example the first production copy of 'Enchanter' is
10.830810. This notation is used throughout the Standard when individual Infocom files
need to be referred to.

Where are all the grammar tables?

The Z-machine has some lexical acuity but it doesn't contain a full parser: it's like a
computer without an operating system. A game program has to contain its own parser and
the tables this uses are not part of the formal Z-machine specification. (Many Infocom
games have similar parsing table formats simply because, until Version 6, they used an
evolving version of the 'Zork I' parser. A quite different parser was used in Version 6.)
Inform's parsing table formats are documented in the /nform Technical Manual. For the
usual format of Infocom's parsing tables, see the Ztools utility Infodump.

Acknowledgements

There is an obvious resemblance between an unreadable script and a secret code; similar
methods can be employed to break both. But the differences must not be overlooked. The
code is deliberately designed to baffle the investigator; the script is only puzzling by
accident.

John Chadwick, The Decipherment of Linear B

The Z-machine was originally devised by Joel Berez and Marc Blank in 1979. Marc Blank
made most of the Version 4 extensions, and Version 5 was created by Dave Lebling (with
contributions from others including Brian Moriarty, Duncan Blanchard and Linde
Dynneson). Version 6 was largely the work of Tim Anderson and Dave Lebling.

In the reverse direction, decipherment is mostly due to the InfoTaskForce (David Beazley,
George Janczuk, Peter Lisle, Russell Hoare and Chris Tham), Matthias Pfaller, Mike
Threepoint, Mark Howell, Paul David Doherty and Stefan Jokisch. Only a few of the pieces
in the jigsaw were placed by myself.

I gratefully acknowledge the help of Paul David Doherty and Mark Howell, who each read
drafts of this paper and sent back detailed corrections; also, of Stefan Jokisch and Marnix
Klooster who have put a great deal of work into the fine detail of the specification; and of
all those who commented on the circulated draft. Mistakes and misunderstandings remain
my own.

Graham Nelson
15 November 1995

Kevin Bracey and Stefan Jokisch discovered most of the mistakes in Standard 0.2, in
developing the first Version 6 interpreters of the modern age: Zip2000 and Frotz. Matthew
Russotto and Mark Knibbs supplied helpful information about Infocom's own Version 6
interpreters. Stefan also kindly read and commented on numerous drafts of the present
revision. Finally, discussion about this document was greatly assisted by the Z-Machine
Mailing List, organised by Marnix Klooster.

Graham Nelson

22 June 1997

The majority of the clarifications and updates in this latest revision are the work of Kevin
Bracey and Jason C. Penney. Thanks go also to the members of the (now defunct) Z-
Machine Mailing List, and those of the intfiction.org forum, especially Dannii Willis, for
bringing to light issues with my initial revision. Special thanks to Andrew Plotkin for his
notes, advice and general help while working on this revised document.

David Fillmore
21 February 2014

The Z-Machine Standard Version 1.1 was the work of Kevin Bracey & Jason C. Penney.
The initial document went through several drafts before arriving at the finished document,
thanks to the comments and advice of the members of the Z-Machine Mailing List.

David Fillmore
24 February 2014

Overview of Z-machine architecture

Local
«—p Variables
Processor
Temporary
<+

Stack
PC

Haraware accessed indirectly

Memory

The Z-machine is a design for an imaginary computer: Z is for 'Zork', the adventure game it
was originally designed to play. Like any computer, it stores its information (mostly) in an
array of variables numbered from 0 up to some large number: this is called its memory. A
stock of some 240 memory locations are set aside for easy and quick access, and these are
called global variables (since they are available to any part of the program which is
running, at any time).

The two important pieces of information not stored in memory are the program counter
(PC) and the stack. The Z-machine continuously runs a program by getting the instruction
stored at position PC in memory, acting on the instruction and then moving the PC forward
to the next. The instruction set of the Z-machine (the range of possible actions and how
they are encoded as numbers in memory) occupies much of this document.

Programs are divided into routines: the Z-machine is always executing a particular routine,
the one which the PC currently points inside. However, some instructions cause the Z-
machine to call a new routine and then to return where the first routine left off. The Z-
machine therefore needs to remember details of where to go back, and it stores these on the
stack.

The stack is a second bank of memory, quite separate from the main one, which has variable
size: initially it is empty. From time to time values are added to, or taken from, the top of the
stack. As well as being used to keep return details, the stack is also used to store local
variables (values needed only by a particular routine) and, for short periods only, the partial
results of calculations.

Thus, whereas most physical processors (e.g. Z80 or 6502) have a number of quick-access
variables outside of memory (called "registers") and a stack inside memory, the Z-machine
has the reverse: it has global variables inside memory and a stack kept outside.

There is no access to hardware except by executing particular Z-machine instructions. For
instance, read and read_char allow use of the keyboard; print and draw_picture allow use
of the screen. The screen's image is not stored anywhere in memory. Conversely, hardware
can cause the Z-machine to interrupt, that is, to make a spontaneous call to a particular
routine, interrupting what it was previously working on. This happens only if the program
has previously requested it: for example, by setting a sound effect playing and asking for a
routine to be called when it finishes; or by asking for an interrupt if thirty seconds pass
while the player is thinking what to type.

This simple architecture is overlaid by a number of special structures which the Z-machine
maintains inside memory. There are around a dozen of these but the most important are:

the header, at the bottom of memory, giving details about the program and a
map of the rest of memory;

the dictionary, a list of English words which the program expects that it
might want to read from the keyboard;

the object tree, an arrangement of chunks of memory called objects.

The Z-machine is primarily used for adventure games, where the dictionary holds names of
items and verbs that the player might type, and the objects tend to be the places and artifacts
which make up the game. Each object in the tree may have a parent, a sibling and a child.
For instance, in the start position of 'Zork I':

West of House

You are standing in an open field west of a white house, with a boarded front door.
There is a small mailbox here.

>open mailbox
Opening the small mailbox reveals a leaflet.
At this point (part of) the game's object tree looks like this:

[41] ""
. [68] "West of House"
[21] "you"
. [239] "small mailbox"
. [80] "leaflet"
. [127] "door"

Note that objects are numbered from 1 upward. (Object 41 is a dummy object being used by
the game to contain all the "rooms" or locations, and it has many more children besides
object 68.) The parent of the player is "West of House", whose parent is 41, which has no
parent. The sibling of the player is the mailbox; the child of the mailbox is the leaflet; the
sibling of the mailbox is the door and so on.

Objects are bundled-up collections of variables, which come in two kinds: attributes and
properties. Attributes are simply flags, that is, they can be set or unset, but have no
numerical value. Properties hold numbers, which may in turn represent pieces of text or
other information. For instance, one of the properties of the mailbox object above contains
the information that the English word "mailbox" refers to it. One of the attributes of the
mailbox object is set to indicate that it's a container, whereas the same attribute for the
leaflet object is unset. Here is a breakdown of the state of the mailbox:

239. Attributes: 30, 34
Parent object: 68 Sibling object: 127 Child object: 80
Property address: 2b53
Description: "small mailbox"
Properties:
[49] 00 ea
[46] 54 bf 4a c3
[45] 3e c1
[44] 5b 1c

So the only set attributes are 30 and 34: all others are unset. Values are given for properties
44, 45, 46 and 49. The Z-machine itself does not know or care what this information means:
that is for the program to sort out.

As a final example, here is part of one of the routines in 'Zork I":

10006: print_ret "Suicide is not the answer."
1le007: je g57 #84 ~10008

je g48 #15 ~rfalse

print_ret "Why don't you just walk like normal people?"
lo008: je g57 #63 ~10009

print_ret "How romantic!"
10009: je g57 #3b ~rfalse

get_parent "mirror" local®

get parent "mirror" sp

je géb locale sp ~10010

print_ret "Your image in the mirror looks tired."
10010: print_ret "That's difficult unless your eyes are

prehensile.”

Z-machine programs are stored on disc, or archived on the Internet, in what are called story
files. (Since they were introduced to hold interactive stories.) A story file consists of a
snapshot of main memory only. The processor begins to run a story file by starting with an
empty stack and a PC value set according to some information in the story file's header.
Note that the story file has to be set up with many of the structures in memory, such as the
dictionary and the object tree, already created and with sensible contents.

The first byte of any story file, and so the byte at memory address 0, always contains the
version number of the Z-machine to be used. The design was evolutionary over a period of a
decade: as version number increases, the instruction set grows and tables are reformatted to
allow more room for larger games. All of Infocom's games can be played using versions
between 3 (the majority) and 6. Games compiled by Inform mainly use versions 5 or 8.

1. The memory map

1.1 Regions of memory

The memory map of the Z-machine is an array of bytes with "byte addresses" running from
0 upwards. This is divided into three regions: "dynamic", "static" and "high". Dynamic
memory begins from byte address $00000 and runs up to the byte before the byte address
stored in the word at $0e in the header. (Dynamic memory must contain at least 64 bytes.)
Static memory follows immediately on. Its extent is not defined in the header (or anywhere
else), though it must end by the last byte of the story file or by byte address $Offff
(whichever is lower). High memory begins at the "high memory mark" (the byte address
stored in the word at $04 in the header) and continues to the end of the story file. The
bottom of high memory may overlap with the top of static memory (but not with dynamic

memory).

1.1.1

Dynamic memory can be read or written to (either directly, using loadb, loadw, storeb and
storew, or indirectly with opcodes such as insert_obj and remove_obj).

1.1.1.1

By tradition, the first 64 bytes are known as the "header". The contents of this are given
later but note that games are not permitted to alter many bits inside it.

1.1.1.2

It is legal for games to alter any of the tables stored in dynamic memory above the header,
provided they leave the tables in legal states.

1.1.2

Static memory can be read using the opcodes loadb and loadw. It is illegal for a game to
attempt to write to static memory.

1.1.3

Except for its (possible) overlap with static memory, high memory cannot be directly
accessed at all by a game program. It contains routines, which can be called, and strings,
which can be printed using print_paddr.

1.1.4

The maximum permitted length of a story file depends on the Version, as follows:

V1-3 V4-5 V6-8
128 256 512

1.2 Addresses

There are three kinds of address in the Z-machine, all of which can be stored in a 2-byte
number: byte addresses, word addresses and packed addresses.

1.2.1

A byte address specifies a byte in memory in the range 0 up to the last byte of static
memory.

1.2.2

A word address specifies an even address in the bottom 128K of memory (by giving the
address divided by 2). (Word addresses are used only in the abbreviations table.)

1.2.3

*#%11.0] A packed address specifies where a routine or string begins in high memory. Given
a packed address P, the formula to obtain the corresponding byte address B is:

2P Versions 1, 2 and 3

4p Versions 4 and 5

4P + 8R_O Versions 6 and 7, for routine calls
4P + 85 0 Versions 6 and 7, for print_paddr
8P Version 8

R Oand S O are the routine and strings offsets (specified in the header as words at $28 and
$2a, respectively).

An example memory map of a small game

Dynamic |00000 |header

00040 | abbreviation strings
00042 |abbreviation table
00102 | property defaults
00140 |objects

00210 | object descriptions and properties
006e3 | global variables
008c3 |arrays

Static 00b48 | grammar table

010a7 |actions table

01153 | preactions table
01201 |adjectives table
0124d | dictionary
High 0laPa |Z-code

05d56 | static strings
06ae6 |end of file

Remarks

Inform never compiles any overlap between static and high memory (it places all data tables
in dynamic memory). However, many Infocom games group tables of static data just above
the high memory mark, before routines begin; some, such as 'Nord 'n' Bert...", interleave
static data between routines, so that static memory actually overlaps code; and a few, such
as 'Seastalker' release 15, even contain routines placed below the high memory mark. (The
original idea behind the high memory mark was that everything below it should be stored in
the interpreter's RAM, while what was above could reasonably be kept in "virtual memory",
i.e., loaded off disc as needed.)

Note that the total of dynamic plus static memory must not exceed 64K. (In fact, 64K minus
2 bytes.) This is the most serious limitation on the Z-machine.

Throughout the specification, Versions 7 and 8 are identical to Version 5 except as stated at
1.1.4 and 1.2.3 above.

2. Numbers and arithmetic

2.1 Numbers

In the Z-machine, numbers are usually stored in 2 bytes (in the form most-significant-byte
first, then least-significant) and hold any value in the range $0000 to $ffff (0 to 65535
decimal).

2.2 Signed operations

These values are sometimes regarded as signed, in the range -32768 to 32767. In effect -n is
stored as 65536-n and so the top bit is the sign bit.

221

The operations of numerical comparison, multiplication, addition, subtraction, division,
remainder-after-division and printing of numbers are signed; bitwise operations are
unsigned. (In particular, since comparison is signed, it is unsafe to compare two addresses
using simply jl and jg.)

2.3 Arithmetic errors

Arithmetic errors:

2.3.1

It is illegal to divide by O (or to ask for remainder after division by 0) and an interpreter
should halt with an error message if this occurs.

2.3.2

Formally it has never been specified what the result of an out-of-range calculation should
be. The author suggests that the result should be reduced modulo $10000.

2.4 Random number generator

The Z-machine needs a random number generator which at any time has one of two states,
"random" and "predictable". When the game starts or restarts the state becomes "random".
Ideally the generator should not produce identical sequences after each restart.

24.1

When "random", it must be capable of generating a uniformly random integer in the range 1
<=x <=, for any value 1 <=n <= 32767. Any method can be used for this (for instance,
using the host computer's clock time in milliseconds). The uniformity of randomness should
be optimised for low values of n (say, up to 100 or so) and it is especially important to avoid
regular patterns appearing in remainders after division (most crudely, being alternately odd
and even).

2.4.2

The generator is switched into "predictable" state with a seed value. On any two occasions
when the same seed is sown, identical sequences of values must result (for an indefinite
period) until the generator is switched back into "random" mode. The generator should cope
well with very low seed values, such as 10, and should not depend on the seed containing
many non-zero bits.

243

The interpreter is permitted to switch between these states on request of the player. (This is
useful for testing purposes.)

Remarks

It is dangerous to rely on the older ANSI C random number routines (rand() and srand()), as
some implementations of these are very poor. This has made some games (in particular,
'Balances') unwinnable on some Unix ports of Zip.

The author suggests the following algorithm:

1. In "random" mode, the generator uses the host computer's clock to obtain a random
sequence of bits.

2. In "predictable" mode, the generator should store the seed value S. If S < 1000 it should
then internally generate

1,2,3,..,S,1,2,3,..,5, 1, ...

so that random n produces the next entry in this sequence modulo n. If S >= 1000 then S is
used as a seed in a standard seeded random-number generator.

(The rising sequence is useful for testing, since it will produce all possible values in
sequence. On the other hand, a seeded but fairly random generator is useful for testing entire
scripts.)

Note that version 0.2 of this standard mistakenly asserted that division and remainder are
unsigned, a myth deriving from a bug in Zip. Infocom's interpreters do sign division (this is
relied on when calculating pizza cooking times for the microwave oven in 'The Lurking
Horror'). Here are some correct Z-machine calculations:

-11 / 2 = -5 -11 / -2 5 11 / -2
-13 % 5 -3 13 % -5 3 -13 % -5

-5
-3

3. How text and characters are encoded

This technique is similar to the five-bit Baudot code, which was used by early Teletypes
before ASCII was invented.

Marc S. Blank and S. W. Galley, How to Fit a Large Program Into a Small Machine

3.1 Text

Z-machine text is a sequence of ZSCII character codes (ZSCII is a system similar to ASCII:
see S 3.8 below). These ZSCII values are encoded into memory using a string of Z-
characters. The process of converting between Z-characters and ZSCII values is given in SS
3.2 to 3.7 below.

3.2 Alphabets

Text in memory consists of a sequence of 2-byte words. Each word is divided into three 5-
bit 'Z-characters', plus 1 bit left over, arranged as

--first byte------- --second byte---
7 65432 160 765 432120
bit --first-- --second--- --third--

The bit is set only on the last 2-byte word of the text, and so marks the end.

3.2.1

There are three 'alphabets’, AO (lower case), Al (upper case) and A2 (punctuation) and
during printing one of these is current at any given time. Initially A0 is current. The
meaning of a Z-character may depend on which alphabet is current.

3.2.2

In Versions 1 and 2, the current alphabet can be any of the three. The Z-characters 2 and 3
are called 'shift' characters and change the alphabet for the next character only. The new
alphabet depends on what the current one is:

from A®@ from A1 from A2
Z-char 2 Al A2 AQ
Z-char 3 A2 A© Al

Z-characters 4 and 5 permanently change alphabet, according to the same table, and are
called 'shift lock' characters.

3.2.3

In Versions 3 and later, the current alphabet is always A0 unless changed for 1 character
only: Z-characters 4 and 5 are shift characters. Thus 4 means "the next character is in A1"
and 5 means "the next is in A2". There are no shift lock characters.

3.24

An indefinite sequence of shift or shift lock characters is legal (but prints nothing).

3.3 Abbreviations

In Versions 3 and later, Z-characters 1, 2 and 3 represent abbreviations, sometimes also
called 'synonyms' (for traditional reasons): the next Z-character indicates which abbreviation
string to print. If z is the first Z-character (1, 2 or 3) and x the subsequent one, then the
interpreter must look up entry 32(z-1)+x in the abbreviations table and print the string at
that word address. In Version 2, Z-character 1 has this effect (but 2 and 3 do not, so there are
only 32 abbreviations).

3.3.1

Abbreviation string-printing follows all the rules of this section except that an abbreviation
string must not itself use abbreviations and must not end with an incomplete multi-Z-
character construction (see S 3.6.1 below).

3.4 ZSCII escape

Z-character 6 from A2 means that the two subsequent Z-characters specify a ten-bit ZSCII
character code: the next Z-character gives the top 5 bits and the one after the bottom 5.

3.5 Alphabet table

The remaining Z-characters are translated into ZSCII character codes using the "alphabet
table".

3.5.1
The Z-character 0 is printed as a space (ZSCII 32).

3.5.2

In Version 1, Z-character 1 is printed as a new-line (ZSCII 13).

3.5.3

In Versions 2 to 4, the alphabet table for converting Z-characters into ZSCII character codes
is as follows:

Z-char 6789abcdef0123456789abcdef

current -----------momommemoooo o
Ao abcdefghijklmnopgrstuvwxyz
Al ABCDEFGHIJKLMNOPQRSTUVWXYZ
A2 70123456789.,!? #'"/\-:()

(Character 6 in A2 is printed as a space here, but is not translated using the alphabet table:
see S 3.4 above. Character 7 in A2, written here as a circumflex *, is a new-line.) For
example, in alphabet A1 the Z-character 12 is translated as a capital G (ZSCII character
code 71).

3.54

Version 1 has a slightly different A2 row in its alphabet table (new-line is not needed,
making room for the < character):

6789%abcdef0123456789abcdef

A2 ©123456789., 12 #'"/\<-:()

3.5.5

In Versions 5 and later, the interpreter should look at the word at $34 in the header. If this is
zero, then the alphabet table drawn out in S 3.5.3 continues in use. Otherwise it is
interpreted as the byte address of an alphabet table specific to this story file.

3.5.5.1

Such an alphabet table consists of 78 bytes arranged as 3 blocks of 26 ZSCII values,
translating Z-characters 6 to 31 for alphabets A0, A1 and A2. Z-characters 6 and 7 of A2,
however, are still translated as escape and newline codes (as above).

3.6 Padding and incompleteness

Since the end-bit only comes up once every three Z-characters, a string may have to be
'padded out' with null values. This is conventionally achieved with a sequence of 5's, though
a sequence of (for example) 4's would work equally well.

3.6.1

It is legal for the string to end while a multi-Z-character construction is incomplete: for
instance, after only the top half of an ASCII value has been given. The partial construction
is simply ignored. (This can happen in printing dictionary words which have been
guillotined to the dictionary resolution of 6 or 9 Z-characters.)

3.7 Dictionary truncation

When an interpreter is encrypting typed-in text to match against dictionary words, the
following restrictions apply. Text should be converted to lower case (as a result A1 will not
be needed unless the game provides its own alphabet table). Abbreviations may not be used.
The pad character, if needed, must be 5. The total string length must be 6 Z-characters (in
Versions 1 to 3) or 9 (Versions 4 and later): any multi-Z-character constructions should be
left incomplete (rather than omitted) if there's no room to finish them. For example, "i" is
encrypted as:

14, 5, 5, 5, 5, 5, 5, 5, 5
$48a5 $14a5 $94a5

3.7.1

In Versions 1 and 2 only, when encoding text for dictionary words, shift-lock Z-characters 4
and 5 are used instead of the single-shift Z-characters 2 and 3 when the next two characters
come from the same alphabet.

3.8 Definition of ZSCII and Unicode

The character set of the Z-machine is called ZSCII (Zork Standard Code for Information
Interchange; pronounced to thyme with "xyzzy"). ZSCII codes are 10-bit unsigned values
between 0 and 1023. Story files may only legally use the values which are defined below.
Note that some values are defined only for input and some only for output.

Table 2: summary of the ZSCII rules

0 null Output

1-7 -

8 delete Input

9 tab (V6) Output

10 -—--

11 sentence space (V6) Output

12 -

13 newline Input/Output
14-26 -

27 escape Input

28-31 -

32-126 standard ASCII Input/Output
127-128 | ----

129-132 | cursor u/d/l/r Input
133-144 | function keys f1 to f12 Input
145-154 |keypad 0 to 9 Input
155-251 |extra characters Input/Output
252 menu click (V6) Input

253 double-click (V6) Input

254 single-click Input
255-1023 | ----

3.8.1

The codes 256 to 1023 are undefined, so that for all practical purposes ZSCII is an 8-bit

unsigned code.

3.8.2

The codes 0 to 31 are undefined except as follows:

3.8.2.1

ZSCII code 0 ("null") is defined for output but has no effect in any output stream. (It is also
used as a value meaning "no character" when reporting terminating character codes, but is
not formally defined for input.)

3.8.2.2
ZSCII code 8 ("delete") is defined for input only.

3.8.2.3

ZSCII code 9 ("tab") 1s defined for output in Version 6 only. At the start of a screen line this
should print a paragraph indentation suitable for the font being used: if it is printed in the
middle of a screen line, it should be converted to a space (Infocom's own interpreters do not
do this, however).

3.8.2.4

ZSCII code 11 ("sentence space") is defined for output in Version 6 only. This should be
printed as a suitable gap between two sentences (in the same way that typographers
normally place larger spaces after the full stops ending sentences than after words or
commas).

3.8.2.5
ZSCII code 13 ("carriage return") is defined for input and output.

3.8.2.6
ZSCII code 27 ("escape" or "break") is defined for input only.

3.8.3

ZSCII codes between 32 ("space") and 126 ("tilde") are defined for input and output, and
agree with standard ASCII (as well as all of the ISO 8859 character sets and Unicode).
Specifically:

0123456789abcdef0123456789abcdef

$20 1"#$%&' ()*+,-./0123456789: ;<=>?
$40 @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]"_
$60 'abcdefghijklmnopgrstuvwxyz{!}~

Note that code $23 (35 decimal) is a hash mark, not a pound sign. (Code $7¢ (124 decimal)
is a vertical stroke which is shown as ! here for typesetting reasons.)

3.8.3.1
ZSCII codes 127 ("delete" in some forms of ASCII) and 128 are undefined.

3.84
ZSCII codes 129 to 154 are defined for input only:

129: cursor up 130: cursor down 131: cursor left 132: cursor right

133: f1 134: f2 144: f12
145: keypad © 146: keypad 1 154: keypad 9
3.8.5

The block of codes between 155 and 251 are the "extra characters" and are used differently
by different story files. Some will need accented Latin characters (such as French E-acute),
others unusual punctuation (Spanish question mark), others new alphabets (Cyrillic or
Hebrew); still others may want dingbat characters, mathematical or musical symbols, and so
on.

3.8.5.1

#%[1.0] To define which characters are required, the Unicode (or ISO 10646-1) Basic
Multilingual Plane character set is used: characters are specified by unsigned 16-bit codes.
These values agree with ISO 8859 Latin-1 in the range 0 to 255, and with ASCII and ZSCII
in the range 32 to 126. The Unicode standard leaves a range of values, the Private Use Area,
free: however, an Internet group called the ConScript Unicode Registry is organising a
standard mapping of invented scripts (such as Klingon, or Tolkien's Elvish) into the Private
Use Area, and this should be considered part of the Unicode standard for Z-machine
purposes.

The Z-machine does not provide access to non-BMP characters (ie characters outside the
range U+0000 to U+FFFF).

3.8.5.2

*#%[1.0] The story file chooses its stock of extra characters with a "Unicode translation
table" as follows. Under Versions 1 to 4, the "default table" is always used (see below). In
Version 5 or later, if Word 3 of the header extension table is present and non-zero then it is
interpreted as the byte address of the Unicode translation table. If Word 3 is absent or zero,
the default table is used.

3.8.5.2.1
The table consists of one byte giving a number N, followed by N two-byte words.

3.8.5.2.2

This indicates that ZSCII characters 155 to 155+N-1 are defined for both input and output.
(It's possible for N to be zero, leaving the whole range 155 to 251 undefined.)

3.8.5.2.3
The words in the table give Unicode character codes for each of the ZSCII characters 155 to

155+N-1 in turn.

3.8.5.3
The default table is as shown in Table 1.

3.8.5.4

The defined extra characters are entirely normal ZSCII characters. They can appear in a
story file's alphabet table, in an array created by print stream 3 and so on.

3.8.5.4.1

*#%11.0] The interpreter is required to be able to print representations of every defined
Unicode character under $0100 (i.e. of every defined ISO 8859-1 Latinl character). If no
suitable letter forms are available, textual equivalents may be used (such as "ss" in place of
German sharp "s").

3.8.5.4.2

Normally, and where sensibly possible, all punctuation and letter characters in ISO 8859-1
Latinl should be readable from the interpreter's keyboard. (However, some interpreters may
want to provide alternative keyboard mappings, or to run in a different ISO 8859 set:
Cyrillic, for example.)

3.8.54.3

**%[1.0] An interpreter is not required to have suitable letter-forms for printing Unicode
characters $0100 to $FFFF. (It may, if it chooses, allow the user to configure certain fonts
for certain Unicode ranges; but this is not required.) If a Unicode character must be printed
which an interpreter has no letter-form for, a question mark should be printed instead.

3.8.5.4.4

The Z-machine is not required to handle complex Unicode formatting like combining
characters, bidirectional formatting and unusual line-wrapping rules.

In Versions other than 6, interpreters may either handle these features, or not, in window 0.
In window 1, and all version 6 windows, they should be ignored.

3.8.5.4.5

Unicode characters U+0000 to U+001F and U+007F to U+009F are control codes, and must
not be used.

3.8.6
ZSCII codes 252 to 254 are defined for input only:

252: menu click 253: mouse double-click 254: mouse single-click

Menu clicks are available only in Version 6. A single click, or the first click of a double-
click, is passed in as 254. The second click of a double-click is passed in as 253. In Versions
5 and later it is recommended that an interpreter should only send code 254, whether the
mouse is clicked once or twice.

3.8.7

ZSCII code 255 is undefined. (This value is needed in the "terminating characters table" as a
wildcard, indicating "any Input-only character with code 128 or above." However, it cannot
itself be printed or read from the keyboard.)

Table 1: default Unicode translations (see S 3.8.5.3)

ZSCII code (dec) | Unicode code (hex) | Name Character | Textual Equivalent
155 Oe4 a-diaeresis a ae

156 0f6 o-diaeresis 0 oe

157 0Ofc u-diaeresis i ue

158 Oc4 A-diaeresis A Ae

159 0d6 O-diaeresis 0 Oe

160 0dc U-diaeresis U Ue

161 0df sz-ligature B ss

162 Obb quotation » >>or "
163 Oab marks « <<or"
164 Oeb e-diaeresis é e

165 Oef i-diaeresis i 1

166 Off y-diaeresis N y

167 Ocb E-diaeresis E E

168 Ocf I-diaeresis I I

169 Oel a-acute a a

170 0e9 e-acute é e

171 Oed i-acute i i

172 013 o-acute 0 0

173 Ofa u-acute u u

174 0fd y-acute y y

175 Ocl A-acute A A

176 0c9 E-acute E E

177 Ocd I-acute i I
178 0d3 O-acute 0 0
179 0da U-acute U 9]
180 0dd Y-acute Y Y
181 0e0 a-grave a a
182 0e8 e-grave ¢ e
183 Oec i-grave i i
184 0f2 o-grave 0 0
185 019 u-grave u u
186 0c0 A-grave A A
187 0c8 E-grave E E
188 Occ I-grave I I
189 0d2 O-grave 0 0
190 0d9 U-grave U U
191 0e2 a-circumflex a a
192 Oea e-circumflex é e
193 Oee i-circumflex i i
194 0f4 o-circumflex 0 0
195 0fb u-circumflex a u
196 0c2 A-circumflex A A
197 Oca E-circumflex E E
198 Oce I-circumflex i I
199 0d4 O-circumflex |0 0
200 0db U-circumflex U U
201 0e5 a-ring a a
202 0c5 A-ring A A
203 018 o-slash o] 0
204 0d8 O-slash 0 O
205 0Oe3 a-tilde a a
206 0f1 n-tilde i n
207 0f5 o-tilde 0 0
208 0c3 A-tilde A A
209 0d1 N-tilde N N
210 0d5 O-tilde 0 0
211 0e6 ae-ligature ® ae
212 Oc6 AE-ligature A AE
213 0e7 c-cedilla ¢ c
214 0c7 C-cedilla C C
215 Ofe Icelandic thorn | b th

216 0f0 Icelandic eth 0 th
217 Ode Icelandic Thorn |P Th
218 0d0 Icelandic Eth b Th
219 0a3 pound symbol £ L
220 153 oe-ligature ® oe
221 152 OE-ligature E OE
222 Oal inverted ! i !
223 Obf inverted ? . ?
Remarks

In practice the text compression factor is not really very good: for instance, 155000
characters of text squashes into 99000 bytes. (Text usually accounts for about 75% of a
story file.) Encoding does at least encrypt the text so that casual browsers can't read it. Well-
chosen abbreviations will reduce total story file size by 10% or so.

The German translation of 'Zork I' uses an alphabet table to make accented letters (from the
standard extra characters set) efficient in dictionary words. In Version 6, 'Shogun' also uses
an alphabet table.

Unicode translation tables are new in Standard 1.0: in Standard 0.2, the extra characters
were always mapped using the default Unicode translation table.

Note that if a random stretch of memory is accidentally printed as a string (due to an error in
the story file), illegal ZSCII codes may well be printed using the 4-Z-character escape
sequence. It's helpful for interpreters to filter out any such illegal codes so that the resulting
on-screen mess will not cause trouble for the terminal (e.g. by causing the interpreter to
print ASCII 12, clear screen, or 7, bell sound).

The continental European quotation marks << and >> should have spacing which looks
sensible either in French style <<Merci!>> or in German style >>Danke!<<.

Ideally, an interpreter should be able to read time delays (for timed input) from stream 1
(i.e., from a script file). See the remarks in S 7.

The 'Beyond Zork' story file is capable of receiving both mouse-click codes (253 and 254),
listing both in its terminating characters table and treating them equally.

The extant Infocom games in Versions 4 and 5 use the control characters 1 to 31 only as
follows: they all accept 10 or 13 as equivalent, except that 'Bureaucracy' will only accept 13.
'Bureaucracy' needs either 127 or 8 to be a delete code. No other codes are used.

Curiously, 'Nord 'n' Bert Couldn't Make Head Nor Tail Of It' and 'A Mind Forever Voyaging'
allow some letter characters to be typed in with the top bit set. That is, if reading an A, they
would recognise 65 or 91 (upper or lower case) and also 193 or 219. Matthew Russotto
suggests this was an accommodation for the Apple II, whose keyboard primitives returned
the last key pressed in the bottom 7 bits of a byte, plus a top bit flag indicating whether or
not the keyboard had been hit since last time.

In the past, not just in the Z-machine world, there has been general confusion over the
rendering of ASCII/ZSCII/Latin-1/Unicode characters $27 and $60. For the Z-machine, the
traditional interpretations of right-single-quote/apostrophe and left-single-quote are
preferred over the modern neutral-single-quote and grave accent - see Table 2A of the
Inform Designer's Manual. $22 is a neutral double-quote.

An alternative rendering is to interpret both $27 and $60 as neutral quotes, but interpreting
$60 as a grave accent is to be avoided.

No doubt aware of this confusion, Infocom never used character $60, and used $27 almost
exclusively as an apostrophe - hardly any single quotes appear in Infocom games. Modern
authors would do well to follow their lead.

The few Infocom games that do use single quotes use $27 for both opening and closing - but
even on many of their interpreters this looked a little odd, so suggesting that $27 be a right
quote introduces no extra compatibility problems.

In Version 3 and later, many of Infocom's interpreters (and some subsequent interpreters,
such as ITF's) treat two consecutive Z-characters 4 or 5 as shift locks, contrary to the
Standard. As a result, story files should not use multiple consecutive 4 or 5 codes except for
padding at the end of strings and dictionary words. In any case, these shift locks are not used
in dictionary words, or any of Infocom's story files.

To handle languages like Arabic or Hebrew, text would have to be output "visually", with
manual line breaks (possibly via an in-game formatting engine).

Far eastern languages are generally straightforward, except they usually use no spaces, and
line wraps can occur almost anywhere. The easiest to way to handle this would be for the
game to turn off buffering. A more sophisticated game might include its own formatting
engine. Also, fixed-space output is liable to be problematical with most Far Eastern fonts,
which use a mixture of "full width" and "half width" forms - all half-width characters would
have to be forced to full width.

4. How instructions are encoded

We do but teach bloody instructions
Which, being taught, return to plague th' inventor
Shakespeare, Macbeth

4.1 Instructions

A single Z-machine instruction consists of the following sections (and in the order shown):

Opcode 1 or 2 bytes

(Types of operands) 1 or 2 bytes: 4 or 8 2-bit fields

Operands Between © and 8 of these: each 1 or 2 bytes
(Store variable) 1 byte

(Branch offset) 1 or 2 bytes

(Text to print) An encoded string (of unlimited length)

Bracketed sections are not present in all opcodes. (A few opcodes take both "store" and
"branch".)

4.2 Operand types

There are four 'types' of operand. These are often specified by a number stored in 2 binary
digits:

$$00 Large constant (@ to 65535) 2 bytes
$$01 Small constant (@ to 255) 1 byte
$$10 Variable 1 byte
$$11 Omitted altogether 0 bytes

4.2.1

Large constants, like all 2-byte words of data in the Z-machine, are stored with most
significant byte first (e.g. $2478 is stored as $24 followed by $78). A 'large constant' may in
fact be a small number.

4.2.2

Variable number $00 refers to the top of the stack, $01 to $0f mean the local variables of the
current routine and $10 to $ff mean the global variables. It is illegal to refer to local
variables which do not exist for the current routine (there may even be none).

4.2.3

The type 'Variable' really means "variable by value". Some instructions take as an operand a
"variable by reference": for instance, inc has one operand, the reference number of a
variable to increment. This operand usually has type 'Small constant' (and Inform
automatically assembles a line like @inc turns by writing the operand turns as a small
constant with value the reference number of the variable turns).

4.3 Form and operand count

Each instruction has a form (long, short, extended or variable) and an operand count (OOP,
10P, 20P or VAR). If the top two bits of the opcode are $$11 the form is variable; if $$10,
the form is short. If the opcode is 190 ($BE in hexadecimal) and the version is 5 or later, the
form is "extended". Otherwise, the form is "long".

4.3.1

In short form, bits 4 and 5 of the opcode byte give an operand type as above. If this is $11
then the operand count is 00P; otherwise, 10P. In either case the opcode number is given in
the bottom 4 bits.

4.3.2

In long form the operand count is always 20P. The opcode number is given in the bottom 5
bits.

4.3.3

In variable form, if bit 5 is 0 then the count is 20P; if it is 1, then the count is VAR. The
opcode number is given in the bottom 5 bits.

4.3.4

In extended form, the operand count is VAR. The opcode number is given in a second
opcode byte.

4.4 Specifying operand types
Next, the types of the operands are specified.

4.4.1
In short form, bits 4 and 5 of the opcode give the type.

4.4.2

In long form, bit 6 of the opcode gives the type of the first operand, bit 5 of the second. A
value of 0 means a small constant and 1 means a variable. (If a 20P instruction needs a large
constant as operand, then it should be assembled in variable rather than long form.)

4.4.3

In variable or extended forms, a byte of 4 operand types is given next. This contains 4 2-bit
fields: bits 6 and 7 are the first field, bits 0 and 1 the fourth. The values are operand types as
above. Once one type has been given as 'omitted', all subsequent ones must be. Example: $
$00101111 means large constant followed by variable (and no third or fourth opcode).

4.4.3.1

In the special case of the "double variable" VAR opcodes call_vs2 and call_vn2 (opcode
numbers 12 and 26), a second byte of types is given, containing the types for the next four
operands.

4.5 Operands

The operands are given next. Operand counts of 0OP, 10P or 20P require 0, 1 or 2 operands
to be given, respectively. If the count is VAR, there must be as many operands as there were
types other than 'omitted'.

4.5.1

Note that only call_vs2 and call_vn2 can have more than 4 operands, and no instruction can
have more than 8.

4.5.2

Opcode operands are always evaluated from first to last - this order is important when the
stack pointer appears as an argument. Thus

@sub sp sp -> 1i;
subtracts the second-from-top stack item from the topmost stack item.

4.6 Stores

"Store" instructions return a value: e.g., mul multiplies its two operands together. Such
instructions must be followed by a single byte giving the variable number of where to put
the result.

4.7 Branches

Instructions which test a condition are called "branch" instructions. The branch information
1s stored in one or two bytes, indicating what to do with the result of the test. If bit 7 of the
first byte is 0, a branch occurs when the condition was false; if 1, then branch is on true. If
bit 6 is set, then the branch occupies 1 byte only, and the "offset" is in the range 0 to 63,
given in the bottom 6 bits. If bit 6 is clear, then the offset is a signed 14-bit number given in
bits 0 to 5 of the first byte followed by all 8 of the second.

4.7.1

An offset of 0 means "return false from the current routine", and 1 means "return true from
the current routine".

4.7.2

Otherwise, a branch moves execution to the instruction at address

Address after branch data + Offset - 2.

4.8 Text opcodes

Two opcodes, print and print_ret, are followed by a text string. This is stored according to
the usual rules: in particular execution continues after the last 2-byte word of text (the one
with top bit set).

Remarks

Some opcodes have type VAR only because the available codes for the other types had run
out; print_char, for instance. Others, especially call, need the flexibility to have between 1
and 4 operands.

The Inform assembler can assemble branches in either form, though the programmer should
always use long form unless there's a good reason. Inform automatically optimises branch
statements so as to force as many of them as possible into short form. (This optimisation
will happen to branches written by hand in assembler as well as to branches compiled by
Inform.)

The disassembler Txd numbers locals from 0 to 14 and globals from 0 to 239 in its output
(corresponding to variable numbers 1 to 15, and 16 to 255, respectively).

The branch formula is sensible because in the natural implementation, the program counter
1s at the address after the branch data when the branch takes place: thus it can be regarded as

PC = PC + Offset - 2.

If the rule were simply "add the offset" then, since the offset couldn't be 0 or 1 (because of
the return-false and return-true values), we would never be able to skip past a 1-byte
instruction (say, a OOP like quit), or specify the branch "don't branch at all" (sometimes
useful to ignore the result of the test altogether). Subtracting 2 means that the only effects
we can't achieve are

PC = PC -1 and PC = PC - 2

and we would never want these anyway, since they would put the program counter
somewhere back inside the same instruction, with horrid consequences.

On disassembly

Briefly, the first byte of an instruction can be decoded using the following table:

$00 -- $1f 1long 20P small constant, small constant
$20 -- $3f long 20pP small constant, variable

$40 -- $5f long 20P variable, small constant

$60 -- $7f long 20P variable, variable

$80 -- $8f short 10pP large constant

$90 -- $9f short 10P small constant

$a0 -- $af short 10P variable

$b0 -- $bf short o0P

except $be extended opcode given in next byte

$cO -- $df variable 20P (operand types in next byte)
$e0 -- $ff variable VAR (operand types in next byte(s))

Here is an example disassembly:

@inc_chk c © label; 05 02 00 d4
long form; count 20P; opcode number 5; operands:
02 small constant (referring to variable c)
00 small constant @
branch if true: 1-byte offset, 20 (since label is
18 bytes forward from here).
@print "Hello.”™"; b2 11 aa 46 34 16 45 9c a5
short form; count OOP.
literal string, Z-chars: 4 13 10 17 17 20 5 18 5 7 5 5.
@mul 1000 c -> sp; d6 2f 03 e8 02 00
variable form; count 20P; opcode number 22; operands:
03 e8 1long constant (1000 decimal)
02 variable c
store result to stack pointer (var number ©90).
@call_1n Message; 8f 01 56
short form; count 10P; opcode number 15; operand:
01 56 1long constant (packed address of routine)
.label;

5. How routines are encoded

5.1 Start position

A routine is required to begin at an address in memory which can be represented by a
packed address (for instance, in Version 5 it must occur at a byte address which is divisible
by 4).

5.2 Header

A routine begins with one byte indicating the number of local variables it has (between 0
and 15 inclusive).

5.2.1

In Versions 1 to 4, that number of 2-byte words follows, giving initial values for these local
variables. In Versions 5 and later, the initial values are all zero.

5.3 First instruction

Execution of instructions begins from the byte after this header information. There is no
formal 'end-marker' for a routine (it is simply assumed that execution eventually results in a
return taking place).

5.4 Main routine (V6)

In Version 6, there is a "main" routine (whose packed address is stored in the word at $06 in
the header) called when the game starts up. It is illegal to return from this routine.

5.5 Initial execution point (other versions)

In all other Versions, the word at $06 contains the byte address of the first instruction to
execute. The Z-machine starts in an environment with no local variables from which, again,
a return is illegal.

Remarks

Note that it is permissible for a routine to be in dynamic memory. Marnix Klooster suggests
this might be used for compiling code at run time!

In Versions 3 and 4, Inform always stores 0 as the initial values for local variables.

6. The game state: storage and routine calls

6.1 Saved states

The "state of play" is defined as the following: the contents of dynamic memory; the
contents of the stack; the value of the program counter (PC), and the "routine call state"
(that is, the chain of routines which have called each other in sequence, and the values of
their local variables). Note that the routine call state, the stack and the PC must be stored
outside the Z-machine memory map, in the interpreter's private memory.

6.1.1

The entire state of play must be stored when the game is saved.

6.1.1.1

The format of a saved game file is not specified.

6.1.1.2

An internal saved game for "undo" purposes (if there is one) is not part of the state of play.

This is important: if a saved game file also contained the internal saved game at the time of
saving, it would be impossible to undo the act of restoration. It also prevents internal saved
games from growing larger and larger as they include their predecessors.

6.1.1.3

It is illegal to save the game (either with save or save_undo) during an "interrupt routine"
(one coming about through timed input, sound effect termination or newline interrupts).
Therefore saved games need not store information capable of restoring such a position.

6.1.2

On a "restore" or "undo" (which restores a game saved into internal memory), the entire
state of play is written back except that 'Flags 2' in the header is preserved. (This
information includes whether the game is being transcribed to printer and whether a fixed-
pitch font is being used.)

6.1.2.1

Before a "restore", an interpreter should check that the file to be used has been saved from
the same game currently being played. (See remark below.)

6.1.2.2

After a "restore" or "undo", an interpreter should reset the header values marked Rst in the
header table of S 11. (It should not be assumed that the game was saved by the same
interpreter.)

6.1.3

A "restart" is similar: the entire state is restored from the original story file, and the stack is
emptied; but 'Flags 2' is preserved; and the interpreter should reset the Rst parts of the
header.

6.1.4

In Versions 5 and later, an interpreter unable to save the game state into internal memory
(for "undo" purposes) must clear bit 4 of 'Flags 2' in the header.

6.2 Storage of global variables

Global variables (variable numbers $10 to $ff) are stored in a table in the Z-machine's
dynamic memory, at a byte address given in word 6 of the header. The table consists of 240
2-byte words and the initial values of the global variables are the values initially contained
in the table. (It is legal for a program to alter the table's contents directly in play, though not
for it to change the table's address.)

6.3 The stack

Writing to the stack pointer (variable number $00) pushes a value onto the stack; reading
from it pulls a value off. Stack entries are 2-byte words as usual.

6.3.1

The stack is considered as empty at the start of each routine: it is illegal to pull values from
it unless values have first been pushed on.

6.3.2

The stack is left empty at the end of each routine: when a return occurs, any values pushed
during the routine are thrown away.

6.3.3
The absolute minimum standard for stack size is defined as:

let the 'usage' of a routine call be 4 plus the number of local variables it has. During a game
the total of the usages for each routine in the recursive chain of routines being called, plus
the game's own stack usage, can be assumed to never reach 1024.

However, more recent games have required a much larger stack size than this allows for. It
is advised that interpreters allow for these games by having a larger stack size if at all
possible.

Two examples of modern interpreters with increased stack size are Windows Frotz, with
32768, and nfrotz with 61440.

6.3.4

In the seven opcodes that take indirect variable references (inc, dec, inc_chk, dec_chk,
load, store, pull), an indirect reference to the stack pointer does not push or pull the top
item of the stack - it is read or written in place.

6.4 Routine calls

Routine calls occur in the following circumstances: when one of the call... opcodes is
executed; in Versions 4 and later, when timed keyboard input is being monitored; in
Versions 5 and later, when a sound effect finishes; in Version 6, when the game begins (to
call the "main" routine); in Version 6, when a "newline interrupt" occurs.

6.4.1

A routine call may have any number of arguments, from 0 to 3 (in Versions 1 to 3) or 0 to 7
(Versions 4 and later). All routines return a value (though sometimes this value is thrown
away afterward: for example by opcodes in the form call_vn*).

6.4.2

Routine calls preserve local variables and the stack (except when the return value is stored
in a local variable or onto the top of the stack).

6.4.3

A routine call to packed address 0 is legal: it does nothing and returns false (0). Otherwise it
is illegal to call a packed address where no routine is present.

6.4.4

When a routine is called, its local variables are created with initial values taken from the
routine header (Versions 1 to 4) or with initial value 0 (Versions 5 and later). Next, the
arguments are written into the local variables (argument 1 into local 1 and so on).

6.4.4.1

It is legal for there to be more arguments than local variables (any spare arguments are
thrown away) or for there to be fewer.

6.4.5

The return value of a routine can be any Z-machine number. Returning 'false' means
returning 0; returning 'true' means returning 1.

6.5 Stack frames

A "stack frame" is an index to the routine call state (that is, the call-stack of return addresses
from routines currently running, and values of local variables within them). This index is a
Z-machine number. The interpreter must be able to produce the current value and to set a
value further down the call-stack than the current one, effectively throwing away its recent
history (see catch and throw).

6.6 User stacks (V6)

In Version 6, the Z-machine understands a third kind of stack: a "user stack", which is a
table of words in dynamic memory. The first word in this table always holds the number of
spare slots on the stack (so the initial value is the capacity of the stack). The Z-machine
makes no check on stack under-flow (i.e., pulling more values than were pushed) which
would over-run the length of the table if the program allowed it to happen.

Remarks

Some interpreters store the whole of dynamic memory to disc as part of their saved game
files, which can make them as much as 45K or so long. A player making a serious attack on
a game may end up wasting a whole megabyte, more than convenient without a hard disc. A
technique invented by Bryan Scattergood, taken up by most modern interpreters, greatly
reduces file size by only saving bytes of dynamic memory which differ from the initial state
of the game.

It is unspecified how an interpreter should decide whether a saved game file belongs to the
game currently being played. It is normal to insist that the release numbers, serial codes and
checksums all match. The Pinfocom interpreter deliberately checks only the release number,
so that saved games can be exchanged between different editions of 'Seastalker' (presumably
compiled to handle the sonarscope differently).

These issues are taken up in great detail in Martin Frost's Quetzal standard for saved game

files, created to allow different interpreters to exchange saved games. This Standard doesn't
require compliance with Quetzal, but interpreter writers are urged to consider it: it can only
help authors if players can send them saved games where bugs seem to have appeared.

The stack is stored in the interpreter's own memory, not anywhere in the Z-machine. The
game program has no direct access to the stack memory or stack pointer; on some
implementations the game's main stack is also used to store the routine call state (i.e. the
game stack and the call-stack are the same) but this need not be true.

The stack size specification guarantees in particular that if the game itself never uses more
than 32 stack entries at once then it can have a recursive depth of at least 90 routine calls.
The author believes that old Infocom games will all run with a stack size of 512 words.

Note that the "state of play" does not include numerous input/output settings (the current
window, cursor position, splitness or otherwise, which streams are selected, etc.): neither
does it include the state of the random-number generator. (Games with elaborate status lines
must redraw them after a restore has taken place.)

Zip provides "undo" but most versions of the ITF interpreter do not (and save_undo returns
0, unfortunately). This is probably its greatest failing. Some Infocom-written interpreters
will only provide "undo" to a game which has bit 4 of 'Flags 2' set: but Inform 5.5 doesn't
set this bit, so modern interpreters should be more generous.

Given the existence of Quetzal, a portable saved file format, it is quite possible that after
loading, the game may be running on a different interpreter to that on which the game
started. As a result, it is strongly advisable for games to recheck any interpreter capabilities
(eg Standard version, unicode support, etc) after loading.

7. Output streams and file handling

7.1 Output streams

At any given time text is being output through a selection of "output streams" (possibly
none, possibly several at once).

7.1.1

Two output streams are common to all Versions: number 1 (the screen) and 2 (the game
transcript, usually printed to a printer or a file).

7.1.1.1

In Versions 1 to 5, the player's input to the read opcode should be echoed to output streams
1 and 2 (if stream 2 is active), so that text typed in appears in any transcript. In Version 6
input should be sent only to stream 1 and it is the game's responsibility to write to the
transcript.

7.1.1.2

In Infocom's Version 4 game 'A Mind Forever Voyaging', which anticipated a printer rather
than a file to receive the transcript, stream 2 is turned off and on again several times in quick
succession. Thus if an interpreter decides where to send the transcript by asking the player
for a filename, this question should only be asked once per game session, not every time
stream 2 is selected.

7.1.2

Versions 3 and later supply these and two other output streams, numbered 3 (Z-machine
memory) and 4 (a script file of the player's whole commands and of individual keypresses
as read by read_char).

7.1.2.1

Output stream 3 writes to a table in dynamic memory. When the stream is selected, the table
may have any contents (even the initial 'size' word will be ignored by the interpreter). While
the stream is selected, the table's contents are unspecified (and a game cannot safely read or
write to it). When the stream is deselected, the initial word of the table holds the number of
characters printed and subsequent bytes hold those characters. Similarly, in Version 6, the
total width of printing (in units) will then be stored in the word at $30 in the header. (It is the
programmer's responsibility to make the table large enough: the interpreter performs no
overflow checking.)

7.1.2.1.1

*#%[1.0] It is possible for stream 3 to be selected while it is already on. If this happens, the
previous table address is remembered and the previous table is resumed when the new one is
finished. This nesting can reach a depth of up to 16: if stream 3 is opened for a seventeenth
time, the interpreter should halt with an error message.

7.1.2.2

Output stream 3 is unusual in that, while it is selected, no text is sent to any other output
streams which are selected. (However, they remain selected.)

7.1.2.2.1

Newlines are written to output stream 3 as ZSCII 13. (A game should never print_char the
value 10, or any other value which is undefined as a ZSCII output code.)

7.1.2.3

Output stream 4 is unusual in that, when it is selected, the only text printed to it is that of the
player's commands and keypresses (as read by read_char). (Each command is written, in
one go, when it has been finished. Time delays and mouse-clicks should ideally be recorded.
For suggestions on how this might be achieved, see the remarks section below. Mistypes
and uses of 'delete' are not written.)

7.2 Buffering

On output streams 1 and 2 (only), text printing may be "buffered" in that new-lines are
automatically printed to ensure that no word (of length less than the width of the screen)
spreads across two lines (if the interpreter is able to control this). (This process is sometimes
called "word-wrapping".)

7.2.1

In Versions 1 to 3, buffering is always on. In Versions 4 and later it is on by default (at the
start of a game) and a game can switch it on or off using the buffer _mode opcode.

7.2.2

In Version 6, each of the eight windows has its own "buffering flag". In Versions 3 to 5, the
buffer_mode applies only to the lower window, and buffering never happens in the upper
window.

7.3 Selection (V1 and V2)

In Versions 1 and 2, output stream 1 is always selected and stream 2 can be selected or
deselected by the game, by setting or clearing bit 0 of 'Flags 2'.

7.4 Selection (later versions)

In Versions 3 and later, all four output streams can be selected or deselected using the
output_stream opcode. In addition, stream 2 can be selected or deselected by setting or
clearing bit 0 of 'Flags 2'. Whichever method is used, the interpreter must ensure that this
flag holds the current status of stream 2. ('A Mind Forever Voyaging' requires this.)

7.5 Dealing with Unicode or invalid characters

*#%[1.0] Because of the print_unicode opcode, it is possible for arbitrary Unicode
characters to be sent to the output streams: that is, for characters which are not in the ZSCII
set at all, even in the "extra characters" range.

7.5.1

See S 3.8.5.4 for rules on printing Unicode to stream 1.

7.5.2

Interpreters are free to use any representation of non-ASCII Unicode characters in stream 2.
For example, they might print "[1a05]" to signify Unicode character $1a05; or they might
be configurable to write transcript files which conform to any chosen ISO 8859 set.

7.5.3

When printed to stream 3, Unicode characters should be converted to ZSCII if possible. If
this is not possible, a question mark should be printed to stream 3.

7.5.4

Non-ZSCII characters never need to be printed to stream 4.

7.6 File handling

*#%11.0] In Versions 5 and later, the Z-machine has the ability to load and save files (using
optional operands with the save and restore opcodes: these operands were not used in
Infocom's Version 5 games, but [wish to specify them as in Version 5 anyway).

7.6.1

*#*11.0] Filenames have the following format (approximately the MS-DOS 8.3 rule): one to
eight alphanumeric characters, a full stop and zero to three alphanumeric characters (the
"file extension").

7.6.1.1

The interpreter must convert all filenames to upper case before use. If no full stop is given,
".AUX" should be appended.

7.6.1.2

Games should avoid the extensions ".INF", ".H", ".Z" followed by a number or ".SAV":
otherwise they may be in danger of erasing their own object code, source code or saved
game files.

7.6.1.3

***[1.1] The interpreter should delete from the filename any characters illegal for a
filename. This will include all of the following characters (and more, if the OS requires it):
slash, backslash, angle brackets (Iess-than and greater-than), colon, double-quote, pipe
(vertical bar), question-mark, asterisk. The library should also truncate the argument at the
first full stop (delete the first full stop and any following characters). If the result is the
empty string, change it to the string "NULL".

7.6.2

*#%11.0] Saved files are not associated with any particular session of a game. They are not
part of the "state of play".

7.6.3
*#%[1.0] A game may depend on having up to 32 auxiliary files (with different names).

7.6.4

File-handling errors such as "disc corrupt" and "disc full" should be reported directly to the
player by the interpreter. The error "file not found" should only cause a failure return code
from restore.

7.6.5

Interpreters are allowed to not support access to external files (such as with output stream 2,
or the extra features of save and restore), or to only support some methods of access.
Interpreters should support these features if possible, as some games may rely on external
files, and in any case transcripts are very useful for testing, but in some environments such
access is not feasible.

7.6.5.1

An attempt by the game to use save or restore in a manner not supported by the interpreter
should simply return 0