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Preface

About TADS

TADS is a computer programming language system created especially for writing text adventures.
The syntax and structure of the language are designed to make sophisticated adventure games simple
and convenient to implement. TADS provides a complete run-time system with all of the features
required for a professional adventure game, so the game author can concentrate on his adventure
and not on the underlying software.

This section provides an overview of TADS, of text adventures in general, and of this manual.

About Text Adventures

The �rst text adventure game was called, appropriately enough, Adventure. The game was an
interactive simulation of a cave. The player interacted with the game by typing commands such as
\north" and \get rod," and the game responded by describing the consequences of the commands.

In many ways, Adventure was quite rudimentary; each player command was limited to one or two
words, and the range of possible actions was quite small. However, Adventure was di�erent from
any game that had gone before it, on a computer or otherwise, and it quickly attracted a large
following. The game became so popular, in fact, that it spawned an entire genre of games, called
\adventure games" after the �rst of their kind. As the genre has matured and computer hardware
has become capable of supporting more sophisticated programs, many improvements have been
made to adventure games, but the basic ideas have remained largely unchanged.

Adventure games appeal to a wide audience. Unlike most arcade-style games, an adventure can be
won, and it can take many days, or even weeks or months, to �nish a game. At their best, adventure
games are rich stories in which a player can become immersed.
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About TADS

Many people are so intrigued with the adventure game genre that they'd like to write adventures
themselves. Most people who start writing these games, though, quickly become overwhelmed by
the large amount of code that must be written. To write an adventure, a potential author must
�rst write a parser to read player commands, write code to save and restore games, set up data
structures to simulate the objects in the scenario, and write many other complicated routines. Not
all imaginative people are computer experts, so many potential adventure authors are discouraged
from trying their hand at the genre.

Fortunately, the most complex operations that an adventure gamemust perform are the same, or very
nearly so, in every game. Some people interested in adventure game development have discovered
that these common operations|displaying messages, checking and setting states of game objects,
saving and restoring games, and so forth|could be done by common subroutine libraries that are
shared by any number of games. Others have taken this idea further, realizing that a special-purpose
language designed speci�cally for text adventure implementation could simplify game authoring.
TADS is such a language.

Authors writing games with TADS will realize several bene�ts over writing games in a general-
purpose language. Some of the advantages of using TADS are:

� A great deal of code is already written for you: a full player-command parser, which
supports multiple objects in a single command, multiple commands on a line, use
of the word \all," and many other sophisticated features; �le manipulation code
to save and restore games; code to save a transcript of a game to a �le; string
compression logic that reduces the disk and memory space required for a game;
user-interface code; and many other functions that would be time-consuming to
write from scratch. Hence, the game author can concentrate on the game, and
ignore the low-level utility code that supports it.

� TADS source code requires no modi�cation to be compiled on any computer where
the TADS system runs. TADS is available on many computer systems, which means
that games are automatically portable to many computers with no e�ort beyond
�le transfer. Furthermore, with TADS version 2, the compiled binary game �le is
fully portable, so you don't even need to recompile your game when moving it to a
new system. While porting a game written in a general-purpose language generally
requires substantial work, TADS programs will always run the same way in every
environment without any changes.

� It is much easier to write a game in TADS than in a general-purpose language,
because TADS is speci�cally designed for text adventures. The language has several
constructs aimed at making adventure games convenient to write, and the object-
oriented nature of the language makes game design natural. Furthermore, the
standard object classes provided with the system are designed so that common
components of adventures can be implemented with practically no coding. So, even
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if all of the support code and portability that TADS o�ers were available in a
general-purpose language, the syntactic and structural e�ciency of TADS make it
superior for text adventure implementation.

About Version 2

TADS Version 1 was a very successful and useful piece of software, but there's always room for
improvement. We wanted to make TADS even more exible and powerful, and we wanted to address
many of the suggestions that users of version 1 made for enhancing the system. Some of the more
important features that are new in version 2 are listed below.

� Virtual Object Cache: one of the most important new features in version 2 is
a virtual memory subsystem that allows your game to be bigger than available
memory. Instead of requiring your game to �t into memory all at once, as version 1
did, TADS version 2 only requires the objects that are being used at any given time
to be in memory. Other objects are stored in a disk �le. This new feature makes
it possible to run an enormous game on a computer with little memory, and makes
the capacity of TADS version 2 e�ectively unlimited on all computer systems.

� Undo: the run-time system now allows a player to \undo" commands. Unlike some
adventure game systems, TADS keeps large amounts of undo information, allowing
the player to undo many turns (over a hundred in the default con�guration). Undo
should make games a lot more fun to play, because it will remove the tedium of
having to save and restore frequently when trying dangerous things.

� Additional C-like Syntax: TADS version 2 adds many new constructs from the C
language. The for, do-while, switch, and goto statements are now supported,
exactly as in C. Local variables can be initialized in their declarations, and you can
have multiple local statements at the start of a block. The operators `+=', `-=',
`*=', `/=', `++', `--', and `,' (the comma operator) have been added, and behave as
in C (with the extension that += can be used with lists and strings, and -= can be
used with lists).

� Implicit self: when evaluating or assigning to a property of self, you can now
omit the \self." pre�x on the property|the property name can simply be used
as though it were a local variable.

� Property and Function Pointers: you can now store a \pointer" to a property or
function in a variable, and then use it to call the property or function.

� Status Line Customization: you can now display whatever you want in the score
portion of the status line. You can display any text string in this area, allowing you
to display the time of day, the player's rank, or whatever else you want in place of
the standard score and turn-counter display.
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� Highlighted Text: games can display text that is \highlighted." On some systems,
this text will appear in a di�erent color, while on others it will appear with a
di�erent typeface (bold or italic).

Version 2 is a nearly complete rewrite of TADS. Fortunately, we only wanted to improve TADS,
not replace it, so we made sure that games written for version 1 will continue to work with version
2. Games written for version 1 will automatically take advantage of many of the new features in
version 2, such as the Virtual Object Cache and run-time Undo. Authors of new games written with
version 2 will have access to even more, such as additional C-like language syntax.

About This Manual

This document is intended for game designers who wish to implement games using TADS. This
manual will try to describe the system in such a way that no prerequisites are imposed on a potential
author, but you'll have the easiest time learning to use TADS if you're already familiar with a
traditional structured language such as Pascal or C. Familiarity with the concepts of object-oriented
programming will also help.

Here's an overview of the contents of this book:

� Chapter One leads you through a sample game, so you can see the big picture of how a
TADS game works.

� Chapter Two explains object-oriented programming in general. TADS has been heavily
inuenced by this style of programming.

� Chapter Three is a detailed introduction to the language.

� Chapter Four describes the run-time environment of a TADS program; in particular, this
chapter describes the player command parser.

� Chapter Five is a reference to the TADS language.

� Chapter Six describes the process of writing a game with TADS, from inspiration to imple-
mentation.

� Chapter Seven describes how to implement a variety of common adventure game elements,
and includes many examples of how to write TADS programs.

� Several Appendices provide additional details on several topics: using the compiler, error
messages, the standard adventure de�nitions, and how to design a good adventure game.

To use this manual to learn TADS, you should start with Chapters One and Two, but just to get the
avor of the system; don't worry about understanding all of the details right away. You should then
proceed to Chapter Three to become familiar with the language. While you are reading this chapter,
it may not seem immediately clear how to write an adventure with the language; for now, just try
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to get an overview of the language. Then, read Chapter Four, which describes how you use the
language to write an adventure; this chapter explains the TADS run-time environment in general,
and the player command parser in particular. While learning TADS, you will almost certainly �nd
it useful to refer frequently to the lengthy sample game provided with the TADS software, since it
has many examples of how the TADS language constructs are used in an actual game.

Chapter Five is reference material, describing the TADS language in detail. This chapter is not
intended to be a tutorial, but is designed to provide easy access to the details of writing a TADS
game. Likewise, the several Appendices document the microscopic details about the darker corners
of the system, such as compiler options and error messages.
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The vitality of thought is in adventure.

| ALFRED NORTH WHITEHEAD, Dialogues of Alfred North Whitehead (1953)

I know engineers|they love to change things.

| DR. McCOY, Star Trek: The Motion Picture (1979)
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Chapter One

A Sample Game

This section introduces many of the concepts of writing a TADS program by explaining how a simple
example works. The chapter starts with a very basic TADS program, to demonstrate the general
structure of a game, then expands it to show more features of the language. Although the example
is very simple, it is a complete, working TADS program.

We are starting with a sample game because it provides an overview of how a TADS program �ts
together. When you are reading later sections, which describe the elements of the language in detail,
it may be helpful to have an idea of where the details �t into the general structure of a game. This
chapter should help provide that overview.

A Very Simple Game

We'll start with about the simplest game possible: two rooms, and no objects. (We could conceivably
start with only one room, to make things even simpler, but then there would be nothing to do while
playing the game; with two rooms, we at least can move between them.)

If you want to try running this game, create a �le with the program text as shown below using your
text editor or word processor. The TADS Compiler will accept an ASCII �le produced with any
editor.

/* This is a comment, just like in C */

#include <adv.t> /* read generic adventure game "adv.t" */

#include <std.t> /* read standard underpinnings */

startroom: room /* the game always starts in "startroom" */

sdesc = "Outside cave" /* the "Short DESCription" of the room */

ldesc = "You're standing in the bright sunlight just

outside of a large, dark, forboding cave, which

lies to the north. "
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north = cave /* the room called "cave" lies to the north */

;

cave: room

sdesc = "Cave"

ldesc = "You're inside a dark and musty cave. Sunlight

pours in from a passage to the south. "

south = startroom

;

To run this example, all you have to do is compile it with tc, the TADS Compiler, and run it with
tr, the TADS Run-time system. If you named your sample program sample.t, on most operating
systems you can compile your game by typing this:

tc sample

and you can run it by typing this:

tr sample

Those two commands|tc and tr|are the only operating system commands you'll need to learn
to write games, apart from the commands you use to run your text editor and operating system
utilities.

Now we'll walk through the sample game line by line.

The #include command inserts another source �le into your program. The �le called adv.t is a set
of basic de�nitions common to most adventures. You should be able to use these de�nitions, with
few changes, for most adventure games. By including adv.t in your game, you don't need to worry
about de�nitions for basic words such as \the," a large set of verbs (such as \take," \north," and so
forth), and many object classes (more on these in a bit).

The line including std.t is similar; it contains some additional standard de�nitions. The reason
for placing these de�nitions in a separate �le is that they will usually be customized in a �nished
game. When you're in the �nal stages of polishing your game, you'll usually want to remove the
std.t de�nitions and use your own (for example, you will probably replace the init function in
std.t with your own version which displays an introductory message appropriate for your game).
However, the de�nitions in std.t are good enough to let you get started with a game.

The line that says startroom: room tells the compiler that you're going to de�ne a room named
\startroom". Now, a room is nothing special to TADS, but the �le adv.t that you included de�nes
what a room is. A room is one of those object classes we mentioned. The next line de�nes the sdesc
for this room. An sdesc is a short description; for a room, it is normally displayed whenever a
player enters the room. The ldesc is the long description; it is normally displayed the �rst time
a player enters the room, and can be displayed by the player by typing \look". Finally, the north

de�nition says that another room, called cave, is reached when the player types \north" while in
startroom.
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A bit of terminology: startroom and cave are objects, belonging to the class room; sdesc, ldesc,
north, and the like are properties of their respective objects. In the context of TADS programming,
an object is a named entity which is de�ned like startroom; each object has a class, which de�nes
how the object behaves and what kind of data it contains. Note that our usage is sometimes a
little loose, and we will also use \object" the way a player would, to refer to something in the game
that a player can manipulate. In fact, each item that the player thinks of as an object is actually
represented by a TADS object (sometimes several, in fact); but your TADS program will contain
many objects that the player doesn't directly manipulate, such as rooms.

If you are familiar with other programming languages, you may notice that the program above
appears to be entirely de�nitions of objects; you may wonder where the program starts running.
The answer is that the program doesn't have a beginning, exactly.

TADS is a di�erent style of programming than you have encountered before; this new style may take
a little getting used to, but you will �nd that it is quite powerful for writing adventure games and
simpli�es the task considerably. Most programming languages are \procedural"; you specify a series
of steps that the computer executes in sequence. TADS, on the other hand, is more \declarative";
you describe objects to the system. While TADS programs usually have procedural sections, in
which steps are executed in sequence, the overall program doesn't have a beginning or an end.

The reason TADS programs aren't procedural is that the player is always in control of the game.
When the game �rst starts, the system calls a bit of procedural code in your program that displays
any introductory text you wish the player to see, then the system waits for a command from the
player. Based on the command, the system will manipulate the objects you de�ned according to
how you declare these objects to behave. You don't have to worry about what the player types; you
just have to specify how your objects behave and how they interact with one another.

Adding Items to the Game

Now let's add a few items to the game that can be manipulated by the player, so he can do something
besides walk back and forth between our two rooms. We'll add a solid gold skull, and a pedestal for
it to sit upon.

pedestal: surface, fixeditem

sdesc = "pedestal"

noun = 'pedestal'

location = cave

;

goldSkull: item

sdesc = "gold skull"

noun = 'skull' 'head'

adjective = 'gold'

location = pedestal
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;

Here we've de�ned two objects, pedestal and goldSkull.

The pedestal belongs to two classes, surface and fixeditem. This means that it has attributes
of both classes; when there's a conict, the surface class takes precedence, because it's �rst in the
list of classes. Objects of the surface class can have other objects placed on top of them; objects
of the fixeditem class can't be carried. Note that the surface class has a default ldesc property
which lists any objects on the surface.

The goldSkull belongs to the item class, which is the generic class for objects without any special
properties.

Since these objects can be manipulated directly by the player, the player needs words to refer to
them. This is what the noun and adjective properties de�ne. All objects that the player can
manipulate must have at least one noun. Note that the goldSkull has two nouns; they are simply
listed with a space between them. Objects can also have adjectives; these serve to distinguish
between objects which have the same noun, but are otherwise optional. A good game will recognize
all of the words it uses to describe an object, so if you describe the skull as a \gold skull," you should
understand it when the player says \take the gold skull."

This brings us to a subtlety. Notice that the ldesc and other properties use double quotes around
their strings, but the noun and adjective properties have single quotes. Vocabulary words (nouns,
adjectives, verbs, prepositions, and articles) always use single quotes. Almost everything else will use
double quotes. The distinction is that a string enclosed in double quotes is displayed immediately
every time it is evaluated, while a string enclosed in single quotes is a string value that can be
manipulated internally. Double-quoted strings are displayed automatically as a convenience, since
most strings in text adventures are displayed without further processing. (Note that the double
quote mark is a separate character on the keyboard, and is not simply two single quote marks.)

These two objects have another new property, location. This simply de�nes the object that contains
the object being de�ned. In the case of the pedestal, the containing object is the cave room; since
the goldSkull is on the pedestal, its location is pedestal. (Note that the system makes no
distinction, at this level, between an object being inside another object and the object being on
another object. This means that an object can't be both a surface and a container.)

Making the Items Do Something

The game is still rather bland; it has no puzzles. So, let's introduce a small puzzle. Let's assume
that the gold skull wasn't merely left laying around; instead, whoever left it there arranged for a
trap to go o� if it should be lifted o� the pedestal. To implement this, we need to add a method to
the goldSkull object. A method is a special type of property which contains code to be executed;
it is very much like a function in C or Pascal. The new goldSkull with the method looks like this:
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goldSkull: item

sdesc = "gold skull"

noun = 'skull' 'head'

adjective = 'gold'

location = pedestal

doTake( actor ) =

{

"As you lift the skull, a volley of poisonous

arrows is shot from the walls! You try to dodge

the arrows, but they take you by surprise!";

die();

}

;

The method doTake (which stands for \direct object take") takes as an argument the character
who is trying to take the object (since we have no characters besides the player in this game yet,
actor will be the player's character, named Me.) Here, we've simply de�ned it to display a message
(since the message is enclosed in double quotes, it is displayed immediately upon being evaluated),
then calls a special function called die. (The parentheses following die tell TADS that you would
like to call die as a function.)

You should note that we didn't just pick the name doTake out of thin air. The doTake method in
the goldSkull object is called by TADS when the player types a \take" command with goldSkull

as the direct object. Each verb the player types results in the system calling particular methods in
the object or objects named in the command. The naming of these methods is described in detail
later in this manual.

You might wonder why we didn't need a doTake method in our original de�nition of goldSkull, or
you might have assumed that the system automatically knows what to do if no doTake is de�ned
for an object. In fact, all objects do need a doTake method, and the system doesn't automatically
know anything about it. However, since practically every object has the same doTake, with a few
exceptions such as goldSkull, it would be extremely tedious to type a doTake method for every
object in the game. Instead, we use something called \inheritance." By de�ning the goldSkull to be
a member of the item class, you tell TADS that goldSkull \inherits" all of the de�nitions for item,
in addition to any de�nitions it makes on its own. The item class, which appears in the adv.t �le
included at the beginning of the program, de�nes a doTakemethod, so anything that is de�ned to be
an item inherits that de�nition. However, if something is de�ned in both item and goldSkull, as
doTake is in this example, the de�nition in goldSkull takes precedence|it \overrides" the inherited
method.

We actually don't have a very good puzzle here, because there's no way to take the gold skull without
dying. So, let's put a rock on the cave oor:

smallRock: item

sdesc = "small rock"

noun = 'rock'
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adjective = 'small'

location = cave

;

Now, let's change the doTake method of the goldSkull.

doTake( actor ) =

{

if ( self.location<>pedestal or /* am I off the pedestal? */

smallRock.location=pedestal ) /* or is the rock there? */

{

pass doTake; /* yes - take as usual */

}

else /* no - the trap goes off! */

{

"As you lift the skull, a volley of poisonous

arrows is shot from the walls! You try to dodge

the arrows, but they take you by surprise!";

die();

}

}

This new doTake �rst checks to see if the object being taken (the special object self, which is the
object to which the message doTake was originally sent), which in this case is the gold skull, is
already o� the pedestal; if it is, we don't want anything to happen, so we pass the doTake message.
We also pass the message if the small rock is on the pedestal. When we pass the message, the
doTake method that we inherit from our parent class (in this case, item) is invoked. This allows us
to override a method only under certain special circumstances, and otherwise do business as usual.
If we don't satisfy one of these two requirements, the volley of poisonous arrows is released as before.

So, the solution to the puzzle is to put the rock on the pedestal before taking the skull, thereby
fooling the pedestal into thinking the skull is still there.

This should give you some idea of how a TADS program looks. In later sections, we'll cover the
details of the language, and explore all of the classes de�ned in adv.t. You should note that the
source code to a much more complex sample game is included with the TADS software; you may �nd
it useful to refer to that sample while reading the rest of this manual for examples of the language
constructs. You may also �nd that parts of the sample game can provide a model for objects in your
own games. Also, note that chapter six describes the implementation process in somewhat more
detail, and shows you how to build a larger sample game; you may want to look at chapter six after
you've become a little more familiar with TADS.
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Example is always more e�cacious than precept.

| SAMUEL JOHNSON, Rasselas (1759)
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Chapter Two

Object-Oriented Programming

Somewhere around 1985, the software marketing community discovered the term \object oriented,"
and latched onto the phrase with a devotion that even \hypertext" and \multi-media" have yet to
approach. With so many marketers using the term, and so few knowing what it means, \object
oriented" has come to mean almost anything, and hence nothing.

Despite the confusion, the term really does have a meaning. This section will attempt to clarify
what object-oriented programming is and how it applies to TADS. This chapter will also explain
why an object-oriented language is desirable when writing adventures.

This section is not \required reading" in learning TADS, but it may help you understand some of the
general ideas that inuenced the design of the system. You may prefer to skip this chapter the �rst
time you read this Author's Manual, and come back to it after you have a general understanding of
the language.

Object-Oriented Programming

TADS is an object-oriented programming language. Object-oriented languages are similar in many
ways to \procedural" languages such as C and Pascal, but approach problem-solving from a di�erent
perspective. Because of the shift in viewpoint, object-oriented programming is e�ective in many
di�erent kinds of applications, but it is particularly applicable to simulations. A text adventure is
fundamentally a simulation.

What is this \new perspective" of object-oriented programming? Basically, it is the view that one
takes of data. In a traditional language, you write a series of procedural steps that are applied to a
collection of data; code and data are �rmly separated. In object-oriented programming, on the other
hand, you partition a problem into a set of entities, called objects; each object contains both the
data and the code that describes its state and behavior. In a simulation, an object in the program
usually corresponds directly to an object being modelled.
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Bouncing Balls

Consider a simulation of a physics problem involving bouncing balls of various kinds. In a traditional
language, we would de�ne a set of data for each ball (such as its position, mass, and velocity); we
would give each ball some sort of identi�cation (perhaps a number, giving an array index) that would
let us tell the balls apart. Finally, a subroutine named bounce would be written; the subroutine
would take a ball number as its parameter, and would apply the appropriate changes to the ball's
data.

In contrast, an object-oriented version of the program would model each ball with an object. Not
only would the data about a ball be contained in the object representing the ball, but the code
needed to describe its behavior under various interactions would be contained in the object as well.
So, each ball would have its own bounce method (the object-oriented word for a subroutine that is
associated with a particular object or group of objects). Rather than calling the bounce subroutine
with an argument specifying ball 3, you would send ball 3 a message telling it to bounce (\send a
message" is the object-oriented term for calling a method).

Inheritance and Overriding

This may sound like a lot of coding, writing the same subroutine for each ball. Fortunately, object-
oriented languages have a feature that avoids this type of duplication. This feature is inheritance.
An object can be de�ned as belonging to a particular class, and it will inherit all of the code and
data de�ned for the class. Of course, it can still de�ne code and data itself, which can add to or
modify the attributes it inherits. When an object de�nes code or data that is already de�ned by its
class, the de�nitions the object makes override what it inherits from its class.

The utility of inheritance and overriding is that it becomes very simple to represent general and
special cases. For example, if you had twenty identical balls, but a twenty-�rst ball with special
behavior when bouncing (but apart from bouncing is the same as all the other balls), you'd �rst
de�ne a ball class, and de�ne all twenty-one balls as belonging to this class. The twenty-�rst ball,
though, would override the bouncemethod with its own special version. In a traditional language, on
the other hand, the bounce subroutine would need a special test to see if the odd ball was bouncing
and act accordingly.

This may seem like six of one and half a dozen of the other, but it has a big advantage: it isolates the
special case code with the special case object. Just as block-structured languages allow code to be
modularized, object-oriented languages allow entire objects|both their state and their behavior|to
be modularized. Most people �nd that this makes writing a program much easier, because they only
need to think about a special case in one place, rather than tracking down all the subroutines that
need to be modi�ed. It is especially helpful when debugging and maintaining a program, because
everything pertaining to an object is kept in one place.

Note that since a class can itself be a member of another class, this type of specialization can
be extended inde�nitely. For example, you could de�ne the classes rubberBall and billiardBall,
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each inheriting characteristics from the more general class ball and de�ning some of their own. Now
you could de�ne ten objects of each class, and these objects could themselves de�ne characteristics
overriding their two parent classes.

Object-Oriented Adventures

Object-oriented languages are quite useful for writing adventure games. When a player types a
command in a TADS game, the system sends certain messages to the object or objects involved. In
this way, it's easy to de�ne classes of objects that behave in particular ways in response to player
commands. For example, objects that the player can't pick up (such as phone booths and anvils)
respond with a simple \You can't have that" to a \take" command, whereas objects that can be
carried will move themselves into the player's inventory list. The basic adventure �le adv.t de�nes
a large number of basic classes, but the real power of TADS is the ability to add classes of your own.

TADS and other Object-Oriented Languages

Users of other languages that have object-oriented features, such as C++ or Smalltalk, will �nd
that TADS has a slightly di�erent approach to object-oriented programming. In particular, TADS
makes much less of a distinction between classes and objects than other languages.

In C++ and Smalltalk, a class is a template that speci�es the data types stored by members of the
class, but only an object actually stores values for the data. (This is analogous to the distinction
between a structure and instances of the structure in a language such as C or Pascal: the structure
de�nes the layout of data, but only an instance of the structure actually contains any data.) The
inheritance structure pertains to the classes; an object is an instance of a particular class, so only
methods and \slots" for data can be inherited|values for data items are not themselves inherited.

In TADS, there is no distinction between classes and instances of classes, in that a class is also an
object. Hence, data values as well as methods can be inherited from a parent object. In TADS, the
only distinction between a class and a normal object is that a class object is ignored by the player
command parser.

This di�erent approach leads to a di�erent style of programming. A TADS program consists mostly
of de�nitions of objects (instances of classes). All of the instances are speci�cally de�ned, with values
for properties, in the game program. In contrast, a C++ or Smalltalk program usually de�nes mostly
classes, and creates instances at run-time.

The noblest function of an object is to be contemplated.

| MIGUEL DE UNAMUNO, Mist (1914)
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Chapter Three

Language Overview

The Text Adventure Development System o�ers game authors a versatile and powerful language,
well suited to creating the world models that underlie text adventure games.

The TADS language is a powerful object-oriented language based on C. TADS uses most of the same
keywords and operators as C, but has a few changes that make it easier to use. TADS also uses
\run-time typing," which means that you don't have to declare in advance the datatypes of your
variables, functions, and properties. In addition, TADS has high-level datatypes, such as lists and
strings, that make memory management totally automatic.

This chapter provides an overview of the general features of the language.

Functions

Functions will be familiar to users of languages such as C and Pascal. A function is a bit of code
that is grouped together and given a name; another part of your program can cause a function to
carry out its code by calling it. This is an example of a function in TADS:

showSum: function(arg1, arg2, arg3)

{

"The sum is: ";

say(arg1 + arg2 + arg3);

"\n";

}

This function is called showSum. A function name can be any combination of letters and numbers,
but must start with a letter. Capital and lower-case letters are di�erent in TADS, so showSum is a
distinct function from showsum and ShowSum.

The curly braces indicate where the function starts and ends; the code inside is the body of the
function, and is executed each time the function is called.
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The items in parentheses, arg1, arg2, and arg3, are the arguments to the function. Some functions
have no arguments at all; for these functions, the parentheses and argument list are not present.
When the function is called, values are speci�ed for the arguments. For example, if the following
code is executed:

showsum(1, 2, 3);

showsum(9, 8, 7);

then the function is called twice: the �rst time, the values of arg1, arg2, and arg3, respectively, are
1, 2, and 3; the second time, they are 9, 8, and 7. The output is thus:

The sum is: 6

The sum is: 24

The arguments are entirely \local" to the function; arg1 is meaningful only within the function
showSum. The function can also de�ne local variables of its own with the local statement; this is
explained in more detail later.

Functions can do a great deal more than just display the sum of three numbers. The if statement
allows statements to be executed conditionally, and the while statement allows statements to be
executed repeatedly. TADS provides full integer arithmetic, and it also provides operations on
strings and lists (which will be described shortly). In addition, a function can return a value to its
caller. And, of course, one function can call another (or even itself). In short, most programs you
could write with a language such as C or Pascal or BASIC could be written with TADS functions.

Objects

Objects are the primary elements of any TADS game. Each real-world entity that a text adventure
models is described by a TADS object.

Note: The term \object" has a speci�c meaning in the context of TADS programming, and is
di�erent from its usual use in text adventures. While playing a game, you think of objects as those
things you can pick up and manipulate. In a TADS program, these are indeed represented as objects,
but so are many other things that the player doesn't directly manipulate, such as rooms, actors,
verbs, and many other things.

A TADS object is something like a C structure or Pascal record, which are collections of related
data (such as numbers and character strings) gathered together under a single name for convenience
of manipulation. An object has properties, which are data items associated with the object, but it
also has methods, which are bits of code tied to the object. Methods are very much like functions;
the di�erence is that a method is part of an object, whereas a function stands alone, and is not part
of any object.
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Properties

In the following example, only properties, not methods, are de�ned for an object.

robot: object

name = 'Lloyd'

weight = 350

height = 72

speed = 5

;

This de�nes robot as an object, and speci�es a list of properties and their values. The line name =

'Lloyd' says that the property name has the value 'Lloyd', a character string. Likewise, weight
= 350 says that the property weight has the numeric value 350, and so forth. (Note that only
integral numbers are supported in TADS; you can't use oating point numbers such as 3:1415926.
The maximum size of the numbers that TADS allows is about 2 billion.) The semicolon ends the
object de�nition.

To get at an object's properties, you use the name of the object, then a dot, then the property name.
For example, robot.name evaluates name property of the object robot. The function below prints
out the value of an object's name property.

showName: function(obj)

{

say(obj.name);

}

This function's single statement calls another function, say, with the argument obj.name. say is a
built-in function that displays a number or a string. (Note that say will determine when it is called
which type of data it should display, and act accordingly. Many built-in functions will perform their
action based on the type of data they are sent.)

In robot, we de�ned a number and a string. There is an additional special type of string in TADS,
enclosed in double quotes. This type of string is displayed automatically whenever it is evaluated.
This is a convenient shorthand, because it removes the need to call say every time you want to print
a string. Since text adventure games display a lot of text, this feature proves to be very convenient.

newobj: object

greeting = "Hello!\n"

;

The \n at the end of the string prints a newline (that is, it moves the cursor to the start of a new
line). There's a similar special code, \b, that prints a blank line. You might wonder why \b is
needed, when you could just use two \n's; the reason is that TADS will ignore redundant newlines.
Most of the time, this makes output formatting easier, because you don't have to worry about having
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too many newlines. Once in a while, though, you really want a blank line; you can use \b at these
times.

Property greeting, when evaluated, will simply print the string Hello! and a newline. So, rather
than calling the built-in say routine to display the value of newobj.greeting, you would simply
evaluate the property itself:

printGreeting: function(obj)

{

obj.greeting;

}

Properties can also have list values. A list is a set of values enclosed in square brackets, such as this:

listobj: object

mylist = [1 2 3]

;

Elements of a list need not be of the same datatype, but they generally are. Lists are convenient
when you need to keep related items together in one place, especially when the group of items
changes from time to time.

Several operators and built-in functions perform list operations. Operators are provided to add items
to and remove items from a list, and to reference an individual item in a list. Built-in functions are
provided to scan through a list, and to �nd an item within a list.

As an example of how to scan through a list, the function below displays all the elements of the list
contained in listobj.mylist. This example uses the list indexing operator, [index], to obtain the
individual entries in the list. It also uses the built-in function length() to determine how many
elements are in the list.

showList: function

{

local ind, len;

len := length(listobj.mylist); // Find the list's length

ind := 1; // start at first element

while (ind <= len) // loop over each element

{

say(listobj.mylist[ind]); // display this entry

"\n"; // Display a newline

ind := ind + 1; // move on to the next element

}

}

If you're familiar with C, you would probably want to write the loop in the example above using
the for statement, which would allow you to put the loop initialization, condition test, and loop
variable increment together in a single statement. You can use the for statement in TADS the same
way you use it in C, so you can rewrite the showList function with a for loop as shown below.
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showList: function

{

local ind;

local len := length(listobj.mylist); // save list's length

for (ind := 1 ; ind <= len ; ind++)

{

say(listobj.mylist[ind]); // display this entry

"\n"; // Display a newline

}

}

An alternative way of scanning items in a list is to use the built-in functions car() and cdr(). The
example below demonstrates these functions.

showList2: function

{

local cur; // A variable for the remainder of the list

cur := listobj.mylist; // Start with the whole list

while (car(cur)) // car(list) is the first element of a list

{

say(car(cur)); // Display the first element of rest of list

"\n"; // Display a newline

cur := cdr(cur); // cdr(list) is the rest of the list;

// that is, everything but the car of the list

}

}

This function loops through the list element by element. Each time through the while loop, cur is
replaced by the cdr of cur, which is the list minus its �rst element; the loop �nishes when car(cur)

is nil, which means that nothing is left in the list (nil is a special datatype which means, e�ectively,
the absence of a value). A while loop continues until its condition is either zero or nil.

Note that we assigned the list to a local variable before starting the loop, because we want to
take the list's cdr() each time through the loop; if we assigned this to listobj.mylist each time,
listobj.mylist would end up with nothing left when the function �nished. By assigning the list
to the local variable, we leave listobj.mylist intact.

These are some of the basic datatypes of TADS: numbers, strings (enclosed in single quotes, which are
simply values passed around), printing strings (enclosed in double quotes, which have no value but
are printed whenever evaluated), lists (values enclosed in square brackets), nil and true (returned
by expressions such as 1 < 2), and objects. A property can have any of these datatypes.

Methods

This is where the object-oriented nature of this language becomes more visible: a property can
contain code instead of a simple data item. When a property contains code, it is called a method.
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methodObj: object

c =

{

local i;

i := 0;

while (i < 100)

{

say(i); " ";

i := i+1;

}

return('that is all');

}

;

This object is considerably more complicated than those we have seen so far. The method c is a set
of statements, which are executed whenever methodObj.c is evaluated. The method in this case has
returned a value, but this is not necessary; quite often, a method is evaluated strictly for its side
e�ects, such as a message it prints.

Note that a property whose value is a double-quote string acts exactly like a method with the same
double-quote string as its only statement, so the following three de�nitions are synonymous:

string1: object

myString = "This is a string."

;

string2: object

myString =

{

"This is a string.";

}

;

string3: object

myString =

{

say('This is a string.');

}

;

Note that double-quote strings do not have any value; their only function is that their evaluation
displays the string.

Like functions, methods can take arguments. To specify arguments, simply list them as you would
with a function after the method name; they act as local variables inside the method just as function
arguments do.
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argObj: object

sum(a, b, c) =

{

"The sum is: ";

say(a + b + c);

"\n";

}

;

To invoke a method with arguments, the argument values are enclosed in parentheses and placed
after the method name, just as with a function call:

argObj.sum(1, 2, 3);

Inheritance

Objects can inherit properties and methods from other objects. The object keyword de�nes the
most general kind of object; in its place, you can use the name of another object. For example,

book: object

weight = 1 // Books are fairly light

;

redbook: book

description = "This is a red book."

;

bluebook: book

weight = 2 // A heavier-than-usual book

description = "This is a big blue book."

;

The �rst object, book, de�nes a general category. redbook de�nes a particular book, which means
it has all the properties of a book, plus any that are speci�c to it. Likewise, bluebook de�nes a
di�erent book. Again, it has all the general properties of a book; however, since it has its own weight
property, the weight property of the more general book object is ignored. Hence, redbook.weight
is 1, whereas bluebook.weight is 2.

Classes

When an object inherits properties from a second object, the second object is called the �rst object's
superclass. When an object is the superclass of other objects, the object is called a class. Some
object-oriented languages make a strong distinction between objects and classes; in TADS, there is
very little di�erence between the two. However, a class keyword is provided that speci�es that an
object is serving strictly as a class; book could thus have been de�ned as follows:
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class book: object

noun = 'book' 'text'

weight = 1 // Books are fairly light

;

The only time that the class keyword is required is when a class that is not itself an object has
vocabulary word properties or a location property. The class speci�cation prevents the player
command parser from mistakenly believing that the player might be referring to the class with his
commands.

Multiple Inheritance

An object can inherit properties from more than one other object. This is calledmultiple inheritance.
It complicates things considerably, primarily because it can be confusing to �gure out exactly where
an object is inheriting its properties from. In essence, the order in which you specify an object's
superclasses determines the priority of inheritance if the object could inherit the same property from
several of its superclasses.

multiObj: class1, class2, class3

;

Here we have de�ned multiObj to inherit properties �rst from class1, then from class2, then from
class3. If all three classes de�ne a property prop1, multiObj inherits prop1 from class1, since it
is speci�ed �rst.

Multiple inheritance is used only rarely, but you will �nd that once in a while it is a very useful
feature. For example, suppose you wanted to de�ne a huge vase; it should be �xed in the room,
since it is too heavy to carry, but it should also be a container. With multiple inheritance, you can
de�ne the object to be both a fixeditem and a container (which are classes de�ned in adv.t).
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To change your language,

you must change your life.

| DEREK WALCOTT, Codicil (1965)
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Chapter Four

Writing Adventures

The previous chapter described TADS as a general-purpose object-oriented programming language,
with only a few references to its application as a text adventure system. This chapter introduces
the \player command parser," which is the core of the user interface to your TADS game.

The player command parser reads commands from the player, resolves those commands into objects
in your game program, and invokes methods in those objects according to those commands. The
TADS parser is highly sophisticated; it provides advanced features to the player while relieving your
game of the need to implement those features. To provide you with a way to customize many of the
parser's functions, though, the system requires that you de�ne certain functions and objects.

This chapter describes the features of the parser, how it works, and how it interacts with your game
program. The special functions and objects that your game must de�ne are also explained. In short,
this chapter describes the complete run-time environment of your game program.

The \preparse" Function

Each time the player enters a complete line of text, and before the TADS player command parser
starts looking at the line of text, a special user-de�ned function called preparse is executed.

The function takes a single argument, which is a string containing the text that the player typed on
the command line. The complete text is provided, unchanged, preserving the original spaces, punc-
tuation, and capitalization. The actor, verb, and other objects are still unknown when preparse()

is called, since the parser hasn't seen the string yet.

Your preparse function can change the command string to any new string it desires, or it can abort
the command altogether, or it can choose to do nothing and let the original player's command be
processed as normal.

If preparse() returns a string value, the new string replaces the original command that the player
typed. The parser processes the new string as though the player had typed it.
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If the function returns nil, the command is aborted altogether, and the player is immediately
prompted for a new command.

If the function returns true, the original string typed by the player is used unchanged.

This function is optional. If it's not de�ned by your game program, the compiler will issue a warning,
but your game will still compile and run. The preparse function is useful only in certain special
situations; most games won't need it. For example, you could use preparse to implement a special
e�ect room where anything typed by the player (even complete nonsense) is just echoed until a
special command is typed.

The Player Command Parser

The player interacts with your TADS adventure game strictly at the level of English sentences. The
game describes the player's whereabouts, and the player responds with a command (an imperative
sentence) to do something; the game then responds with a description of the results of this action.
The player then issues a new command, and the game responds to this one. Play proceeds in this
manner until the player gets tired of this and quits (or completes the game).

The most important part of the game as far as the player is concerned is the story; that is, the
descriptions of locations, people, and things, and the responses to commands. The adventure writer's
job is to make this part interesting.

However, a very important part of the game, which is ideally invisible to the player, is the parser.
The parser inspects the player's commands, and attempts to make them intelligible to the game
as implemented by the adventure writer. We say that the parser is \ideally invisible" because the
player shouldn't have to worry about|or even notice|the parser. Players never notice the parser
when it understands what they say; it's when the parser can't understand, or worse, misunderstands
a command, that the player notices the parser.

The job of making the parser invisible is mostly in the hands of the TADS run-time system, which
tries to ensure that many di�erent kinds of sentences are understood. However, the adventure writer
is responsible for making sure that many synonyms are recognized for each word, because di�erent
people have di�erent vocabularies. A good rule of thumb is that game should understand all the
words it uses, particularly those referring to important objects.

All player commands have a verb. A verb is all some commands have; for example, the commands
\look" and \east" have only a verb.

Other commands take a direct object as well: \take the book" and \drop the box." Note that the
article \the" is optional. Unlike some adventure parsers, the TADS parser will not ignore the article;
it will ensure that articles are used only with nouns, but the article will obviously not a�ect the
meaning of the noun.
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Some commands take an indirect object as well: \put the book in the box" and \give the librarian
the book." The �rst command uses a preposition to identify the indirect object; the second uses the
positions of the words in the sentence to specify which object is which.

Some verbs are a little more complicated; consider \pick up the book" and \pick it up." In these
cases, the preposition is considered part of the verb, so the verb part is \pick up" and the direct
object is \the book."

Note that the TADS parser can only handle prepositions that consist of a single word. Unfortunately,
English has many constructions in which multiple prepositions are needed; for example, \take the
book out of the bag" has two prepositions in a row.

There's a special mechanism that allows you to de�ne words that are \glued together" when they
appear in certain combinations. This mechanism is intended to allow for prepositions that consist
of multiple words, but which can be treated as a single word unit. For example, \out of" can be
converted to a single word. In order to de�ne words that can be converted into a unit when used
together, you use the compoundWord statement. This statement appears in your game �le outside of
functions and objects; adv.t de�nes a large list of compound words, which should be su�cient for
most games.

A compoundWord statement looks like this:

compoundWord 'out' 'of' 'outof';

This tells the parser that when it sees the two-word sequence \out of", it should convert it to
the single word \outof". The compound word \outof" is now usable in vocabulary (such as in a
preposition property).

Note that you can't directly de�ne three-word (or longer) compound words, but you can do so
indirectly by constructing the longer words out of two-word directives. For example, to convert \out
from under" into \outfromunder", you'd do this:

compoundWord 'out' 'from' 'outfrom';

compoundWord 'outfrom' 'under' 'outfromunder';

Note that the resulting word (the third word in a compoundWord command) doesn't have to be the
second word appended to the �rst; older versions of TADS built their compound words automatically
in this manner, though, so it is a reasonable convention to follow. You could just as easily de�ne
the compound word built from \out from" to be 'out-from', or 'asdf', or anything else.

There's one more feature: the player can issue a command to another character in the game (called
an \actor") by prefacing a sentence with the character's name and a comma, as in \Librarian, take
the book o� of the shelf."

When parsing a player's command, the entire sentence is converted to lower case letters before
anything else is done, so the case of the player's command doesn't matter. In addition, the player
need only type the �rst six letters of any word; if he chooses to type more, though, the extra letters
are not simply ignored. This allows words that are longer than six letters to be ambiguous with
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other words in their �rst six letters and still be correctly identi�ed. This is especially useful for
dealing with plurals of long words; hence, if a player types \barrel", it will be identi�ed as \barrel"
rather than \barrels".

Names of objects are made up of a noun and one or more adjectives. For example, \book," \red
book," and \large red book" might all refer to a particular object.

In addition, the word \of" may connect additional qualifying phrases to an object's name. For
example, \the large pile of yellow straw." Internally, when designing a game, the adventure writer
simply lists the adjectives and nouns that can be used in reference to an object, and doesn't have
to worry about placement of the words. In the example above, the player would say that the pile of
straw is identi�ed by the nouns \pile" and \straw", and the adjectives \large" and \yellow". Hence,
all of these phrases are also recognized as the pile of straw: \straw," \pile," \pile of straw," \large
pile," and \yellow straw." Note that the use of the word \of" is completely transparent to the game
program; the parser automatically removes the \of" and rearranges the words appropriately.

One more special case occurs when numbers are used as adjectives. In de�ning an object's adjectives,
if you want a number to be used as an adjective, simply include it in the adjective list in single
quotes just like any other adjective. When the player is typing commands, however, it is handled a
little di�erently than other adjectives: the number can follow the noun. This is useful in cases with
numbered items, since it's more natural to place the number after the noun. For example, elevator
buttons would be called \button 1," \button 2," and so forth. (Of course, referring to them as \1
button," \2 button," and so on, is accepted as well, but it's somewhat ambiguous, in that it sounds
like a number of buttons rather than the number of the button.) As with \of," this special case is
transparent to the game program, since only the parser needs to worry about the order of the words
referring to an object.

Sometimes, there will be ambiguous objects; for example, a red book and a blue book. If the player
types simply \book", the parser will try its best to �gure out which book the player means. First,
it will attempt to identify all the nouns that are meaningful with the command the player is trying
to issue, which frequently narrows it down enough that no further information is required. For
example, suppose the player is carrying the blue book, and the red book is in the current room; the
parser will know that \take the book" refers to the red book, because the blue book doesn't make
sense with the take command. However, if both books are in the room, the parser won't know what
to do, so it will ask:

Which book do you mean, the red book, or the blue book?

At this point, the player can answer \red" or \blue," or \the red book," or even \the blue one," in
which case the parser will complete the command. He can also say \both" or \all," or even \the red
one and the blue one," and the parser will take both books. Now, the player could have said this in
the �rst place, assuming the writer provided a plural: \take the books."

This brings us to the subject of multiple direct objects. The player can list several objects he wants
to take, or perform another action on, simply by using a comma between objects: \Take the red
book, the box, and the lamp o� the shelf."
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He can also abbreviate this to some extent with the words \everything" and \all" (which are syn-
onymous); for example, \Take everything o� the shelf," or \drop all." If he wants to be a little more
speci�c, he can do something like this: \Drop everything except the keys on the desk," or \Take all
but the rusty knife, the useless lantern, and the skeleton."

From the adventure writer's standpoint, there's no more work to be done when the player uses
multiple direct objects, because the parser breaks up the command into simpler commands. For
example, if the player types, \Take the red book, the blue book, and the nasty knife," the parser
pre-digests this, so the game sees three separate commands: \Take the red book," then \take the
blue book," and then \take the nasty knife." (In fact, the game sees an even simpler representation,
because the parser does even more work than this. The �nal digested form of a command is discussed
later.)

Note that we've ended the last few commands with a period. This is optional, but it does tell the
parser that the sentence is �nished, which can be useful if the player wants to put several sentences
into a single command:

Take everything; go east, then take the lamp and look at it!

Semicolons, exclamation marks, periods, question marks, and the word \then" all mean the same
thing: the sentence is �nished. Commas and the word \and," in addition to being useful for listing
objects to a single command, can be used to separate commands as well, so long as the words that
follow the comma or \and" can't be interpreted as another object.

This also brings up \it," and its partner \them." These words can be used to refer to the last direct
object, or, in some cases, an object that the game referred to in its description of a place or event.
(The built-in function setit() can be used by the adventure writer to de�ne what \it" means in
the next command.) \Them" works like \it," but refers to the last list of objects if multiple direct
objects were used, as in, \Take the red book and the blue book and put them in the box."

In addition to \it" and \them," the parser understands \him" and \her" to refer to actors. If an
object has the property isHim set to true, the parser allows the player to refer to the object as
\him". If the object has isHer set to true, the player can use \her" to refer to the object. If neither
isHim nor isHer is set to true for the object, only \it" can be used to refer to the object. Note
that both isHim and isHer can be set to true, in which case either \him" or \her" can be used
with the object. By default, both are nil.

There's one more issue, which is a bit specialized: what happens if the player uses quoted strings or
numbers in the command? For example:

turn dial to 651

type "hello" on the computer keyboard

Clearly, it wouldn't be convenient for the game designer to list all possible numbers the player might
dial, or all possible strings the player might type on the computer keyboard. Instead, such items
are treated as special pseudo objects; these objects appear to the game as ordinary (but speci�c)
objects, which have a special property which allows the game to learn the value (such as 651 or
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\hello"). In this way, the game designer can deal with numbers and strings in a general way, letting
the parser do all the work.

We've described the parser from the user's perspective, with some insights into how the game
program sees commands. Now we'll describe the lower layers of the work the parser does.

Associating Words with Objects

Once the parser is through with a command, assuming all went well with the grammar of the
sentence, the command has been digested into only �ve parts: an actor, a verb, a direct object, an
indirect object, and a preposition. Of these, only the actor and verb are necessarily present; the
others may be nil. All of these items are either nil or are an object de�ned by the game program.

The parser resolves words to objects based on vocabulary. The words that make up the vocabulary
available to the user consist of the several built-in words (such as \and" and \then") and of the
words de�ned in the game. A vocabulary word is created simply by associating a special property
with an object:

RedBook: object

noun = 'book'

adjective = 'red' 'large'

plural = 'books'

;

In this object de�nition, the special property names noun, adjective, and plural are de�ned to
be one or more words, enclosed in single quotes; these words become vocabulary that the player can
use, and specify the context in which the words can be used. When a player uses the words \red
book" in a sentence, the parser will know that he is referring to the object RedBook.

Verbs are de�ned similarly, with a slight catch. Recall that some verbs had a preposition built into
them. These are de�ned like this:

TakeVerb: object

verb = 'take' 'pick up'

;

This associates the word \take" with the object TakeVerb, as well as the words \pick up". When
a player types a command such as \pick it up", the parser will decide that the verb is the object
TakeVerb. This notation, in which two words appear in a single vocabulary word string, is special
to verbs and is not allowed elsewhere.

It is important at this point to distinguish between two types of objects. The �rst type of object
is the kind that appears in the game program; these have superclasses and properties, and are
manipulated by code. The other type of object is the kind the player thinks of when he says \take
the book." So, when we call a verb an object, we mean it in the �rst sense, but when we talk about
the user specifying an object with nouns and adjectives, we're using the other sense.
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There are two other kinds of vocabulary words: prepositions and articles. For example:

OutP: object

preposition = 'out'

;

AAnThe: object

article = 'the' 'a' 'an'

;

Note that the second object doesn't distinguish between the articles; this is perfectly all right,
because they'll never make it down to the game program. They are de�ned merely to make the
command syntax more natural for the user. Prepositions, on the other hand, should be distinguished
from each other, because \put the book in the safe" is di�erent from \put the book on the safe".

Note also that using a preposition in a verb doesn't make it a preposition; hence, even though we
de�ned 'pick up' as a verb earlier, we should still de�ne a separate preposition for \up":

UpP: object

preposition = 'up'

;

This brings us to ambiguity. Most adventures allow you to say \up" when you mean you want to
\go up". Hence, we should de�ne a verb:

GoUp: object

verb = 'go up' 'up'

;

This might look like a problem, because we've de�ned a word as a preposition, as a verb's preposition,
and as a verb! Fortunately, the parser understands the importance of context and will not be confused
in this case. This shouldn't be taken as license to de�ne every word as every part of speech; the
parser can get confused and interpret sentences strangely if contextual disambiguation is overused.
If you run into strange interpretations of sentences, you might check for part-of-speech ambiguities.

The vocabulary properties, verb, noun, adjective, article, preposition, and plural, have spe-
cial characteristics. They are not properties in the normal sense, for a number of reasons. First, they
are specially recognized as creating vocabulary words and associating them with objects. Second,
you might have noticed the non-standard syntax: a list of words follows the property name without
being enclosed in square brackets. In addition, you cannot reference vocabulary properties as you
can with other properties; for example, the following example will not work:

say(dobj.noun); // This won't work!

For this reason, all objects which have vocabulary associated with them should have a short descrip-
tion, or sdesc property. So, the full de�nition of the \up" preposition above should be:

UpP: object
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preposition = 'up'

sdesc = "up"

;

In constructing certain complaints about bad grammar or other problems, the parser will occasionally
need the sdesc of a preposition, noun or verb, so be sure each object has one. Articles never need an
sdesc as far as the parser is concerned. sdesc is a built-in property that the parser uses to display
the short description of certain objects, but it, unlike vocabulary properties, behaves like a normal
property.

Vocabulary words are normally made up solely of letters. Numbers are also allowed, so long as the
word starts with at least one letter or is made up entirely of numbers. (Note that only adjectives
can be made up entirely of numbers.) Hence, `a123' is valid for any part of speech, and `123' is valid
as an adjective. In addition, hyphens (`-') and single quotes are allowed within words, as long as the
�rst character of the word is a letter. Finally, a word can have a period (`.') as its last character;
this allows words such as \Mr." and middle initials in names to be used as vocabulary words.

In addition to sdesc, nouns should de�ne the properties thedesc and adesc, which display the
name of the object preceded by its de�nite article and inde�nite article, respectively. In most cases,
thedesc is simply the word \the" followed by the object's sdesc; likewise, adesc is \a" followed by
the sdesc.

Thing: object

thedesc =

{

"the "; self.sdesc;

}

adesc =

{

"a "; self.sdesc;

}

;

Note that adesc needs to be overridden for certain object. For example, objects whose sdesc starts
with a vowel should use \an" rather than \a." Objects which represent collections or people or
quantities of something often need a special adesc to make sense: \some milk" is better than \a
milk," and \Lloyd" should be used rather than \a Lloyd."

Executing the Command

A command is decomposed into its actor, verb, direct object, indirect object, and preposition. Hence,
a command such as \pick up the red book" might decompose as follows: the actor is Me, the player
actor; the verb is takeVerb; the direct object is RedBook; the indirect object and preposition are
nil.
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So, what does the game do with this information? Once again, the parser helps the game designer by
doing much of the work. First, the parser determines which objects are implicated in the command,
then checks their availability with the validIo and validDo methods of the verb (see the discussion
of disambiguation, below). If the objects can be successfully identi�ed and are valid for the command,
the parser sends a set of messages to these objects to inform them that they have been used in the
player's command. The sequence of events is shown below in pseudo-code.

actor.roomCheck(verb)
actor.actorAction(verb, direct object, preposition, indirect object)
actor.location.roomAction(actor, verb, direct object, preposition, indirect object)
if (An indirect object was speci�ed)
direct object.verDoVerb(actor, indirect object)
if (No Output resulted from verDoVerb)
indirect object.verIoVerb(actor)
if (No output resulted from verIoVerb)
indirect object.ioVerb(actor, direct object)

else if (A direct object was speci�ed)
direct object.verDoVerb(actor)
if (No output resulted from verDoVerb)
direct object.doVerb(actor)

else
verb.action(actor)

Run each daemon that is currently active
Run and remove each fuse that has burned down

This may look complicated, but you don't generally have to worry about very much of it. Normally,
you will only have to customize one or two of these steps to obtain a desired e�ect in your game,
and let the standard de�nitions take care of the rest. Let's go through the sequence in detail.

The �rst step checks with the actor to ensure that the verb is even remotely allowed here, by calling
the actor's roomCheckmethod with the verb object as its parameter. The roomCheckmethod returns
true if the verb is acceptable, or nil if not. This check is intended to be the coarsest possible level
of check; its purpose is to allow rooms with special conditions, such as darkness, to disallow all
activity for most verbs. You will almost never override this method, as suitable de�nitions are
already provided for all of the common types of rooms (see the \Adventure De�nitions" appendix).
Note that roomCheck is sent to the actor, which generally simply returns its location's roomCheck
value.

Next, we inform the actor implicated in the command, via actorAction, that it's been asked to
do something; the Me actor, the player, doesn't usually do much of anything here, but other actors
would generally respond in one way or another to the request. In general, actors other than Me

won't carry out arbitrary requests, as a matter of game design; this is their chance to object, by
printing out a message (such as \The guard looks at you harshly and continues to block your way"),
and then exit. When one of these routines executes an exit command, control passes down to the
daemons and fuses, and everything else is skipped.
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Assuming the actor agrees to the command and does not issue an exit command, the actor's location
is informed of the event via its roomAction method. In general, the room doesn't care what goes
on inside it, so the roomAction usually doesn't do anything. Some rooms, however, might restrict
or change the actions performed by actors in them. A room with a trap, for example, could use
roomAction to set o� the trap if (or unless) certain commands are issued. As with actorAction, if
the room simply wants to disallow the command, it can print a message and use the exit command.

The di�erence between roomCheck and roomAction is that roomCheck is called before any object
disambiguation is performed. None of the objects associated with the command are known when
roomCheck is called. roomAction, on the other hand, is called after the objects have been disam-
biguated. Both checks are needed. When the room is dark or the command will fail for some other
reason, you don't want the parser o�ering a list of the objects that the command can act upon,
since the player might not even be aware that some of the objects are present|so a check before
disambiguation is needed. A check after disambiguation is also needed, since the room may need to
take di�erent actions depending on the exact objects used in the player's command.

If the room has no objection, we next inform the indirect and direct objects of the command.
Generally, these will actually carry out the function of a command (whereas the actor and room
methods will do little more than approve or reject the command). Depending on whether two
objects, one, or none are speci�ed in the player's command, a di�erent series of messages is sent.

If no objects are in the command, the verb simply receives an action message; the actor is the only
parameter, as it's the only relevant information. Verbs such as \north" and \look" take no objects,
so their functionality is handled by their action routines.

If only a direct object is present, then there is no verb action method invoked. Instead, the direct
object itself carries out the command.

The object, like the actor and room, gets a chance to object to the whole command; this is via its
verDoVerb method, which stands for \verify direct object usage for Verb." For example, if the verb
was \take," the verDoTake method will be invoked. (The actual name of this method is de�ned
in the verb itself; the doAction property names the method that will be invoked. If doAction =

'Take' is speci�ed in the takeVerb object, the method invoked will be verDoTake.) The veri�cation
method is special, because it can object to the command simply by printing a message|no exit

command is necessary. The object veri�cation routines are designed this way for convenience; since
they don't actually carry out the action of the verb, the only reason it would want to display anything
is to object, so the system detects this fact and treats it like an exit command.

Assuming the veri�cation succeeds, the direct object's doVerb method is invoked. (As with the
veri�cation, the name of the method is derived from the verb's doAction property; if takeVerb has
doAction = 'Take' de�ned, a \take" command will send a doTake message to the direct object.)
This method is responsible for carrying out the function of the verb and reporting to the user on
the command's success; for example, the doTake method may move the direct object to the user's
possessions, and display \Taken."

When both a direct and indirect object are present, the veri�cation method of the indirect object
is called �rst; if that doesn't generate any messages, the veri�cation method of the direct object is
called, and if that doesn't generate any messages either, the ioVerb method of the indirect object is
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invoked. (Note that the verIoVerb, verDoVerb, and ioVerb method names are derived di�erently
from the way single-object command methods are derived. Each verb accepting multiple objects has
an ioAction property for each preposition it accepts between the objects. For example, \put the
book on the table" would only work if the putVerb object de�nes a property ioAction(onPrep).
If such a property is de�ned, its value is used as the Verb su�x in each method name. For ex-
ample, if putVerb de�nes ioAction(onPrep) = 'PutOn', then the messages sent are verIoPutOn,
verDoPutOn, and ioPutOn.)

Once all of this processing is completed, all of the daemons are executed once, then all of the fuses
that have burned down are executed and removed from the active fuse list. Note that messages
to objects scheduled with the notify() function are treated the same as other fuses and daemons;
hence, messages to objects scheduled with calls to notify() with turns set to zero are handled at
the same time as other daemons, and other notify() calls are handled with the other fuses.

Note that the abort command causes the command to be entirely stopped, and not even the fuses
or daemons are executed. It is generally used when a special system function is carried out, such as
saving a game, which should not be counted as a turn.

Disambiguation

One of the more di�cult parts of understanding the player's input is deciding which object is being
referred to when several objects go by the same name. For convenience, the player does not want
to have to spell out his desires in in�nitessimal detail. For example, if the player is carrying a red
book, and there is a blue book in the room, he should be able to say \take the book" without having
to specify the \blue book." Likewise, while in an airlock with two doors, one of which is open, the
command \close the door" should be su�cient, without needing to specify the open door. The
process of deciding based on context which object the player is referring to when multiple objects
use the same vocabulary words is called \disambiguation."

When a player refers to a \book," the parser will note all of the objects that share that vocabulary
word. If the player is more speci�c, the system will consider only those objects which go by all of
the words the player used. If multiple objects are still implicated, the parser performs two levels
of disambiguation before asking the player for more detail. First, the system will eliminate from
consideration those objects that don't pass the validDo or validIo test, as appropriate. If a unique
object still doesn't result, the system will next apply a silent verDoVerb or verIoVerb test, as
appropriate, to each object still being considered; the system suppresses the messages from these
routines, if any, so the player doesn't see them. However, the parser does note whether output would
have resulted; any objects that would produce output fail the test, and any that wouldn't pass the
test. If no objects pass the test, all remain under consideration; if one or more objects pass the test,
only those passing remain under consideration.

If, at this point, only one object remains, the parser decides that the player must mean this one
object. If more than one object remains, the system will ask the player which one he meant, with a
question such as \Which book do you mean, the red book, or the blue book?"
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The idea behind using validDo and validIo is simple; if the object is not accessible to the player,
he cannot meaningfully use it in a command, so it is discarded. This also simpli�es later veri�ca-
tion code, because it doesn't need to check that the actor in the command can access the objects
mentioned.

The idea behind verDoVerb and verIoVerb is a little more complicated. Since these methods are
supposed to issue a message if the object in question doesn't make sense|for example, if the player
tries to take an object he is already carrying, or close a door that is not open|the parser can guess
that the player probably didn't mean an object that fails these tests. So, if the player types \take
the book," the red book, which the player is already carrying, fails the test and is eliminated, but
the blue book, which is in the room waiting to be taken, passes the test. Likewise, if the player
types \close the door," the door that is closed fails the test, while the open door passes.

Using this scheme, the system can generally make reasonably intelligent guesses about what the
player meant to say. It is important to design your verDoVerb and verIoVerb routines with this
function in mind, as well as with their primary function of ensuring that the object is valid with the
verb.

Visibility and Accessibility

Sometimes, you want to make objects that are visible, but not accessible. For example, if a marble
is inside a closed glass jar, the marble is visible to the player (since the glass jar is transparent, its
contents can be seen), but the marble can't be manipulated without opening the jar.

To support this, the parser makes a distinction between objects which simply aren't visible, and
objects which are visible but not accessible. The distinction is minor, and really only a�ects what
kind of error message the parser displays when you can't access an object. When the marble is not
visible and not accessible (such as when it's in a di�erent room), the parser will display the message
\I don't see any marble here." However, when the marble is visible but not accessible (such as when
it's in a closed glass jar), the parser will call the method cantReach(actor) in the marble object.

The parser determines whether the marble is visible by calling its isVisible(vantagePoint)method.
If the method returns true, the marble is visible; if it returns nil, the marble cannot be seen from
the vantage point. The argument vantagePoint is the actor in the current command.

Note that certain verbs use isVisible to determine whether an object is valid or not (that is, the
verb's validDo method is de�ned in terms of isVisible). For example, inspectVerb allows you to
examine an object that you can't manipulate, as long as you can see it.

The default isVisible method (de�ned in adv.t for the object thing) is somewhat complicated,
but the basic rule is: return true if the object's location is the vantage object, or if the location's
contents are visible and its location is visible from the vantage object, or if the vantage has a location
and the vantage's location's contents are visible and the object is visible from the vantage's location;
otherwise return nil. Stated more simply, this is the �rst law of optics: if you can see me, then I can
see you. (Being a computer program, TADS turns this easily understood concept into a complicated
recursive algorithm.)
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The default isVisible will su�ce for most occasions, as will the default cantReach method. You
can also use new de�nitions of isVisible to achieve special e�ects; for example, you could use it to
implement a view screen that shows objects in another location; you can look at the objects on the
view screen, but you can't otherwise manipulate them.

Default Objects

The special properties doDefault and ioDefault can be used to supply default information for
commands. The purpose of doDefault is to return a list of all objects which are sensible with the
current command. For example, if the command is \take," all the objects which are immediately ac-
cessible to the actor, excluding, of course, those the actor is already carrying, apply to the command.
Likewise, the default direct objects to \drop" are those that the object is carrying.

When a player types a command without a direct object, the parser looks at doDefault for the verb.
It then applies the disambiguation function appropriate to the verb to the resulting list, making up
a new list of those objects passing the disambiguation function. If there is exactly one direct object
remaining in the list, the parser decides that the player is referring to the one sensible object, so it
supplies it in the command by assumption (displaying the assumption to the player). The ioDefault
property does the same for indirect objects.

For example, if the player types merely \take," the system will �rst determine that an object is
needed because takeVerb has no action() method. It will then consult takeVerb to see if it has
a default preposition given by prepDefault; if it does, it assumes that this will be a two-object
verb and adds the default preposition to the command. In the case of \take," there will be no
default preposition, so the system knows this will be a one-object command. Next, the appropriate
verDoVerb routine is identi�ed based on the verb and preposition. In this example, verDoTake is
the chosen routine. Now the system calls the doDefault method in takeVerb, and then applies
verDoTake to each object returned. Each object that passes the verDoTake test (i.e., produces no
output) is kept under consideration. If only one object is left, the object becomes the default object
for the command. If no objects, or more than one object, are left in the list, the system will ask the
user what he wants to take.

\All"

Another use of doDefault is in determining the list of objects meant by \all" in a player's command.
\All" is assumed to refer to everything in the list generated by doDefault.

For most verbs, the standard doDefault and ioDefault methods inherited from deepverb will be
su�cient (refer to the \Adventure De�nitons" Appendix for information on the deepverb class).
takeVerb and dropVerb, because they are such common cases, customize the doDefault method
to be a little smarter; this allows \take all" to ignore objects already being carried, and \drop all"
to ignore objects that are not being carried.
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Object-Level Verb Synonyms

It is often desirable to make certain verbs synonymous for a particular object. For example, if you
have a touch-pad on a control panel, the player may try to push the touch-pad instead of merely
touching it. With the old system, you had to tediously point the verDoPush and doPush methods
to call the object's verDoTouch and doTouch methods, respectively:

verDoPush(actor) =

{

self.verDoTouch(actor);

}

doPush(actor) =

{

self.doTouch(actor);

}

A new convenience feature has been added that will do this for you automatically. The doSynonym
and ioSynonym pseudo-properties allow you to specify a list of property root names that are to be
synonymous with a particular property root name. For the above example, we would now write this:

doSynonym('Touch') = 'Push'

This means that whenever a verDoPush or doPush method is called for this object, the object's
verDoTouch or doTouch method (respectively) is called instead. You can specify more than one
synonymous root name (on the right-hand side of the equals sign); for example, if you also wanted
to make verDoTap synonymous with verDoTouch, and doTap synonymous with doTouch, you'd
change the de�nition above to this:

doSynonym('Touch') = 'Push' 'Tap'

The ioSynonym works the same way.

Built-in Properties

The section on the player command parser described several special built-in property names that
the parser uses. This section lists all of the special property names that the TADS run-time system
de�nes, and explains how each is used.

action

action(actor): the method of a verb invoked when the verb is used without objects. The method
should carry out the action of the verb, checking �rst to ensure that the verb should be allowed at
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this time. With system verbs, such as save, the command generally shouldn't count as a turn, so
it should use the abort keyword even if completes successfully, to prevent the per-turn daemons
and fuses from running. Non-system verbs, such as jump, shouldn't use abort if they complete
successfully.

actorAction

actorAction(verb, direct object, preposition, indirect object): sent to the actor in a command by
the parser. This method should determine if the actor is interested in accepting the command. If
so, it needn't do anything, since the command will be handled by the verb or objects as usual; if
not, it should display a complaint and use exit to prevent further execution of the command.

adjective

adjective: vocabulary list of the adjectives that can refer to an object.

article

article: vocabulary list of article words (such as \the" and \a").

cantReach

cantReach(actor): display an appropriate message when the actor can't reach the object (self).
The parser calls this method to display a message when an object is visible, but not accessible (for
example, when a marble is inside a closed glass jar, the marble is visible, but can't be manipulated).
The default version de�ned adv.t for the thing object is suitable for most situations.

contents

contents: a list of objects that an object contains. This should not be initialized; see the discussion
of the location property. However, it should be kept current; that is, whenever an object's location
property changes, its old container's contents list should have the object removed, and the new
container's contents list should have the object added.

doAction

doAction: the property of a verb that de�nes the su�x applied to verDo and do to form the method
name sent to the direct object when the verb is used with only a direct object. This must be a single-
quoted character string. If not de�ned, the verb is not allowed to be used with just one object. For
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example, if the \take" verb de�nes doAction = 'Take', then verDoTake and doTake messages are
sent to the direct object of a \take object" command.

doDefault

doDefault(actor, prep, indirectObject): the default direct objects for a verb. When \all" is used,
this entire list is substituted for \all." When no direct object is used at all, if this list is unambiguous
(i.e., has only one entry), it is used by default as the direct object of the command.

ioAction

ioAction(preposition): the property of a verb that de�nes the su�x applied to verIo, verDo, and
io to form the method name sent to the indirect object when the verb is used with two objects
and the given preposition. The value must be a single-quoted character string. For example, if the
\ask" verb de�nes ioAction(aboutPrep) = 'AskAbout', then verIoAskAbout and ioAskAbout

messages are sent to the indirect object of a \ask direct-object about indirect-object" command; a
verDoAskAbout message is sent to the direct object. Note that the preposition argument is the
name of a preposition object de�ned elsewhere; the object de�nes the vocabulary word, with its
preposition attribute, that the player uses.

ioDefault

ioDefault: the default indirect objects for a verb.

isHim

isHim: Returns true if the object (self) is a male actor and should therefore be referred to with
\him" in player commands. If isHim is nil, the object cannot be referred to as \him". It is legal
to set both isHim and isHer to true, in which case either \him" or \her" can be used. If both are
nil, only \it" can be used with the object (this is the default).

isHer

isHer:

isHer: Returns true if the object (self) is a female actor and should therefore be referred to with
\her" in player commands. If isHer is nil, the object cannot be referred to as \her". It is legal to
set both isHim and isHer to true, in which case either \him" or \her" can be used. If both are
nil, only \it" can be used with the object (this is the default).
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isVisible

isVisible(vantage): returns true if the object (self) is visible from the object vantage, or nil
if it is not visible. The implementation de�ned in adv.t in the thing object is suitable for situa-
tions involving transparent containers; di�erent implementations may be useful for achieving special
e�ects.

location

location: the container of an object. May be nil or another object. At the start of a game, all
objects are moved into their location; that is, for all objects with a location de�ned as a simple
object (not a method or nil), object.location.contents has the object added to it. This ensures
consistency between location and contents properties. Note that class objects and objects with
methods for their location property are ignored in this procedure. Warning: Never assign the
location property of an object directly at run-time. Always use the moveInto(newlocation)
method instead. For example, if you want to move the knife into the player's current location, do
not code knife.location := Me.location, but do this instead: knife.moveInto(Me.location).
The moveInto method ensures that the contents properties of the old and new containers of the
object are updated to reect the object's new location.

locationOK

locationOK: a ag that speci�es that the location of an object is intentionally something other
than an object. Normally, if an object's location property is not an object, the compiler ags this
as a warning, since the compiler is unable to set the contents list of the location to contain the
current object. However, it is sometimes necessary to make location a method to achieve special
e�ects; for example, theFloor, de�ned in adv.t (see the \Adventure De�nitions" Appendix for
details), uses a method for its location so that the same object appears to exist in every room.
By setting locationOK to true in theFloor, the game informs the compiler that the non-standard
location value is intentional, which suppresses the warning message. This property has no other
e�ect.

noun

noun: vocabulary list of the nouns that can refer to an object.

plural

plural: a vocabulary list giving the plurals by which an object may be called.
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prepDefault

prepDefault: speci�es the default preposition for a verb. Used when no doAction property is
de�ned, but the player speci�ed only a direct object in his command. The parser will attempt to
add the default preposition given to the command and then try to get an indirect object (�rst from
the verb's ioDefault list, then by asking the player).

preposition

preposition: vocabulary list of preposition words.

roomAction

roomAction(actor, verb, direct object, preposition, indirect object): sent to the object given by
the actor's location property for all commands. See the section on the sequence of messages sent
by the parser in response to a player command.

roomCheck

roomCheck(verb): sent to the Me object (the player actor) at the very beginning of processing a
sentence. The property should return true if the verb is acceptable in the player's room, nil
otherwise; it should also display a message in the latter case explaining why the verb is not acceptable.
This property is used largely to prevent unnecessary processing from taking place in a dark or
otherwise limiting room, and it should do nothing apart from checking the most basic features of
the room. Note that roomCheck is called before disambiguating the objects in the command, so it
must decide whether the command is appropriate or not regardless of objects; roomAction is called
after the objects are known, so it can apply more speci�c criteria to the command.

sdesc

sdesc: a self-printing short description. May be a double-quoted string, or a method that prints a
short description.

statusLine

statusLine: this is related to sdesc for rooms or other objects (such as chairs and vehicles) that
may contain the player. This should print the short description of the location, which should �t
on a single line, without the list of objects in the location. Most locations that are descendants of

46 The TADS Author's Manual



the room object de�ned in adv.t will display statusLine �rst when sent a lookAround message (a
method de�ned in adv.t for room objects).

On some platforms, the TADS run-time system displays a status line across the top of the screen
showing the player his current location; this line is updated before every turn. On these platforms,
the run-time system uses the statusLine method of the player's current location to display the
status line information.

Note that statusLine prints only the \left half" of the status line, which typically gives the player's
current location. The right half is displayed by the setscore function.

thedesc

thedesc: a short description with a de�nite article. Generally just de�ned as a method showing
\the" and the sdesc. Like sdesc, the thedesc must be self-printing.

validDo

validDo(actor, object): sent to a verb to check that a direct object is valid for a command. The
method should return true if the object is valid as a direct object for the verb and actor, or nil
if it is not. Generally speaking, this routine should do nothing more than check that the object
is accessible to the actor; it is not necessary for validDo to check whether the object makes sense
with the verb. Hence, it should return true if the actor is trying to take something he is already
carrying, while it should return nil if trying to take something that is in a di�erent room. The job
of deciding whether the object makes sense is done by the object's verDoVerb method.

validIo

validIo(actor, object, seqno): sent to a verb to check that an indirect object is valid for a com-
mand. Like validDo, the method returns true if the object is valid as an indirect object for the
verb and actor, or nil if it is not. As with validDo, this method is responsible only for verifying
accessibility, not for checking if the object makes sense with the verb; hence, if the actor is trying to
put something into an object that is accessible, the method should return true regardless of whether
the object in question is a container or not.

The seqno parameter is the \sequence number" of the object being tested. Any time the player
makes an ambiguous object reference (that is, uses a set of nouns and adjectives that could refer to
more than one object), the possible objects are tested with validIo one at a time; each object in the
set is given a separate sequence number, starting with 1. These sequence numbers are arbitrary, and
are generally not even used. However, certain verbs don't care which of a set of ambiguous objects
is chosen; these verbs use seqno to accept only the �rst object and reject the rest. For example,
askVerb in adv.t does this (see the \Adventure De�nitions" Appendix for information on adv.t).
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value

value: A special property for the strObj and numObj objects giving their value when used in a
player command. For example, \turn the dial to 651" makes numObj the indirect object, and sets
its value property to 651.

verb

verb: list of the vocabulary words for a verb object. Like all vocabulary properties, the value must
be a list of single-quoted strings, optionally enclosed in square brackets. (If the object is a class

object, the square brackets are required.) The special two-word notation, as in verb = 'pick up',
may be used for verbs with a prepositional part.

Required Objects and Functions

The TADS run-time system requires the game program to de�ne several objects and functions. This
allows the user control over the details of these objects, but their names are �xed by the system.
The required objects and functions are listed here.

againVerb

againVerb: a special verb that speci�es the vocabulary for the \again" command, which is used
to repeat the last command. Normally, the verb property of this object is set to accept \g" and
\again" for this command.

init

init(): A function that is executed once when the game is started. This function should move
the Me actor (the player) into his starting room, start any daemons and fuses that are needed, and
display the title, copyright message, and introductory text for the game.

See also the related preinit() function, which should be used for any time-consuming computations
that need to be performed before the game starts.

Me

Me: The player's actor. When no actor is speci�ed in a player command, the Me object is assumed.
The Me object receives all of the same messages from the parser that any other actor does.

48 The TADS Author's Manual



Note that adv.t de�nes the class basicMe as a reasonable implementation of Me. If you do not wish
further customization of Me in your game, you can use basicMe unchanged by including this in your
game: \Me: basicMe;".

numObj

numObj: The special object used when a command involves a number; its property value will be set
to the number the player used in the command. For example, if the player types \Turn the dial to
617," the indirect object will be numObj, and numObj.value will be 617.

Note that adv.t de�nes the class basicNumObj as a reasonable implementation of numObj. If you
do not wish further customization of numObj, you can use basicNumObj unchanged by including this
in your game: \numObj: basicNumObj;".

pardon

pardon(): A special function that is called whenever the player enters a blank line. It normally just
displays \I beg your pardon?" The function is up to the game author to implement simply to allow
customization of this message.

parseError

parseError(errnum, errstr): This function is called whenever a parser error message is to be
displayed. This function is optional; if it's not de�ned in your game, the system will display a
default message. This function allows you to change any parser error message and replace it with
your own message.

The argument errnum is a number that speci�es which message is needed; errstr is the text of the
default message that the parser would normally display. The reason that the number is provided is
that it serves as a version-independent key to the error message; even if a small change is made to
the actual text of a message, its basic meaning will remain the same from version to version, so you
can count on errnum to indicate the meaning of the message. The reason that errstr is provided
is to allow you to make a small textual change to the message without replacing it altogether; for
example, if you want parser messages to be enclosed in square brackets, you could simply append
square brackets to errstr and return the resulting string.

This function returns either nil or a string value. If it returns nil, the default message is displayed.
If it returns a string value, the string is displayed instead of the default message.

The error numbers and default messages are shown below. Errors in the range 1-99 are normal parser
error messages. Numbers 100-109 are special messages that are used to construct disambiguation
queries; several error numbers make up a single error display, so you should probably exclude these if
you are performing a transformation such as adding parentheses around error messages. The same is
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true of the other ranges above 100. 200 is a special message that is used when a cantReach message
is about to be generated. Here is an example of a parseError function that simply encloses all
normal parser error messages in square brackets, leaving the special messages (those numbered 100
and above) unchanged:

parseError: function(errno, str)

{

if (errno >= 100) return(nil); /* leave special messages alone */

return('[' + str + ']'); /* enclose message in [brackets] */

}

Note that the C-style formatting sequences %c and %s are used in these messages. You can leave
out the formatting sequences in your messages if you wish, but you should never include one in a
message that doesn't have one in the default version, and you should always make sure that they
are of the correct number, type, and order if you do provide them. Note that you don't need to
do anything with the formatting sequences|just preserve any sequences that are present, and the
system will �ll in the correct values before displaying your message.

Normal error messages

1 : \I don't understand the punctuation "%c"."

2 : \I don't know the word "%s"."

3 : \The word "%s" refers to too many objects."

4 : \I think you left something out after "all of"."

5 : \There's something missing after "both of"."

6 : \I expected a noun after "of"."

7 : \An article must be followed by a noun."

8 : \You used "of" too many times."

9 : \I don't see any %s here."

10 : \You're referring to too many objects with "%s"."

11 : \You're referring to too many objects."

12 : \You can only speak to one person at a time."

13 : \I don't know what you're referring to with '%s'."

14 : \I don't know what you're referring to."

15 : \I don't see what you're referring to."

16 : \I don't see that here."

17 : \There's no verb in that sentence!"

18 : \I don't understand that sentence."
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19 : \There are words after your command I couldn't use."

20 : \I don't know how to use the word "%s" like that."

21 : \There appear to be extra words after your command."

22 : \There seem to be extra words in your command."

23 : \internal error: verb has no action, doAction, or ioAction"

24 : \I don't recognize that sentence."

25 : \You can't use multiple indirect objects."

26 : \There's no command to repeat."

Special disambiguation error messages

100 : \Let's try it again: "

101 : \Which %s do you mean, "

102 : \, "

103 : \or "

104 : \?"

Special: used to complain that an object is no good for a verb

110 : \I don't know how to "

111 : \ "

112 : \ anything "

113 : \to"

114 : \ "

115 : \."

Special: used after each object when multiple objects are used

120 : \: "

Special: used to note objects being used by default

130 : \("

131 : \)"
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132 : \ "

Special: used to ask for an object when one can't be defaulted

140 : \What do you want to "

141 : \ it "

142 : \ to "

143 : \?"

Special: used when an obj is unreachable: obj.sdesc \: " obj.cantReach

200 : \: "

preinit

preinit(): This function is related to init. Immediately after successfully compiling your program,
the compiler will call preinit(); the binary �le containing the compiled game is then written.

preinit() is provided solely for performance; if the function is not de�ned in your program, the
compiler will display a warning message but will not be otherwise a�ected. Since the function is
called before the binary �le is written out, it allows you to perform any pre-game compilations
before the player runs your game. The init() function, on the other hand, runs after the player has
loaded the binary �le, so the player must wait for any computations the init() function performs
to complete before the game can begin.

Note that preinit() should not display any messages, or set any fuses, daemons, or alerts, because
the game has not begun yet, and any such actions would be lost when the binary �le is written.
Instead, the preinit() function is intended to be used to set up any lists of objects you need to
compute at the start of the game (for example, a list of light-providing objects could be compiled
by searching through all objects, using firstobj() and nextobj(), and storing in a list all of those
objects with an islamp property set to true).

preparse

preparse(str): This function is called immediately after the player enters a line of text, and before
the player command parser starts to look at the command line. The argument is a string containing
the complete, untouched text of the player's command line; the text is intact, complete with the
original spaces, punctuation, and capitalization.

If the function returns nil, the command is aborted|the parser never sees the command. If the
function returns a string, the new string replaces the original text of the player's command, and is
processed by the parser as though the player typed it. If the function returns true, the original
player's command is parsed as normal.
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See the beginning of this chapter for more information on preparse. This function is optional; if
it's not de�ned, the compiler will issue a warning, but the game will compile successfully.

strObj

strObj: When a player uses a quoted string in a command, this special object is used, and its
property value is set to the string the player used in the command. For example, if the player
enters type "launch" on the console, the direct object is strObj, and strObj.value is set to
the string 'launch'.

Note that adv.t de�nes the class basicStrObj as a reasonable implementation of strObj. If you
do not wish further customization of strObj, you can use basicStrObj unchanged by including this
in your game: \strObj: basicStrObj;".

takeVerb

takeVerb: the verb used to take objects. This is no di�erent from any other verb, and the action
of the verb must be implemented as normal by the game program, but the parser must know about
this verb, so its name is required to be takeVerb. In general, it is recommended that verbs and
other objects follow this general style of naming, so this requirement will �t smoothly into most
games. (The reason the parser needs to know about this verb is that it uses its validDo method to
determine if an actor is present and thus can be addressed.)

The Output Formatter

To relieve the game programmer of the details of how many characters to put on a line, the TADS
run-time system automatically �lters output with a formatter. The functioning of the formatter
is generally transparent to the programmer, but once in a while a special e�ect is desired; special
control sequences are recognized by the formatter which give the programmer full control of output
formatting.

When the TADS compiler reads the text from your source �le, it ignores redundant spaces, and
treats line breaks as spaces. Hence, when your text is output by the system, it will be rearranged
from the way it was input. This frees you of the need to keep your source text formatted nicely.

Normally, the formatter will simply �ll up each line with as many words as it can, and then go to
a new line. It will automatically \word wrap" the output; that is, line breaks will always occur
between words. Hence, you can write your text without any line breaks at all, and it will come out
looking reasonably good. The formatter will also break text at hyphens that appear in your text
when it would allow the line to be �lled with more text (although the formatter will never attempt
to hyphenate words that aren't hyphenated in your text). When writing text, the formatter will
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automatically insert two spaces after periods, exclamation marks, colons, and question marks, as is
conventional. In other places, only one space will appear.

Note that you can override the automatic insertion of double spaces by using a quoted space (see the
Language Reference chapter's explanation of special control sequences in text) after the punctuation
mark that would normally cause a double space to be inserted. You can also insert several spaces in
a row using the quoted space. Refer to the Language Reference chapter's section on double-quoted
strings for the other special control sequences that you can use to control the output formatter.

Format Strings

TADS doesn't treat the player object specially in most places. This allows you to implement other
actors that carry out orders from the player fairly easily: the player can specify an actor to which
to direct a command, and if the actor follows it, the actor is speci�ed in all of the parser's method
calls to the objects involved in the command.

In order to make the text displays that result from a non-player actor's actions make sense, all of
the messages have to be phrased in terms of the actor actually carrying out the command, rather
than \you." It would be extremely inconvenient if you had to use actor.thedesc constantly in
these messages, so TADS provides a much more convenient mechanism called \format strings."

A format string is a special sequence of characters that signals the output formatter to substitute a
property of the current command's actor. Instead of using \you" and related words, the messages
in adv.t use format strings. Your game program should do the same thing where appropriate (i.e.,
any place that an actor other than the player may be taking some action or described in a message).
When the output formatter sees the format strings, it automatically replaces them with a term
appropriate to the current actor.

You can de�ne your own format strings, although adv.t de�nes most of the format strings you'll
probably need. Basically, a format string associates a special output sequence with a property name.
When the format string, enclosed in percent signs (%), appears in a message being displayed, the
output formatter removes the format string (including the percent signs) and replaces it by calling
the property associated with the format string. For example, adv.t de�nes a format string as follows:

formatstring 'you' fmtYou;

This tells the system that whenever it sees the sequence:

%you%

in text to be displayed, it removes the entire sequence, and replaces it with the text that results
from evaluating the fmtYou property in the current actor.
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In the new adv.t, messages are phrased in terms of these format strings. For example, the new
movement error message is \%You% can't go that way." When the player just types \east," the
%You% is replaced by You, which is the result of evaluating fmtYou for the object Me, so the message
is \You can't go that way," just as before. However, when the player types \joe, east," the message
is now \Joe can't go that way."

Note that the capitalization of the text replacing the format string follows the capitalization of the
format string itself. Hence, %you% is replaced with you, while %You% is replaced with You.

In adv.t, format strings are de�ned for most of the words that you'll need to use in messages that are
dependent on the actor. Some of these words are dependent on the actor in order to keep sentences
grammatical; for example, \You aren't wearing your spacesuit" would change to \Joe isn't wearing
his spacesuit"|the words \you", \aren't", and \your" all need to change. Using the format strings
de�ned in adv.t, you'd rewrite the message sentence as:

"%You% %are%n't wearing %your% spacesuit."

Your game will continue to work without using format strings in your own messages. You need not
make use of this feature (although you will automatically use it, to some extent, because adv.t uses
it in all of its messages). However, it's quite easy to use format strings instead of hardcoded text,
and it makes your game quite a lot more adaptable to multiple actors.

Special Words

The parser treats a number of words as special. In older versions of TADS, these words were built
in to the system, so your game program had no way to change them. A new construct has been
added that allows you to replace these words with words of your own choosing (this may be useful
if you are writing an adventure in a language other than English, for example).

The command that lets you override the built-in words is called specialWords. This command can
appear anywhere that one of the other special commands (such as formatString or compoundWord)
could appear. Following the specialWords keyword is a list of all of the special words, in a �xed
order. You must specify the words in the order shown below, and you must provide at least one
word for every position. However, you may provide more than one word for each position. Each
position is separated by a comma; synonyms (multiple words for one position) are separated by an
equals sign; and the entire list is terminated by a semicolon. The default list, which matches the
built-in list if no specialWords list is used at all, looks like this:

specialWords

'of', /* used in phrases such as "piece of paper" */

'and', /* conjunction for noun lists or to separate commands */

'then', /* conjunction to separate commands */

'all' = 'everything', /* refers to every accessible object */

'both', /* used with plurals, or to answer questions */
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'but' = 'except', /* used to exclude items from ALL */

'one', /* used to answer questions: "the red one" */

'ones', /* likewise for plurals: "the blue ones" */

'it', /* refers to last single direct object used */

'them', /* refers to last direct object list */

'him', /* refers to last masculine actor mentioned */

'her' /* refers to last feminine actor mentioned */

;
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When a thought takes one's breath away,

a lesson on grammar seems an impertinence.

| Thomas Wentworth Higginson (1890)

A smile is the chosen vehicle for all ambiguities.

| HERMAN MELVILLE, Pierre, book IV (1852)

Chapter Four Writing Adventures 57



58 The TADS Author's Manual



Chapter Five

Language Reference

This section describes in detail all of the keywords, operators, syntactic elements, built-in functions,
and special considerations of the TADS language.

Typographical Conventions

This section uses abstract syntax diagrams to describe the language. In these diagrams, several
typographical conventions are used:

italics are used to represent a description of an item that must be replaced with an
actual instance of the item.

[Square Brackets] are used to indicate that the enclosed item or items are optional.

Typewriter text is to be used verbatim. The same applies to any other punctuation shown.

Components of TADS

The TADS development system includes a compiler, a run-time system, and several TADS source
�les containing basic adventure de�nitions.

When you write a TADS program, you use a text editor (which is not included with TADS) to
prepare a source �le, then you compile the �le. The compiler checks the entire program for syntax
errors, then creates another �le containing a binary representation of your source �le; this form is
more e�cient to execute, so your game will require less memory and run faster.

After you have compiled your program, you use the run-time module to execute the game. The
run-time system contains the player command parser and other code for user interaction.
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Input File Format

The TADS compiler accepts standard ASCII text �les as input. The compiler considers any amount
of whitespace to be the same as a single space; spaces, tabs, and newlines all count as whitespace.
Whitespace can occur between any two syntactic elements, but need only appear between two identi-
�ers or keywords that have no other intervening punctuation. The compiler knows that punctuation
is never part of a keyword or identi�er, and can manage to break apart punctuation when it's all
run together without spaces. For readability, liberal use of whitespace is recommended.

Including Other Files

The #include directive allows one �le to insert the contents of another:

#include "file.t"

#include <file.t>

Here, file.t is the name of an operating system �le to be included. An included �le can include
another, and so forth, down to ten levels of nested �les. Note that the pound sign, #, must be in the
�rst column of the line; no leading spaces are allowed. The include �le adv.t is normally included
at the start of a game �le to de�ne the many items that are needed in a normal adventure. These
de�nitions are quite general, but speci�c games might modify them to customize the game.

Note that when the �lename is enclosed in double quotes, the compiler searches for the �le �rst in
the current directory, then in the directories in the include path (as set with the -i compiler switch
on most operating systems). When the �lename is enclosed in angle brackets, the compiler searches
only in the directories in the include path|the current directory is not searched. Generally, a system
include �le (such as adv.t) should be enclosed in angle brackets, while your �les should be in the
current directory and enclosed in double quotes.

Multiple Inclusions of the Same File

The TADS compiler automatically keeps track of each �le you have included, and ignores redundant
#include directives. Note that this feature is based on the �lename as speci�ed in your program; if
you refer to the same �le by di�erent names (for example, by specifying a path on one inclusion, but
using angle brackets to let TADS �nd the �le on the second), the compiler will not be able to identify
the duplicate �le, and will include it twice, resulting in countless unnecessary errors. For this reason,
you are encouraged to use angle brackets to specify include �les, rather than using speci�c paths in
your source �le. Doing so will help ensure that your source �les are portable to di�erent computers,
as well, since each operating system uses its own conventions for specifying �le paths.

Note that the include �les that make up a pre-compiled binary �le, loaded with the compiler's -l
option, are recorded in the binary �le. Thus, there is no need for you to remove the #include
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directive in your source �le just because you are using the pre-compiled version of that include �le.
For more information on using pre-compiled include �les, see the section on using the compiler.

Comments

Outside of a quoted string, two consecutive slashes, //, indicate that the rest of the line is a comment.
Everything up to the next newline is ignored.

Alternatively, C-style comments can be used; these start with /* and end with */; this type of
comment can span multiple lines.

Examples:

// This line is a comment.

/*

This is a comment

which goes across

several lines.

*/

Identi�ers

Identi�ers must start with a letter (upper or lower case), and may contain letters, numbers, dollar
signs, and underscores. Identi�ers can be up to 39 characters long. Upper and lower case letters are
distinct.

Scope of Identi�ers

All objects and functions are named by global identi�ers. No identi�er may be used to identify
di�erent things; that is, no two objects can have the same name, an identi�er naming a function
can't also be used for an object, and so forth.

Property names are also global identi�ers. A name used for a property can't be used for a function
or object, or vice versa. However, unlike functions and objects, the same property name can be used
in many di�erent objects. Since a property name is never used alone, but always in conjunction
with an object, the TADS compiler is able to determine which object's property is being referenced
even if the same name is used in many objects.

Function arguments and local variables are visible only in the function in which they appear. It is
permissible to re-use a global identi�er as a function argument or local variable, in which case the
variable supersedes the global meaning within the function. However, this is discouraged, as it can
be a bit confusing.
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Object De�nitions

A basic object de�nition has the form:

identifer: object [property-list] ;

This de�nes an object which has no superclass. An object can be de�ned as having a superclass
with the alternative form of object de�nition:

identi�er: class-name [, class-name [: : :]] [property-list] ;

Here, the class-name is an identi�er which is de�ned elsewhere in the program as an object or class
(either with or without a superclass), and is the new object's superclass; if more than one superclass
is present, a comma separates each superclass in the list. The new object named by identi�er inherits
all the properties of the superclass or superclasses. If a property in the optional property-list is also
in the property list of the superclass (or its superclass, and so forth), the new property overrides the
inherited one.

If a property is inherited from more than one of its superclasses (and is not overridden in the object's
own property list), the property is inherited from the superclass that appears earliest in the list. For
example, suppose you de�ne an object like this:

vase: container, fixeditem

;

If both container and fixeditem de�ne a method named m1, and vase itself doesn't de�ne an m1

method, then m1 is inherited from container, because it appears earlier in the superclass list than
fixeditem.

There is a more complicated case that can occur, but it is very unusual. You will probably never
encounter this, so skip this section if you �nd it confusing. Suppose that in the example above, both
container and fixeditem have the superclass item, and that item and fixeditem de�ne method
m2, and that neither container nor vase de�ne m2. Now, since container inherits m2 from item,
it might seem that vase should inherit m2 from container and thus from item. However, this is
not the case; since the m2 de�ned in fixeditem overrides the one de�ned in item, vase inherits the
m2 from fixeditem rather than the one from item. Hence, the rule, fully stated, is: the inherited
property in the case of multiple inheritance is that property of the earliest (leftmost) superclass in
the object's superclass list that is not overridden by a subsequent superclass.

Property Lists

A property list takes on this form:

property-de�nition [property-list]

(This is a formal way of saying that you can string together any number of property de�nitions in
a property list, one after the other.) A property de�nition looks like this:
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identi�er = data-item

Note that no semicolon comes after the property de�nition. A semicolon terminates the entire object
de�nition, not individual property de�nitions.

Property Data Items

A data item can be a number, a double-quoted string, a single-quoted string, a list, an object, nil,
or true.

Numbers

A number is just a string of digits. The default base is decimal; you can also enter octal and
hexadecimal numbers. An octal number simply starts with a leading zero, so 035 is an octal number
having the decimal value 29. A hexadecimal number starts with 0x, as in 0x3a9.

Numbers can vary from -2147483647 to 2147483647 (decimal), inclusive. Only integers are allowed;
numbers cannot have a decimal point or a fractional part.

Double-quoted Strings

A double-quoted string is an arbitrary string of characters enclosed in double quotation marks, such
as,

"This is a double-quoted string."

Stretches of whitespace in such strings are compressed to single spaces. This includes newlines;
double-quoted strings can go on past the end of a line, and keep going for several lines. For example,
this is perfectly legal:

"This is a string

that goes on for

several lines."

Note that TADS converts all of that blank space, including the blank lines, down to a single space
between each word. Thus, you can enter your text without having to worry about formatting it;
TADS will do all the work of �lling up each output line when your program runs.

Sometimes, you will want to format your output in a speci�c way, overriding the standard output
formatting. Since TADS converts all whitespace in your strings (including newlines) to spaces, you
have to specify any special formatting you want explicitly. TADS provides several special character
sequences you can use to obtain these e�ects.
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\t Tab to the next stop. Tab stops are every four spaces. This is
useful if you want stretches of blank space within a line.

\n A newline. Ends the current line, and skips to a new one. Note
that repeating this sequence has no e�ect, since the output format-
ter ignores redundant \n sequences; this is normally convenient,
because it means you don't have to worry about several newline
sequences being displayed by di�erent objects �lling the display
with unwanted blank lines. If you want to force one or more blank
lines, use \b.

\b Ends the current line, and then outputs a blank line.

\" A double quote.

\\ A backslash.

\< A left angle bracket. This is not required to produce a single angle
bracket (although it will do so), but you will need to use this on
second and subsequent angle brackets in a stream of contiguous an-
gle brackets, to prevent TADS from thinking you want to embed an
expression in your string (see below). Hence, if you want to display
<<<<<, you will have to type this in your program: "<\<\<\<\<".

\^ (That is, a backslash followed by a circumex or \up arrow" or
\hat," entered with the shifted \6" key on most keyboards.) This
sequence causes the next character in the output to be capitalized.
This sequence is generally used just before invoking a function or
method that will display text that will be at the start of a sentence.
By using this sequence prior to the text, you ensure that the �rst
letter of the sentence is capitalized, even if the function or method
displaying the text doesn't know it should be capitalized. For ex-
ample: "\^<< obj.adesc >> is sitting on the table." Note
that the caps() built-in function has the same e�ect.

\space (That is, a backslash followed by a space.) A quoted space. This is
useful in certain cases to achieve special formatting e�ects, because
it overrides the output formatter's suppression of multiple spaces,
and it also suppresses the double-space that follows punctuation
marks such as periods. For example, if you want to print someone's
name with a middle initial, you don't want two spaces after the
initial; you would thus enter: "Michael J.\ Roberts".

\( Begin highlighting. Text after the \( is displayed with a special
attribute, which varies by system; on some machines it will appear
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in a di�erent color than ordinary text, while on others it may ap-
pear with a di�erent typeface. On some systems it may have no
e�ect. This is intended to be used for emphasizing text the same
way that boldface or italics would emphasize text in a book. Note
that highlighting does not \nest"; that is, if a \( sequence occurs
while highlighting is already active, the second sequence has no
additional e�ect.

\) End highlighting. Text after the \) without the special highlighting
attribute. Note that a single \) sequence turns o� highlighting, no
matter how many \( sequences preceded it.

There is no speci�c limit on the length of a double-quote string, although the compiler may impose
some limits depending on the context in which the string appears.

A double-quoted string is always displayed whenever evaluated. When a double-quoted string ap-
pears in code, executing that code results in displaying the string. Likewise, when a property has a
double-quoted string as its value, the string is displayed whenever the property is evaluated.

Embedding Expressions in Strings

TADS has a convenient feature which allows you to embed expressions in strings, without actually
stopping the string. Any time TADS encounters two consecutive left angle brackets in a string, it
will momentarily stop the string, and evaluate what comes after the angle brackets as an expression
whose value is to be displayed. The expression ends, and the string resumes, when two right angle
brackets are encountered. This makes property de�nitions that need to look up another property
very convenient to de�ne; for example,

itsHere = "<< self.thedesc >> is here."

The statement above is equivalent to this more verbose version:

itsHere =

{

self.thedesc; " is here.";

}

An embedded expression can evaluate to a number, a single-quoted string, or a double-quoted string.
Other datatypes are not allowed. A string may have any number of embedded expressions within it.
An embedded expression may only contain an expression; statements (such as if) are not allowed,
and semicolons may not be used to separate multiple expressions|use commas instead.

This feature has certain limitations. It is illegal to use a string in an embedded expression which itself
has an embedded expression. This feature can be used only in double-quoted strings; single-quoted
strings cannot contain embedded expressions.
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Because some game authors may wish to use two or more consecutive left angle brackets in their
strings, the special sequence `\<' is provided. See the section on special character sequences, above,
for more information.

Single-quoted Strings

Single-quoted strings are essentially the same as double-quoted strings in appearance, except, of
course, that they are enclosed in single quote marks. The sequence \' is available to produce a
single quote in the string itself.

Single-quoted strings do not display when evaluated; instead, they are treated as values. Certain
built-in functions are available to manipulate these strings, such as say, which displays such a string
value.

Note also that all vocabulary words appear as single-quoted strings (or lists of single-quoted strings).

Lists

A list is an aggregate of other data items. It is entered as a set of data items enclosed in square
brackets (note that these square brackets are the actual punctutation, not indicators of optionality):

[ data-list ]

A data-list can be nothing at all, in which case the list is empty, as in

[]

Or, it can be one or more data items (numbers, strings, objects, lists). Generally, it is only useful
to construct lists with the same datatype for all members, but this is not required by the language.

Examples of lists:

[ 1 2 3 ]

[ 'hello' 'goodbye' ]

[ [1 2 3] [4 5 6] [7 8 9] ]

[ vase goldSkull pedestal ]

List elements need not be constants, unless the entire list needs to be a constant. For example, a
list used as a property value must be a constant, so all of the elements must be constants (hence,
local variables and non-constant expressions cannot be used). However, a list used in code, such as
a list assigned to a local variable, can contain non-constant expressions within the list elements. For
example, the following function dynamically constructs a list from three expressions:

f: function(x, y, z)

{

return([x+1 y+1 z+1]);

}
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The non-constant list elements are legal because the list construction appears in code. Note that
the routine above has the same e�ect as this code:

f: function(x, y, z)

{

return((([] + (x+1)) + (y+1)) + (z+1));

}

The second example starts with an empty list, then adds an element whose value is (x+1), then adds
a second element whose value is (y+1), and so on. The two examples construct exactly the same
list. However, you should use the �rst construct where possible, because it is much more e�cient:
the �rst example constructs only a single list, whereas the second must construct four lists, one at
a time. The �rst example is faster and consumes less memory at execution time.

nil and true

Two special datatypes, nil and true, are pre-de�ned. These are generally used as \truth values";
nil means false and true means true. For example, 1 > 3 evaluates to nil, whereas 1 < 3 is true.
In addition, nil means the absence of a value; taking the car of an empty list returns nil, as does
evaluating a property of an object when the property is neither de�ned nor inherited by the object.

For truth values, you should use nil and true rather than numeric equivalents, since nil and true

provide much more explicit self-documentation of your program.

Expressions

A property de�nition can contain an expression rather than a simple constant. When a property
value is an expression, the expression must be enclosed in parentheses. The expression is evaluated
each time the property is evaluated. An example of using an expression for a property value:

exprObj: object

x = 1

y = 2

z = (self.x + self.y)

;

Whenever exprObj.z is evaluated, the sum of the current values of exprObj.y and exprObj.z is
returned.

Note that a property de�ned in this manner can take parameters, just like methods (described
below). For example:

exprObj2: object

w(a, b) = (a * b)

;
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When exprObj2.w is evaluated, it requires two parameters, which are multiplied together to give
the value of the property. For example, evaluating exprObj2.w(3, 4) produces a value of 12.

Note that the property z above could have been written without the \self." pre�x on x and y:

z = (x + y)

This is because properties, if used without an object name, are assumed to belong to the current
self object.

Methods

Code can be used in a property de�nition just like any other datatype; when you associate code
with an object, the code is called a method. When the method is evaluated, the code is executed;
the return value is the value of the method, but often it is useful for the code to produce side e�ects
as well.

Method code is enclosed in braces, f and g. Anything valid in a function may appear in code
associated with a method. The method may have local variables, and it can receive arguments.
If the method has arguments, the argument list (which is identical to a function's argument list)
appears after the method name. For example:

obj1: object

f(x) =

{

return(x + 1);

}

;

When such a method is evaluated, the argument list is speci�ed after the method name, as in:

f1: function

{

say(obj1.f(123));

}

Functions

A function de�nition has this form:

identi�er: function [ ( argument-list ) ]
{

function-body
}
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The argument-list is optional; functions need not take arguments. If the function does take one or
more arguments, the list looks like this:

identi�er [, argument-list ]

The identi�ers may be used just like local variables within the function.

The punctuation in the above syntactic description may be a little much, so an example might be
helpful:

addlist: function(list) // add up the numbers in the list

{

local sum, count, i;

i := 1; // index the first item in the list

sum := 0; // initialize the sum to zero

count := length(list); // get the number of items in the list

while (i < count) // as long as there's more to do...

{

sum := sum + list[i]; // add next element

i := i + 1; // go on to the next list element

}

return(sum);

}

Functions with Variable Argument Lists

It is possible to de�ne a function that takes a variable number of arguments. In the function
de�nition, you can specify a minimum number of arguments that are always passed to the function
(which can be no arguments at all, if you wish), and then specify that more arguments can optionally
follow. This is done with the \ellipsis" token, \...", as the �nal \argument" in the function's
argument list. For example, to de�ne a function that takes any number of arguments:

f: function(...)

{

}

To de�ne a function that always takes at least one argument, but could take additional arguments:

g: function(fmt, ...)

{

}

In a function taking a variable number of arguments, you can determine how many arguments were
actually passed to the function by inspecting the pseudo-variable argcount. This pseudo-variable's
value is simply the number of arguments to the current function.

To retrieve an argument, use the getarg(argnum) built-in function. The argument argnum is the
number of the argument you want to retrieve; getarg(1) returns the �rst argument, getarg(2)
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returns the second, and so forth. Note that in a function which has some explicit arguments,
followed by an ellipsis, getarg(1) still returns the �rst argument, even though it has a name in the
argument list. For example, in the function g above, getarg(1) returns the value of the argument
fmt.

Another built-in function, datatype(value), can be used to determine the datatype of an argument.
See the description of the datatype function later in this chapter for more information.

As an example, the function below displays any number of values.

displist: function(...)

{

local i;

for (i := 1 ; i <= argcount ; i++)

{

say(getarg(i));

" ";

}

"\n";

}

Forward-Declaration of Functions

An alternative form of the function statement allows you to forward-declare a name as a function,
without actually de�ning the function. The format of a forward declaration is:

identi�er: function;

Note that this does not de�ne the function; it merely tells the compiler that a function de�nition for
the speci�ed identi�er will appear later in the �le. This reserves the identi�er for use as a function
name, and prevents the compiler from assuming the identi�er refers to an object.

Forward declarations are not necessary except where setdaemon() and the like will be used. When
a function is actually called, the syntax of the call tells TADS that the name refers to a function
even when TADS hasn't seen the function de�nition yet. In setdaemon() and similar calls, though,
no special syntax is present to tell TADS what the identi�er refers to, so the compiler assumes it
will refer to an object.

Writing Code

In this section we cover the details of the language that goes inside functions and methods. Function
and method code consists of a series of statements; the statements are executed sequentially in the
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order they appear in the source program. The following pages provide details about the statements
that may be used.

Each statement in TADS code is terminated with a semicolon.

local

At the start of a function or property de�nition, you can de�ne local variables for the current code
block. This is done with a statement such as this:

local identi�er-list ;

The identi�er-list has the form:

identi�er [ initializer ] [, identi�er-list ]

An initializer, which is optional, has the form:

:= expression

where the expression is any valid expression, which can contain arguments to the function or method,
as well as any local variables de�ned prior to the local variable being initialized with the expression.
The expression is evaluated, and the resulting value is assigned to the local variable prior to evaluat-
ing the next initializer, if any, and prior to executing the �rst statement after the local declaration.
Local variables with initializers and local variables without initializers can be freely intermixed in a
single statement; any local variables without initailizers are automatically set to nil by the run-time
system.

The identi�ers de�ned in this fashion are visible only inside the function in which the local statement
appears. Furthermore, the local statement supersedes any global meaning of the identi�ers within
the function.

A local statement can occur in any block (that is, any statements grouped together with braces),
and a single block can have multiple local statements; all local statements in a block must precede
the �rst executable statement of the block (that is, the only thing that can occur before a local

statement is another local statement.

An example of declaring local variables, using multiple local statements, and using initializers is
below.

f: function(a, b)

{

local i, j; /* no initializers */

local k := 1, m, n := 2; /* some with initializers, some without */

local q := 5*k, r := m + q; /* OK to use q after it's initialized */

for (i := 1 ; i < q ; i++)

{

local x, y; /* locals can be at start of any block */

say(i);
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}

}

Expressions

TADS expressions are entered in algebraic notation. Operators have di�erent meanings on di�erent
datatypes. The basic list follows.

& Takes \address" of a function or property. The & operator must be
immediately followed by the name of a property or the name of a
function. You can assign this value to a local variable or a property,
or you can pass it to a function or method. The address value
can then be used to call the function or property. See \Indirect
Function and Method Calls" later in this chapter. (Note: older
versions of TADS used the # operator to take the address of a
function. This operator is still understood by the system, but we
recommend that you use & in new code instead.)

. Takes a property of an object. On the left of the dot is an ex-
pression that evaluates to an object, and on the right is a property
name. If the property is a method that requires arguments, these
arguments are listed in parentheses after the property name, just
as with function arguments. A local variable or an expression en-
closed in parentheses may appear on the right hand side; the local
or expression must evaluate to a property pointer.

[] List indexing; applied to the right side of a list-valued expression.
An expression which evaluates to a number must appear between
the square brackets. If the index (i.e., the value between the square
brackets) is n, the nth element of the list is returned by this opera-
tor. The �rst element in the list is number 1. For example, ['one'
'two' 'three'][1+1] evaluates to the string 'two'. Note that a
run-time error results if n is outside the bounds of the list; that is,
n is less than 1 or greater than the number of elements in the list
(as returned by the length() built-in function).

++ Increment; adds one to a numeric variable or property. The ex-
pression to which ++ is applied must be suitable for assignment
(i.e., it must be something that you can use on the left-hand side
of the assignment operator, \:="). The ++ operator can be either
a pre�x or post�x operator|that is, it can be placed either before
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or after its operand. If it's placed before the operand, as in ++i,
the operand is incremented, and the value of the expression is the
value of the operand after the increment. If it's placed after the
operand, as in i++, the value of the expression is the value of the
operand before the increment. So, if the variable i has the value
3, ++i has the value 4, while i++ has the value 3. Think about it
by reading the expression left-to-right, and noting that the value of
the expression is the value of i when you read it, and the increment
is applied when you read the ++ operator. So, with ++i, you �rst
read the increment operator, which adds 1 to i, then you note the
value of i, which by now is 4. With i++, you �rst read i and note
its value, which is still 3, then you see the ++ operator, leaving 4

in i.

-- Decrement; subtracts one from a numeric variable or property.
This acts exactly like the ++ operator, except that it decrements
its operand rather than incrementing it.

not Logical negation. Turns true into nil and vice versa. This oper-
ator can only be applied to the values true and nil.

- Arithmetic negation. As a unary pre�x operator (that is, an oper-
ator that precedes its single operand), the minus sign negates the
number following it.

* Numeric multiplication. Multiplies the numbers on either side of
the asterisk together.

/ Numeric division. The number on the left of the slash is divided by
the number on the right. Note that TADS numbers are all integers;
the remainder of the division is discarded. Hence, 7/2 has a value
of 3.

+ Adds numbers, concatenates lists, concatenates strings. If both the
left and right are numbers, the result is numeric addition. If one
or the other is a list, but not both, the non-list is added as the last
element of the list. If both operands are lists, the items from the list
on the right side are appended to the list on the left; for example,
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[1 2 3] + [4 5] yields the list [1 2 3 4 5]. If both are strings,
the right string is concatenated to the left string. Other datatypes
are illegal.

- Subtracts numbers, removes items from lists. If both operands are
numbers, the right operand is subtracted from the left. If the left
element is a list, the right item is removed from the list if it appears
in the list on the left (nothing happens if not); if the right item is
also a list, each element from the right list that appears in the left
list is removed from the left list. Other datatypes are illegal.

= Equality. The datatypes on either side must be the same, but can't
be lists. One exception: anything can be compared for equality to
nil. Evaluates to true if the items are the same, nil otherwise.

<> Inequality. True if the operands on both sides are not the same
(although the datatype of each operand must be the same).

> Greater than. Like the other comparison operators, this may only
be applied to numbers and strings. Evaluates to true or nil.
Note that, when applied to strings, the comparison is based on
the collation sequence of the character set of the computer you are
using, such as ASCII.

< Less than.

>= Greater than or equal to.

<= Less than or equal to.

and Logical product: both the left and right sides must be true, in
which case the value is true; otherwise, the value is nil. Note
that if the left operand is nil, the right operand is not evaluated
at all, since the value of the expression will be nil regardless of
the value of the right operand.

or Logical sum: one or the other of the left or right operators must
be true for the value to be true; otherwise the value is nil. Note
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that if the left operand is true, the right operand is not evaluated
at all, since the value of the expression will be true regardless of
the value of the right operand.

? : Conditional. This is a tertiary operator; that is, it takes three
operands, of the form cond ? true-expr : false-expr. First, the
cond is evaluated; if it evaluates to true or a non-zero number,
then the true-expr is evaluated, and its value is the value of the
entire conditional expression. If the cond is false, the false-expr is
evaluated, and its value is the value of the entire expression. Note
that either true-expr or false-expr is evaluated|not both. This
allows you to use this operator when the expressions have side
e�ects, such as displaying strings.

:= Assignment. The variable or property on the left of the operator
is assigned the value on the right side. This is the lowest priority
operator, and operates right to left, unlike the other operators.
Hence, a := b := 3 assigns the value 3 to b, then to a. Note that
an assignment is an expression, which returns the assigned value;
hence, the value of (a := 3) + 4 is 7, with the side e�ect that the
variable a has been set to 3.

+= Add and assign. This is simply short-hand notation. The expres-
sion a += b has exactly the same e�ect as the expression a := a

+ b, except that the += operator makes the expression easier to
write. The value of the expression is a + b, which is the same as
the value of a after the assignment.

-= Subtract and assign. This is short-hand notation. The expression
a -= b has the same e�ect as a := a - b.

*= Multiply and assign. The expression a *= b has the same e�ect as
a := a * b.

/= Divide and assign. The expression a /= b has the same e�ect as a
:= a / b.

, Conjunction. The comma operator simply allows you to start a
new expression within an expression. On the left hand side is an
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expression, and on the right hand side is another expression. The
two expressions are independent; the comma operator performs no
computation on either expression. The value of a pair of expres-
sions separated by a comma is the value of the second (right-hand)
expression. The comma operator is useful mostly in contexts where
an expression is required, but you wish to evaluate several other-
wise independent expressions for their side e�ects. For example,
in the initialization portion of a for statement, you often wish to
initialize several variables; you can do this by separating the initial-
izations with commas. See the description for statement later in
this chapter. Note: the comma operator is di�erent from a comma
that appears in a function's or method's argument list. In the ar-
gument list, the comma simply separates di�erent expressions that
are the arguments; in a normal expression, however, the comma
separates parts of the same expression.

The operators are shown above in their order of evaluation, from �rst to last. Hence, conjunctions
are done last, after all higher-precedence operators have been evaluated. Note that there are some
groups of operators in the list above; for example, all of the comparison operators are grouped
together. This indicates that these operators have the same precedence. Operators of the same
precedence associate left to right; for example, 3-4+5 is evaluated as (3-4)+5. The exception is the
assignment operator, which groups right to left; that is, in the expression a := b := 2, b is �rst set
to 2, then a is set to b.

You can use parentheses to force a di�erent order of evaluation of your expression.

Assignments

An assignment is not a special type of statement; it is merely an expression which uses an assignment
operator:

item := expression;

The item is a local variable, a list element, or an object's property. When assigning to a property
of an object, the object reference may itself be an expression. Likewise, when assigning to a list
element, the list and index may both be expressions. Note, however, that lists cannot be expanded
by assigning to an element past the end of the list; the index must refer to an existing member of
the list to be replaced. A few examples of assignments:

a: function(b, c)

{

local d, e, lst;

d := b + c; // assign a local variable

obj3.prop1 := 20; // assign obj3's property prop1

e := obj3; // assign an object to a local variable
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e.prop1 := obj2; // assign obj3's property prop1 the object obj2

e.prop1.prop2 := 20; // assign obj2's property prop2 the number 20

fun1(3).prop3 := 1 + d; // assign prop3 of the object returned by fun1

lst := [1 2 3 4 5]; // set up a local variable with a list

lst[3] := 9; // lst is now [1 2 9 4 5]

lst[5] := 10; // and it's [1 2 9 4 10] now

/* lst[6] := 7 would be illegal - the list is only 5 elements long */

}

Function Calls

A function call is simply an expression involving a call to a function:

function-name( [ argument-list ] );

The function-name is the name of a function de�ned elsewhere. The argument list, if provided, is
passed to the function for its parameters. (Naturally, the arguments passed to a function should
match in number those de�ned in the function's de�nition.) Each parameter can be an arbitrary
expression, and the individual arguments are separated by commas.

Whether there's an argument list or not, the parentheses are required; they tell the compiler that
you wish to call the function. (You may wonder where you would ever want to use a function's name
other than when calling the function. A few special built-in functions, such as setdaemon, which
will be discussed in detail later, allow you to specify a function that is to be called eventually, but
not right away. In these cases, you need to be able to refer to a function without actually calling it.
In these cases, you use the function's name without parentheses.)

If the function returns a value, the value is discarded in this form of the call. A function called in
this manner is invoked for its side e�ects rather than its return value.

An example:

showlist(a+100, 'The list is: ', list1);

Indirect Function and Method Calls

You can call a function or method \indirectly"; that is, you can use a pointer to a function or method
to call the function or method. This can sometimes be useful in setting up a general routine which
calls other routines based on parameters passed into it.

To call a function with a function pointer, simply use an expression yielding a function pointer,
within parentheses, where you'd normally use a function name. For example:

g: function(a, b, c)

{

return(a + b + c);
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}

f: function

{

local fptr, x;

fptr := &g; /* get address of function g */

x := (fptr)(1, 2, 3); /* call function with pointer */

}

A property pointer is used in essentially the same way.

f: function(actor, obj)

{

local propPtr := &doTake; /* get pointer to doTake property */

obj.(propPtr)(actor); /* call property through pointer */

}

For example, suppose you wish to implement a way of asking characters in a game about various
objects in the game. One way you could do this is by de�ning a general \ask" routine that takes the
character and the object as arguments. Set things up so that each object de�nes a property saying
what each actor knows about that object. Then, each actor speci�es via a \property pointer" which
property to evaluate in an object to �nd out what the actor knows about the object. If an object
doesn't de�ne this property, the actor doesn't know anything about that object.

So, our general \ask" routine is very simple (or concise, anyway):

ask: function(actor, obj)

{

local propPtr;

/* find out what property to evaluate in the object */

propPtr := actor.askPropPtr;

/* see if it's defined in the object */

if (defined(obj, propPtr))

{

/* it is defined - call the property indirectly */

obj.(propPtr);

}

else

{

/* it's not defined - use default message */

actor.dontKnow;

}

}

Now, each actor simply has to de�ne a property that each object uses to specify what the actor
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knows about the object, and place the address of this property the actor's askPropPtr property.
The actor also needs to de�ne the default message in the dontKnow property. Here's an example:

joe: Actor

sdesc = "joe"

noun = 'joe'

dontKnow = "Joe just scratches his head and shrugs."

askJoe = "You probably don't want to get Joe started on his life story."

askPropPtr = askJoe

;

Finally, each object must de�ne an appropriate askJoe property if Joe knows anything about that
object. Likewise, it will de�ne other properties for what other actors know about it. This way, all of
the information about an object, including what the various characters in the game know about it,
can be kept with the object itself. In addition, the general \ask" routine is extremely simple. The
overall concept behind the mechanism is somewhat complicated, but the �nished product is very
simple and easy to use and expand.

return

A function can return a value to its caller by using a statement such as:

return [ expression ];

With or without the expression, execution of the function is terminated and the caller resumes
execution where it left o�. If the expression is provided, the caller receives the expression as the
function's value.

Here's an example of a function that computes the sum of the elements of a list, and returns the
sum as the value of the function.

listsum: function(lst)

{

local i, sum, len := length(lst);

for (i := 1, sum := 0 ; i <= len ; i++)

sum += lst[i];

return(sum);

}

if

The general form of the conditional in TADS is:

if ( expression ) statement
[ else statement ]
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Here and elsewhere, a statement can be either a single statement or a series of statements enclosed
in braces. The expression should evaulate to either a number, in which case zero counts as false and
anything else counts as true, or to a truth value, true or nil.

Note that the optional else clause is grouped with the most recent if statement when if statements
are nested. For example,

if (self.islit)

if (film.location = Me)

"Oops! You've exposed the film!";

else

"It's dark in here.";

The author of this code obviously intended the else clause to go with the �rst if, but remember
that an else goes with the most recent if, so it actually is grouped with the second if statement.
This problem can be easily recti�ed by using braces to make the grouping explicit:

if (self.islit)

{

if (film.location = Me)

{

"Oops! You've exposed the film!";

}

}

else

{

"It's dark in here.";

}

switch

The switch statement lets you set up the equivalent of a large if-else tree, but is considerably
easier to read and is more e�cient to execute. A switch statement allows you to test a particular
value against several alternatives, and execute a group of statements accordingly.

The form of the switch statement is:

switch ( expression )

{

[ case-list ]
[ default-clause ]

}

The form of the case-list is:

case constant-expression :

[ statements ]
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[ case-list ]

The form of the default-clause is:

default:

[ statements ]

In the diagrams, statements means that zero or more statements can follow a case or default. You
do not need to supply any case labels at all, and the default is also optional.

The expression evaluates to a number, string, object, list, or true or nil. The value of the expression
is then tested against each case value. If the value matches one of the case values, the statements
following the matching case are executed. If the value does not match any case value, and a
default case is de�ned, the statements following the default are executed. If the value does not
match any case value, and there is no default case, the entire switch statement is skipped, and
execution resumes following the closing brace of the switch.

Note that execution is not interrupted when another case is enountered. Instead, it just continues
into the statements following the case label. If you wish to stop executing statements in the switch
at the end of the statements for a single case, you must use the break statement.

The break statement has a special meaning within a switch statement: it indicates that execution
should break out of the switch statement and resume following the closing brace of the switch.

Here's an example of a switch statement.

f: function(x)

{

switch(x)

{

case 1:

"x is one";

break;

case 2:

case 3:

"x is either 2 or 3";

break;

case 4:

"x is 4";

case 5:

"x is either 4 or 5";

case 6:

"x is 4, 5, or 6";

break;

case 7:

"x is 7";

break;

default:
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"x is not in 1 through 7";

}

}

while

The while statement de�nes a loop: a set of statements that is executed repeatedly as long as a
certain condition is true.

while ( expression ) statement

As with the if statement, the statement may be a single statement or a set of statements enclosed
in braces. The expression should be a number (in which case 0 is false and anything else is true), or
a truth value (true or nil).

The expression is evaluated before the �rst time through the loop; if the expression is false at that
time, the statement or statements in the loop are skipped. Otherwise, the statement or statements
are executed once, and the expression is evaluated again; if the expression is still true, the loop
executes one more time and the cycle is repeated. Once the expression is false, execution resumes
at the next statement after the loop.

do-while

The do-while statement de�nes a slightly di�erent type of loop than the while statement. This
type of loop also executes until a controlling expression becomes false (0 or nil), but evaluates the
controlling expression after each iteration of the loop. This ensures that the loop is executed at least
once, since the expression isn't tested for the �rst time until after the �rst iteration of the loop.

The general form of this statement is:

do statement while ( expression );

The statement may be a single statement or a set of statements enclosed in braces. The expression
should be a number (in which case 0 is false and anything else is true), or a truth value (true or
nil).

for

The for statement de�nes a very powerful and general type of loop. You can always use while to
construct any loop that you can construct with for, but the for statement is often a much more
compact and readable notation for the same e�ect.

The general form of this statement is:

for ( init-expr ; cond-expr ; reinit-expr ) statement
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As with other looping constructs, the statement can be either a single statement, or a block of
statements enclosed in braces.

The �rst expression, init-expr, is the \initialization expression." This expression is evaluated once,
before the �rst iteration of the loop. It is used to initialize the variables involved in the loop.

The second expression, cond-expr, is the condition of the loop. It serves the same purpose as the
controlling expression of a while statement. Before each iteration of the loop, the cond-expr is
evaluated. If the value is true (a non-zero number, or true), the body of the loop is executed;
otherwise, the loop is terminated, and execution resumes at the statement following the loop body.
Note that, like the while statement's controlling expression, the cond-expr of a for statement is
evaluated prior to the �rst time through the loop (but after the init-expr has been evaluated), so a
for loop will execute zero times if the cond-expr is false prior to the �rst iteration.

The third expression, reinit-expr, is the \re-initialization expression." This expression is evaluated
after each iteration of the loop. Its value is ignored; the only purpose of this expression is to change
the loop variables as necessary for the next iteration of the loop. Usually, the re-initialization
expression will increment a counter or perform some similar function.

Any or all of the three expressions may be omitted. Omitting the expression condition is equivalent
to using true as the expression condition; hence, a loop that starts \for ( ;; )" will iterate
forever (or until a break statement is executed within the loop). A for statement that omits the
initialization and re-initialization expressions is the same as a while loop.

Here's an example of using a for statement. This function implements a simple loop that computes
the sum of the elements of a list.

sumlist: function(lst)

{

local len := length(lst), sum, i;

for (sum := 0, i := 1 ; i <= len ; i++)

sum += lst[i];

}

Note that an equivalent loop could be written with an empty loop body, by performing the sum-
mation in the re-initialization expression. We could also move the initialization of len within the
initialization expression of the loop.

sumlist: function(lst)

{

local len, sum, i;

for (len := length(lst), sum := 0, i := 1 ; i <= len ;

sum += lst[i], i++);

}

break

A program can get out of a loop early using the break statement:
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break;

This is useful for terminating a loop at a midpoint. Execution resumes at the statement immediately
following the innermost loop in which the break appears.

The break statement also is used to exit a switch statement. In a switch statement, a break

causes execution to resume at the statement following the closing brace of the switch statement.

continue

The continue statement does roughly the opposite of the break statement; it resumes execution
back at the start of the innermost loop in which it appears. The continue statement may be used
in for, while, and do-while loops.

In a for loop, continue causes execution to resume at the re-initiailzation step. That is, the third
expression (if present) in the for statement is evaluated, then the second expression (if present) is
evaluated; if the second expression's value is non-nil or the second expression isn't present, execution
resumes at the �rst statement within the statement block following the for, otherwise at the next
statement following the block.

goto

The goto statement is used to transfer control unconditionally to another point within the same
function or method. The target of a goto is a label; a label is de�ned by placing its name, followed
by a colon (:), preceding a statement.

Note that labels have function- or method-scope; that is, they are visible within the entire function
or method in which they are de�ned. This is di�erent from local variables, which are visible only
within the block (the group of statements enclosed in braces) in which they are de�ned. Labels are
not visible outside the function or method in which they are de�ned.

An example of using goto:

f: function

{

while (true)

{

for (x := 1 ; x < 5 ; x++)

{

/* do some stuff */

if (myfunc(3) < 0) /* did an error result? */

goto exitfunc; /* error - quit now */

/* do some more stuff */

}

}
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/* come here if something goes wrong */

exitfunc: ;

}

This use of goto avoids the need for testing a ag in the outer (while) loop, which makes the code
a little simpler and easier to understand.

The goto statement is widely considered among civilized computer scientists to be an evil and
malevolent feature of ancient and unusable languages, and the esteem of TADS within serious com-
puter language design circles has undoubtedly been fatally injured by the inclusion of this construct.
So, you may wish to use this statement sparingly, if at all, especially if you're hoping to impress a
civilized computer scientist with your coding e�orts. However, many software engineers look upon
goto as a highly useful statement when in the hands of a seasoned professional, and sco� at the
blanket indictment by the more-elegant-than-thou academic establishment, most of whom probably
haven't written a line of code since their TA's were chastising them for using goto in their Pascal
programs, excepting perhaps some algorithms written in pseudo-code that always end in \the rest
is left as an exercise for the reader" anyway. The author of TADS doesn't wish to take sides in this
heated controversy, but hopes that both camps will be pleased, by gaining either the utility of using
goto with wild abandon or the sense of virtue of knowing they could have used it but overcame the
unclean temptation. With TADS, the choice is yours.

pass

A method can decide to inherit the behavior of its parent class by using the pass statement:

pass method-name;

The method-name must be the same as the name of the method that the pass statement occurs in.
When a pass statement is executed, the method that would have been inherited if the object had
not overridden it is called with the same arguments, if any, as the method called in the �rst place.
The self object is unchanged; that is, the superclass method is run, but self is the object that
was originally sent the message being passed.

exit and abort

During processing of a player's command, the game can terminate the normal sequence of events
and return to the get another command from the player in two di�erent ways. The abort statement
stops all processing, and gets the next command; it is normally used by \system" functions, such
as saving the game, that should not count as a turn, and therefore shouldn't run any daemons or
fuses. The exit statement, on the other hand, skips everything up to the fuses and daemons; exit
is used when an actor wishes to stop further processing, and other similar cases.

Note that messages to objects scheduled with the notify() function are treated the same as other
daemons and fuses, so these are also skipped by the abort statement.
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askdo and askio

These statements interrupt processing of a turn like abort, skipping fuses and daemons, but allow
the user to enter more information. The askdo command asks the user to enter a direct object;
the system displays a message asking the user for an object. The user can either enter an object
in response to the request, or can simply type a new command. For example, if the verb is \take,"
executing an askdo command will cause the system to display \What do you want to take?" and
wait for an object or a new command. The askio command is similar, but it takes a preposition as
a parameter; this preposition is added to the command, and the system prompts the player for an
indirect object. For example, if the verb is \unlock," and the following command is executed:

askio(withPrep);

then the system displays \What do you want to unlock it with?" and prompts the player for an
object or a new command. The askio command can only be used when a direct object is already
present.

In either case, if the player responds to the request with an object, the command is tried again from
the start. If the player types a new command, the command that resulted in the askdo or askio is
discarded. Note that control never comes back to the statement after the askdo or askio command,
regardless of user input; in either case, command processing starts from the top.

Note that, in some cases, the system won't actually ask the player for a new object. Instead, the
system will attempt to �nd a default object, using exactly the same mechanisms that it uses to �nd
default objects normally (see the section on the parser's default object mechanisms in chapter four).

self

When code associated with a property is being executed, a special object is de�ned, called self.
This special object refers to the object whose property is being evaulated. This may not sound too
useful, but consider the case of an object whose superclass de�nes a property which refers to other
properties of the object:

class book: object

description =

{

"The book is << self.color >>.";

}

;

redbook: book

color = "red"

;

bluebook: book
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color = "blue"

;

In this example, the general object, book, knows how to describe a book given its color. The books
that are de�ned, the redbook and bluebook objects, take advantage of this by simply de�ning their
color, and letting the description property of their superclass be used to describe them. So, when
you attempt to evaluate redbook.description, you get

The book is red.

inherited

A special pseudo-object called inherited allows you to call a method in the current self object's
superclass. This pseudo-object is similar to the pass statement, but much more useful in several
ways. First, with inherited, you can simply call the superclass method, and regain control when
it returns; with pass, the current method never regains control. Second, you can use inherited

in an expression, so any value returned by the superclass method can be determined and used by
the current method. Third, you can pass arguments to the property invoked with the inherited

pseudo-object.

You can use inherited in an expression anywhere that you can use self.

Here is an example of using inherited.

myclass: object

sdesc = "myclass"

prop1(a, b) =

{

"This is myclass's prop1. self = << self.sdesc >>,

a = << a >>, and b = << b >>.\n";

return(123);

}

;

myobj: myclass

sdesc = "myobj"

prop1(d, e, f) =

{

local x;

"This is myobj's prop1. self = << self.sdesc >>,

d = << d >>, e = << e >>, and f = << f >>.\n";

x := inherited.prop1(d, f) * 2;

"Back in myobj's prop1. x = << x >>\n";

}

;
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When you call myobj.prop1(1, 2, 3), the following will be displayed:

This is myobj's prop1. self = myobj, d = 1, e = 2, and f = 3.

This is myclass's prop1. self = myobj, a = 1, and b = 3.

Back in myobj's prop1. x = 246.

Note one feature of inherited that is the same as pass: the self object that is in e�ect while the
superclass method is being executed is the same as the self object in the calling (subclass) method.
This makes inherited very di�erent from calling the superclass method directly (i.e., by using the
superclass object's name in place of inherited).

argcount

The pseudo-variable argcount returns the number of arguments to the current function. This can
be used for functions that take a variable number of arguments to learn the number of arguments
that need to be processed. Note that argcount isn't really a variable, so you can't assign a value to
it, but otherwise you can use it as though it were an ordinary variable.

Built-in Functions

The system has a set of built-in functions to facilitate writing programs. The functions are described
in this section. They operate just like ordinary functions, with the exception that built-in functions
which don't take arguments don't require parentheses; this simpli�es coding of some special cases.

ask�le

Call: askfile(prompt)

This function asks the user to enter a �lename, in a system-dependent manner. The system's
standard �le dialog, if the computer has one, will be used; otherwise, the user may simply be
prompted to type a �lename. The prompt (a single-quoted string value) may or may not be used,
depending on system conventions; for systems without any de�ned standard �le dialog, it will be
displayed to prompt the user for a �lename.

This function is primarily useful for operations such as saving and restoring games which require
that the user enters a system �lename.

caps

Call: caps()
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Forces the next non-space character to be displayed to be capitalized. This is useful for formatting
output when it is not known in advance whether an item will be displayed at the start of a sentence
or not.

Note that displaying the sequence \\^" has the same e�ect as calling caps().

Do not confuse this function with the upper(string) built-in function, which converts all of the
letters in a string to upper-case. The caps() function takes no arguments, and a�ects only the next
character output.

car

Call: car(list)

Returns the �rst element of a list, or nil if the list is empty.

Note that the same value can be retrieved with the expession list[1], which uses the list indexing
operator to retrieve the �rst element of list. The primary di�erence between using car() and the
list indexing operator is the style of your program; using car() and cdr() to decompose a list, you
can iterate or recurse until you run out of list to process, at which time car() will return nil. With
the list indexing operator, however, you need to know in advance how many elements are in the
list; this information can be learned with the length() built-in function. The choice of one of these
methods over another is a matter of personal preference.

cdr

Call: cdr(list)

Returns the end of a list; that is, the list of everything after the list's car(). With car() and cdr()

you can decompose a list into its individual elements.

cvtnum

Call: cvtnum(string)

This function converts a string that contains the text version of a number into a numeric value.
For example, cvtnum('1234') returns the number 1234. Note that the special strings 'true' and
'nil' are also accepted by the function, and are converted to the logical values true and nil,
respectively.

cvtstr

Call: cvtstr(value)
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This function converts a numeric or logical value into its string representation. For example, cvt-
str(1234) returns the string '1234', cvtstr(true) returns the string 'true', and cvtstr(nil)

returns the string 'nil'.

datatype

Call: datatype(value)

This function returns the type of a value. It is useful primarily with functions that take a variable
number of arguments, but could also be useful for inspecting lists whose contents vary.

This function returns a numeric value based on the datatype.

1 Number

2 Object

3 String

5 nil

7 List

8 true

10 Function Pointer

13 Property Pointer

de�ned

Call: defined(object, propPointer)

This function allows you to determine if a property is de�ned or inherited by an object, or if the
object doesn't have any value for the property. This function returns true if the the object has a
de�nition for the property (either explicitly in the object, or inherited from a superclass), or nil if
the object doesn't have any de�nition for the property.

Note that the propPointer argument must be a property pointer. You can obtain a property pointer
using the & operator with a property name. For example, to determine if the player's current location
has an ldesc property de�ned, you would do this:

x := defined(Me.location, &ldesc);

In this example, x is true if the current location has an ldesc property de�ned, and nil otherwise.

�nd

Call: find(value, target)
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If value is a list; the function returns the o�set (starting at 1 for the �rst element) in the list of the
target item within the value list. If the target is not found, nil is returned. For example, find([4
5 6], 5) returns 2.

If value is a string, in which case target must also be a string, the function will return the o�set
within the string value of the substring target, or nil if the substring is not found. The o�set of the
�rst character in the target string is 1. For example, find('abcdefghij', 'cde') returns 3.

�rstobj

Call: firstobj()

Alternative Call: firstobj(class)

This function is used in conjunction with nextobj(object) to loop over all non-class objects in the
game. The firstobj() function returns the �rst non-class object, and nextobj(object) is used
to retrieve subsequent objects in a loop. The order of the objects returned by these functions is
arbitrary, but calling firstobj() and then sequentially calling nextobj(object) until nil is returned
will guarantee that each non-class object is retrieved exactly once.

These functions are useful primarily during initialization to construct lists of all objects satisfying
certain search criteria; these lists can be used later in the game to expedite searches for objects with
such criteria. For example, code that determines if a room is dark will have to always check to see if
a light-providing object, such as a lamp or a burning candle, is present. It will be faster during game
play to check only those objects known to be light-providing than to check all objects in the game;
to accomplish this, we could set a property called islamp to true in every potential light-providing
object, then construct a list of all such objects during initialization with the example code below.

getlamps: function

{

local obj, l;

l := [];

obj := firstobj();

while(obj <> nil)

{

if (obj.islamp) l := l + obj;

obj := nextobj(obj);

}

global.lamplist := l;

}

After initialization, then, it is only necessary to check for the presence of one of the objects in the
list global.lamplist, rather than checking all objects in the game, to determine if a room is lit or
not.

Note that firstobj() will return nil if the game has no non-class objects. Likewise, nex-

tobj(object) returns nil when the last non-class object has been retrieved.
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The alternative form of this function, with a single argument giving a class object, allows you
to restrict the objects returned by firstobj() and nextobj() to those that are subclasses of a
particular class. This can save a great deal of time by ignoring objects that are not important
to your search. For the example above, you could make the loop execute much more quickly by
rewriting it as follows.

getlamps: function

{

local obj, l;

l := [];

obj := firstobj(lampitem);

while(obj <> nil)

{

l := l + obj;

obj := nextobj(obj, lampitem);

}

global.lamplist := l;

}

Note that the test for obj.islamp is no longer necessary, because only objects that are subclasses
of the class lampitem will be used in the loop. By iterating over a much smaller set of objects, the
loop will execute substantially faster.

getarg

Call: getarg(argnumber)

This function returns the argument given by argnumber, which is a number from 1 to the number of
arguments to the function (which can be learned with the pseudo-variable argcount). getarg(1)

returns the �rst argument to the current function, getarg(2) returns the second argument, and so
forth, up to getarg(argcount). This function can be used to retrieve the arguments to functions
taking a variable number of arguments.

incturn

Call: incturn()

Increments the turn counter. Normally, a daemon is present to call this function once per player
command. The turn counter is used to time the execution of fuses, so the user must call incturn()
once per turn.

This function is not called automatically by the system, since the turn counter should not be incre-
mented after certain events. For example, most system commands, such as saving a game, should not
count as a turn. This function is provided so that the game program can decide when to increment
the counter.
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input

Call: input()

This function stops and waits for the user to enter a line of text (terminated by the return key and
edited as normal for command lines), and returns a string containing the text the user enters. This
function does not display any prompt, so it is up to the game program to prompt the user before
calling this function.

As a stylistic point, this function should normally be avoided except for special system functions,
since the game will present a more consistent interface if the command line is used for most player
input. One possible use is given by the example below. (Note that this code is somewhat simpli�ed;
in an actual game, you would also want to call setscore() at the appropriate points, and provide
other useful feedback.)

die: function

{

"*** You have died ***

\bDo you wish to RESTART, RESTORE, or QUIT? >";

while (true)

{

local response;

response := upper(input());

if (response = 'RESTART') restart();

else if (response = 'RESTORE')

{

response := askfile();

if (restore(response)) "Failed. ";

else abort;

}

else if (response = 'QUIT')

{

quit();

abort;

}

else "Please enter RESTORE, RESTART, or QUIT: >";

}

}

isclass

Call: isclass(object, class)

This function determines if an object is a subclass of a given class. It returns true if object is a
subclass of class, nil otherwise. Note that the function scans the entire class tree, so class need not
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be in the immediate superclass list for object, but can be a superclass of a superclass of object, or a
superclass of a superclass of a superclass, and so on.

This function should be used to determine if an object is a member of a class, rather than using a
special property value that the object inherits from the class. Using isclass is more e�cient than
using a special inherited property value, because the property value doesn't need to be stored, and
because it is much faster to scan the inheritance tree than to check each object in the tree for the
property value.

length

Call: length(item)

If the item is a string, length() returns the number of characters in the string. If item is a list,
length() returns the number of elements in the list.

logging

Call: logging(value)

If the value is a string, it speci�es the name of an operating system �le which will be created (or
truncated to zero length if it already exists) and to which subsequent information displayed on the
screen is duplicated. That is, a complete log of the play will be copied to the �le for later inspection.

If the value is nil, it indicates that a log �le, if in e�ect, should be closed and logging halted.

Logging is automatically terminated when the player quits the game, but other operations (including
saving, restoring, and restarting a game) do not a�ect logging.

This function has no return value.

lower

Call: lower(string)

This function returns a copy of string with all of the upper-case letters converted to lower-case. See
also the upper(string) function.

nextobj

Call: nextobj(object)

Alternative Call: nextobj(object, class)
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This function is used to retrieve the next object in a search started with firstobj(). The object
is the value returned by the call to firstobj() or by the previous nextobj(object) call. The next
non-class object after object is returned, and nil is returned if object was the last non-class object.

The alternative form, with a second argument giving a class object, returns the next object that is
a subclass of the given class. This can be used to restrict the search to a particular class of objects.

For an example of the use of this function, see the description of the firstobj() built-in function.

notify

Call: notify(object, &message, turns)

This function sets up to send the message to the object after the given number of turns has elapsed,
or, if turns is zero, after each turn. Note the & before the message parameter; this is required to
indicate that the message is to be stored rather than being sent immediately.

The message is simply the name of a method de�ned by the object. The method receives no param-
eters when it is called.

There is a limit of 100 simultaneously pending noti�cations.

With a non-zero number of turns, the notify() function is similar to the setfuse() function, in
that it waits a given number of turns and then sends the speci�ed message to the given object. With
turns set to zero, notify is similar to setdaemon(), in that the message is sent to the object after
each turn. Note that the notify() function is generally the better function to use, since most fuses
and daemons are directed at objects, and it is better to keep all code that a�ects the object in the
object's de�nition, rather than move some into a separate function.

See also the unnotify() function, which cancels the e�ect of the notify() function.

An example of the notify() function is shown below. In the example, we de�ne two objects: a
bomb, and a button on the bomb. When the button is pushed, it calls notify() to specify that the
explode method in the object bomb is to be called in three turns.

bomb: item

location = bombroom

sdesc = "bomb"

noun = 'bomb'

ldesc =

{

"The bomb seems to have a small button marked

\"detonator\" on it. ";

if (self.isActive) "It's ticking loudly. ";

}

explode =

{

"The bomb explodes! ";
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self.moveInto(nil);

}

;

bombButton: buttonItem

location = bomb

sdesc = "detonator button"

adjective = 'detonator'

doPush(actor) =

{

"The bomb starts ticking. ";

notify(bomb, &explode, 3); // Bomb explodes in three turns

bomb.isActive := true;

}

;

proptype

Call: proptype(object, propPointer)

This function determines the datatype of a property of an object, without actually evaluating the
property. This can be useful if you want to �nd out what kind of value the property has, without
activating any side e�ects of evaluating the property (for example, displaying a double-quoted string
contained by the property).

The return value is a number, and the possible values are a superset of those returned by the
datatype() built-in function.

1 Number

2 Object

3 String

5 nil

6 Code (executable statements enclosed in braces)

7 List

8 true

9 Double-quoted string

10 Function Pointer

13 Property Pointer
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Note that the propPointer argument must be a property pointer. You can get a property pointer by
using the & operator on a property name. For example, to determine the type of the north property
of the player's current location, you would do this:

x := proptype(Me.location, &north);

Note that using proptype() is very di�erent from using the datatype() built-in function on the
value of the property, because proptype() does not evaluate the property in order to determine its
type. This has several implications. First, and most importantly, it allows you to avoid side e�ects
of evaluating the property (such as displaying a double-quoted string value) if you don't desire the
side e�ects. Second, it means that you will �nd out if a property contains code, but you will not
learn what type of value (if any) the code will return.

quit

Call: quit()

Terminates the game. Actually, this function ags that the game is to be ended the next time a
command will be parsed, so normal return codes should be passed back when using quit(). Hence,
after calling quit(), you should always immediately execute an abort statement. See the example
given in the description of the input() built-in function for an illustration of the use of quit().

rand

Call: rand(upper-limit)

This function returns a random number from 1 to the upper-limit given. (The upper-limit must be
a positive number.) See also the discussion of randomize(), below.

randomize

Call: randomize()

This function \seeds" the random number generator with a new value. The value is implementation-
de�ned, and comes from such a source as the system clock. Until randomize() is called, the random
number generator will always produce a �xed sequence of random numbers; once randomized, how-
ever, the sequence is unpredictable. For testing purposes, you can leave the call to randomize() out
of your program, because the game will always run repeatably. Once the game is working, you can
simply put a call to randomize() in your init() function in order to make the game unpredictable
for your players.

remdaemon

Call: remdaemon(function, value)
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Removes a daemon set previously with setdaemon(). The daemon will no longer be called. Note
that if a given function has been set as a daemon multiple times, a call to remdaemon() only removes
the �rst such daemon; hence, you must call remdaemon() as many times as you called setdaemon()

on a particular function if you wish to cancel all calls to it. Note also that the value given must
match the value used in the original call to setdaemon(); this allows you to set a daemon several
times, with di�erent contexts (the context being given by the value), and selectively remove the
daemons later.

remfuse

Call: remfuse(function, value)

See also the setfuse() built-in function. This function removes a fuse previously set, or does
nothing if the named function has not been set as a fuse. The fuse will not be executed if removed
prior to burning down. Note that if a function has been set as a fuse multiple times, remfuse() will
remove only the �rst such fuse set; hence, you must call remfuse() on a function as many times as
you called setfuse() on the function if you wish to cancel all calls to it. Note also that the value
given must match the value used in the original call to setdaemon(); this allows you to set a fuse
several times, with di�erent contexts (the context being given by the value), and selectively remove
the fuses later.

restart

Call: restart()

This function starts the game over again from the beginning. It does not return.

restore

Call: restore(�lename)

The �lename is a string specifying an operating system �le which was created with the save()

function. The state of the previously saved game is restored, so that the players can continue where
they left o�.

If successful, nil is returned; otherwise, an error occurred restoring the game from the �le. Note
that the game to be restored must have been saved by the identical version of the TADS software
and of the game itself. The system will refuse to restore a game saved by a di�erent version of
the TADS software, or by a di�erent version of your game program (as determined by a timestamp
stored in the game by the compiler).

save

Call: save(�lename)
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The �lename is a string specifying an operating system �le to be used to save the current status of
the game. Everything about the game is saved in the �le, so that the exact point in the game can
be later restored with the restore() function.

If successful, nil is returned; otherwise, an error occurred saving the �le.

say

Call: say(value)

The value can be either a number or a string. If it's a number, its decimal value is printed. A string
is displayed as it is.

There is no return value.

setdaemon

Call: setdaemon(function, value)

Sets a daemon. Each turn, all outstanding daemons are called once, after all player command
processing is completed. The value given is passed to the function as its sole parameter each time
the function is called.

Note: the function must be known when the compiler reads this statement, which means the function
must have been de�ned or at least called prior to the setdaemon() call in the source �le. You can
forward-declare a function by using a statement like this:

test: function;

Note that the actual de�nition of the function test will appear later in the �le; the statement above
only declares it as a function so it can be used in the setdaemon() or similar call.

At most 100 daemons can be running simultaneously; a run-time error will result if a call to set-

daemon() is made when 100 daemons are already running. There is no return value.

See also the notify() function.

setfuse

Call: setfuse(function, time, value)

Sets a fuse of the speci�ed length. The function is the identi�er naming a function. The time is
a positive number specifying the number of turns before the fuse burns down. After the speci�ed
number of turns, function is called with value as its sole parameter.

Note: the function must be known as a function when the compiler reads this statement, which
means the function must have been de�ned or at least called prior to the setfuse() call in the
source �le. See the note in the description of setdaemon(), above, for more information.
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There is limit of 100 simultaneously pending fuses; a run-time error results if setfuse() is called
when 100 fuses are already pending. There is no return value from setfuse().

Note that fuses di�er from daemons in that a fuse is only called once, at a time determined when
the fuse is set; once called, it is automatically removed from the list of pending fuses. Daemons, on
the other hand, are called once per turn until explicitly removed.

setit

Call: setit(object)

Sets the antecedant of \it," as used in a player's command, to the speci�ed object. This is useful if a
complaint refers to an object which will draw the player's attention; consider the following dialogue:

>go north

The metal door is closed.

>open it

There is a padlock preventing you from opening the door.

>unlock it

What do you want to unlock the padlock with?

>the key

The padlock swings open.

In this example, setit() has been used each time a complaint refers to an object which the user
might wish to manipulate due to the complaint.

There is no return value.

setscore

Call: setscore(score, turns)

Alternative Call: setscore(stringval)

This function is used to inform the system of the current score and turn count. On versions of TADS
that have a status line, this function updates the values on the status line. On versions of TADS
without a status line, this call is ignored.

Your game should call this function whenever the score or turncounter change, so that the status
line is always kept up to date. Note that this means that it should be called after using restore()

to load an old game, and before calling restart() to start over from the beginning, in addition
to being called whenever the player earns points or completes a turn. Generally, if you use the
function incscore() de�ned in adv.t to add points to the score, and you use a standard turn
counter function (such as the turncount() function de�ned in adv.t), you will not have to worry
about calling setscore() too often.
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The alternative form of the setscore() call allows you to display any text string in the score/turn
counter area of the status line. In older versions of TADS, only the �rst form could be used, and
the status line display was �xed with the score/turn counter format. In new versions, however, you
can place whatever string you want on the right portion of the status line, simply by passing the
string you wish to display to the setscore() function. You could, for example, display the time of
day (within your game), or you could display the player's rank, experience, or other statistics rather
than the score. The text string used in setscore() is displayed right-justi�ed on the status line.

Note that several routines in adv.t (about four in all) call the numeric form of setscore(). If you
use the string version, you should change the setscore() calls in adv.t to call a routine that you
provide that displays the status line in the format you prefer.

setversion

Call: setversion(version)

Note: This function is no longer needed, although TADS continues to support it for compatibility
with existing games written with older versions of TADS.

In older version of TADS, this function was used to identify the version of your game that created
a saved game �le. It was necessary to use setversion so that a saved position �le created by one
version of your game couldn't accidentally be used with another version of your game, because the
information in a saved position �le is only usable by the same version of a game that created it. The
compiler now automatically generates a unique version identi�er whenever your game is compiled,
eliminating the need for you to do this manually. You no longer need to call this function, and it
has no e�ect if you do.

substr

Call: substr(string, o�set, length)

This function returns the substring of string starting at the character position given by o�set (the �rst
character's position is 1) and containing up to length characters. For example, substr('abcdefghi',
4, 3) returns the string 'def'. If the given o�set is past the end of string, a null string is returned;
hence, substr('abcdef', 10, 3) returns a null string. (Note that a null string, speci�ed by two
single quotes, '', is not the same as nil.) If the string is too short to satisfy the requested length, the
substring from the given o�set to the end of the string is returned; for example, substr( 'abcdefg',

4, 10 ) returns the string 'defg'.

undo

Call: undo()
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This function undoes all changes made since the last \savepoint" in the undo records. A savepoint is
entered at the beginning of each turn automatically by the player command parser. Calling undo()

once restores the game to its state at the very beginning of the current turn. Calling undo() again
returns it to the state at the beginning of the previous turn, and so forth.

You should call undo() once in any situation where you only want to undo the current turn. For
example, in a routine that gives the player options after being killed by an action taken on the
current turn, you'd only want to call undo() once if the player elects to undo the action that killed
him, since it's just the current turn that needs to be taken back.

You should call undo() twice in your verb that implements an \undo" command, if you have one in
your game. The �rst call undoes the current turn (the \undo" command itself), and the second call
undoes the previous turn|this is appropriate behavior, since the \undo" command should back up
one turn. The default undoVerb de�ned in adv.t implements exactly this behavior.

The undo() function returns true if the undo operation was successful, or nil if no more undo
information is available. A return value of nil means either that the player has already undone
turns all the way back to the beginning of the game, or that he has undone turns as far back as the
undo records go. The default undo area size will hold about a hundred turns in a typical game, but
the actual number of turns that can be undone will vary by game, depending on the amount of work
that needs to be undone. The undo mechanism will always keep as many of the most recent turns
as possible, discarding the oldest turns in the undo log when it runs out of space.

unnotify

Call: unnotify(object, &message)

This function cancels the e�ect of a previous call to notify() with the same object and message.
Note that the & before message is required.

See also the notify() function.

upper

Call: upper(string)

This function returns a copy of string with all of the lower-case letters converted to upper-case. Do
not confuse this function with the caps() built-in function, which a�ects only the next character
displayed.

yorn

Call: yorn()

Waits for the user to type a character, and returns 1 if the player typed \Y", 0 if the player typed
\N", and -1 for anything else. A suitable prompt should be issued prior to calling this function.
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Our life is frittered away by detail: : :

Simplify, simplify.

| HENRY DAVID THOREAU, Where I Lived, and What I Lived For (1854)

The statements was interesting but tough.

| MARK TWAIN, Adventures of Huckleberry Finn (1884)
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Chapter Six

Getting Started with TADS

The previous chapters have covered a lot of ground: the language, the parser interface, and even
the general principles of object-oriented programming. Because TADS provides such a rich set of
options, it's often di�cult when you're �rst getting started with TADS to �gure out the best way
to do something.

This chapter is intended to help you through the process of writing a game with TADS. We'll assume
that you have a basic idea of how the TADS language works.

Designing and Implementing

Your author has been involved in the design and implementation of several text adventure games.
The game development process presented here reects the experience gained from those projects.

The �rst step is designing the game. Using a system like TADS, which makes it very easy to get
started with a game, you may be tempted to jump right in and start programming your game, but
you should instead turn o� your computer and get out a pad of paper.

We did not follow this advice with Deep Space Drifter. After formulating the basic plot of the game,
and mapping out the portion that takes place on the space station (roughly the �rst half of the
game), we started implementation. We had a basic idea of the second half of the game, but it wasn't
even mapped.

Implementation went well for a while, but as we got further along, we started to run into details
in the �rst half of the game that were dependent upon details from the undesigned second half.
We improvised some details, and left others for later. As we did this, a strange thing happened:
we started to realize that there were holes in the plot, and weird little inconsistencies that hadn't
occurred to us until we needed to think about details. As a result, we started to change our basic
ideas about the second half, which led to even more inconsistencies and plot holes. It was like digging
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in sand, and before long we decided to throw out the entire original plan for the second half and
start over.

However, we had so much time and e�ort invested in the space station that we didn't want to
throw it away. Instead, we tried to design a new second half that �t in with the existing �rst half.
From this point on, the battle was lost. We went through a series of essentially unrelated plots
for the game, trying to �t each new plot to an even larger set of existing implementation. We'd
plan a little, implement it, then discover that the plan wasn't working and would have to go|but
the programming work we did would have to stay. The swamp, the cave maze, and the shuttle
represented so much work that we couldn't contemplate throwing them away, so whatever we came
up with had to include them somehow; for a brief time, we were actually going to make the swamp
a \Swamp Simulator" because it was the only way we could make it �t.

In the end, we were totally sick of writing Deep Space Drifter, but refused to let the project die
before it was complete for psychological reasons. To me, this attitude shows through in the last
half of the game; I think there's a room on the planet whose description is something like this:
\This room is very boring; you can leave to the north." In fact, I think the entire game reects its
history: the space station is full of things to do, it has some nice running jokes, and it's stylistically
consistent. The planet, on the other hand, has an empty, barren feel; it's spread out and there's not
much to do. The only parts that are interesting are essentially unrelated to each other and to the
story in general, a reection of having been forced into the game whether they belonged or not.

I'm not saying that Deep Space Drifter is a bad game|I like the space station a lot, and the puzzles
on the planet are very elaborate and elegant. But the game has some serious aws, most of which I
attribute to the long, chaotic process of design and implementation.

Ditch Day Drifter, on the other hand, went through a much shorter and smoother design and
implementation process, and I think a better game resulted. Admittedly, Ditch is a much smaller
game than Deep, but it's clear to me that the same design process could have been applied Deep,
and that doing so would have resulted in a much better game.

Before any programming work started on Ditch, I had a complete map of the game and descriptions
of all the objects and chracters in the game, including the key elements of their behavior. This
made implementation very smooth and easy, because I could simply go through the lists of rooms
and objects and implement each. I didn't have to make any design decisions during implementation,
which eliminated the desire to change design decisions that had already been made. The game took
only a few weeks to implement, and came out fairly well.

If you resist the temptation to start programming before the design is complete, your game's im-
plementation will go much faster, the game will turn out much better, and most importantly, the
chances that you complete your game will be much higher.

Designing a Game

Before you start implementing your game, you should have a list of all of the locations, objects, and
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characters in the game. For each location, object, and character in the game (to which we'll refer
collectively as \game elements" henceforth), you should have a description of the item and its key
behavior. Basically, you should know enough about your game that you can go through the game
and play it completely through, command by command. You don't need to know all of the details
of the game at this point, but you should know all of the details along the \minimal path" through
the game (the series of commands that a player would type to go through the game from start to
�nish, if no mistakes are made and the player never needs to back up). The remaining details do
not a�ect the plot, so you will be able to make these up as you go without creating plot holes or
inconsistencies.

The complete map and object list is the result of the design process. To get there, you will probably
go through many steps, adding detail as you go, until you have a complete design. The process
detailed here is a good way to design a game, but you may �nd other ways that suit you better.

Plot

Most adventure games have a basic plot framework that controls the overall ow of the game. The
plot is a good place to start your design.

An adventure game's plot isn't usually as elaborate as the plot of a non-interactive form of �ction,
such as a book or a movie, because you have much less control over the details of the main character's
actions. This makes plot design much more di�cult, but you should give the player as much control
as you can, since adventure games are always more satisfying when they give players a greater sense
of control. Adventure game plots, therefore, should simply be a framework that provides the general
direction of action in the game, and speci�es only the important events.

You should start o� with a basic background and goal. Where does the game take place? When?
Who is the main character? What must be accomplished by the time the game is over?

For example, in Ditch Day Drifter, the location is the Caltech campus (or perhaps Caltech in
some parallel universe, since the game isn't a strictly accurate simulation of the real Caltech), and
the time is the present, generally, and Ditch Day, in particular. The main character is a Caltech
underclassman. The goal is to solve the Ditch Day \stack" that the senior across the hall has created.

You can continue by identifying the major sub-goals that must be reached in order to reach the
overall goal of the game. In Ditch, the major sub-goals are to �nd each treasure listed in the note
that describes the stack.

Filling in the details of the plot can proceed by \working backwards" from the overall goal to the
major sub-goals, then backwards to the smaller goals that must be reached for each sub-goal, and
so on.

I would advise against designing a game with major sub-goals such as \the player must �nd the �ve
rings of power." When the sub-goals are abstract like this, they don't suggest anything about what
you might need to do to accomplish them. On the other hand, if a sub-goal is something concrete
and speci�c like \the player must destroy the radio broadcasting tower," the minor sub-goals come
almost automatically: you need to break into the compound where the broadcasting tower is located,
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and you'll need some sort of explosive, and you may need to turn o� power to the tower to avoid
being electrocuted. But if you can turn o� the power, why do you need to blow it up? Maybe
because an attendant will come and turn the power back on after a few turns. Now we have another
puzzle: dealing with the attendant. Sub-goals that are abstract, such as �nding �ve rings of power,
aren't nearly as helpful in getting to the next level of detail. Concrete sub-goals can often provide
a seed that your imagination can almost automatically expand into a full set of plot elements.

Setting

The basic plot will provide an overall setting for the game, and the plot elements will usually
suggest a speci�c set of large-scale locations. So, you'll start o� with a \low-resolution" map simply
by designing the basic plot.

Next, you can start �lling in the speci�c rooms. At this point, you'll probably �nd that you start
to �ll in the details of the plot at the same time as you're �lling in the details of the setting. Many
locations in the setting will o�er natural puzzles: if you have a bank, you'll probably have a safe, for
which you'll need to �nd the combination; maybe you'll need to �gure out how to defeat the alarm
system, or perhaps you'll need something to distract the teller; maybe you'll need to �nd the key to
the safety deposit box. If you have an airport, you'll probably need to �gure out how to get past
the overly sensitive metal detectors, or you'll need to know someone's itinerary, or you'll need to
�nd some airline tickets, or you'll need to �nd a badge or key or combination to get into a restricted
area.

Whatever type of location you're designing, the location will often suggest a series of puzzles to be
solved. As you design the solutions to the puzzles, you'll be adding detail to the plot, which will in
turn give you new locations to develop.

As you esh out the setting, you may be tempted to add enormous amounts of space to your locations.
For example, if you're building an airport, you may �nd yourself putting in dozens of gates, each
pretty much the same as all the others. While the added space may make the game setting more
like a real airport, it can often harm the game's playability. Remember, you're designing a game,
not an airport|the most important thing is making the game fun to play, not \real."

The main problem with adding lots of essentially unused space to a game is that it tends to make
the level of detail throughout the game less consistent. You should make an e�ort to keep the level
of detail as consistent as possible throughout the game, to avoid annoying and confusing the player.
If you have a few rooms with a great deal of detail (such as lots of objects that can be examined
and manipulated), the player will come to expect that level of detail in other rooms. The dozens of
almost identical airport gates will not have anything interesting to do.

Objects and Characters

You'll probably end up designing most of the game in the course of mapping out the setting and
plot. As you develop plot elements, you should make notes of the objects and characters that are
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involved. You'll probably �nd it easiest to note objects and characters on the map, where they'll be
placed.

For each object and character, you should make notes about its relevance to the game, and what
it does. You should think carefully about what other objects might be used for the same purpose,
and what other uses an object might have. For example, if you have a door that you need to break
down, and you intend to provide an axe for this purpose, you should consider two things: What else
might the axe reasonably be expected to destory? And what else might reasonably be expected to
be able to break down the door?

Because a player could reasonably expect an axe to have many uses, and because many objects
should be able to break down a door, you should be very careful about creating puzzles that involve
brute force and powerful tools of general utility. Explosives, ammable liquids, weapons, and heavy
tools are all likely to frustrate the player when they don't remove just about any physical obstacle.
On the other hand, it would be very satisfying if you took the trouble to fully realize the axe and
the door by allowing the axe to break down everything that's reasonable, and allowing the door to
be broken down by other reasonable objects.

Implementation

Once you have the game fully designed, you're ready to start implementing. In this section, we'll
show how to implement the basic types of objects.

Start o� by drawing the map, and making annotations on the map describing the essential details
of the plot. This should include placement of the major objects in the game, and descriptions of the
important actions the player must perform.

As an example, we'll implement a game that takes place in a small airport. Our airport will have
a terminal area, a concourse, and a gate area. We'll also have a plane parked at one of the gates.
The terminal area will have a ticket counter, and a metal detector leading into the concourse. In
the concourse, there will be a snack bar, and a locked door leading o� into a security area. The
gate area will have a couple of gates, plus a locked maintenance room. Here's the basic map we'll
be implementing.
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This map conveniently has a couple of locked areas, which we can use for puzzles. In addition, we
can probably �nd some use for the metal detector, since it will prevent the player from carrying any
objects through it. The plane can also be a puzzle, since you'd normally need a ticket to board a
plane. Plus, the cockpit should be restricted to airline personnel.

Let's make the goal of the airport segment be getting out of the airport. The player will start
o� in the main terminal area, but won't be able to go outside the terminal|we'll make up some
excuse, such as heavy tra�c that always pushes the player back into the terminal, to prevent exiting
that way. (If this were an actual game, we'd probably have more game outside the airport, so we
wouldn't use such an arti�cial boundary as having heavy tra�c that pushes the player back in. For
this example, though, we want to keep things fairly small.) The only other obvious way to get out
of the airport is to y out on a plane; so, let's make the goal be to y the plane.

To take the plane out of the airport, the player will have to get into the cockpit. (We'll implement
this example up to the point that the player makes it into the cockpit; in a full game, we'd go on to
let the player y the plane somewhere else.) Now, only the pilot can go into the cockpit|the ight
attendant wouldn't let a passenger into the cockpit. So, we'll need some way to get past the ight
attendant. One way would be to create a diversion that distracts the ight attendant long enough

110 The TADS Author's Manual



to slip by; for this example, though, we'll require the player to �nd a pilot's uniform.

Where would the pilot's uniform be? The pilot's lounge would be a logical place; we'll put a suitcase
in the pilot's lounge that contains a uniform. Fortunately, the lounge is behind a locked door, which
creates a secondary puzzle. To get into the security area that contains the pilot's lounge, the player
needs a magnetic ID card to put into a slot outside the security area.

We'll put the ID card out in the open, on the ticket counter in the terminal area. However, we'll
make it impossible to carry the ID card past the metal detector|the card will set o� the metal
detector, and the security guard will con�scate it (and place it back on the counter so that the
player can try again). To get the card by the metal detector, you'll have to turn o� the power to
the metal detector.

The power switch will be in the maintenance room, which is locked with a key. We'll leave the key
with some other maintenance items in the plane's bathroom|we'll also leave a pail, sponge, and
garbage bag, so that it's clear by association that the key is probably for the maintenance room.

To get into the plane's bathroom, you'll need a ticket to board the plane. We'll make the ticket
fairly simple to �nd: we'll leave it hidden inside a newspaper in the snack bar. As soon as you pick
up the newspaper, the ticket will fall out.

So, that's about the whole game: you go to the snack bar, pick up the newspaper, and �nd the ticket.
You take the ticket and board the plane, then go to the plane's bathroom and get the key. Take the
key to the maintenance room, unlock the door, enter, and turn o� the power to the metal detector.
Go back to the ticket counter, pick up the ID card, go to the security door, put the magnetic card
in the slot, and enter the security area. Go to the pilot's lounge, get the pilot's uniform out of the
suitcase, and wear it. Go to the plane, and stroll right past the ight attendant and into the cockpit.

We should draw a new map now, which includes annotations for the main objects and actions that
make up the game.
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Implementing the Map

The �rst step is to convert the skeleton of your map into the beginnings of your game program. At
this point, don't worry about entering all of the detailed behavior of your map, but just build the
basic rooms and connections between rooms. This will allow you to get a prototype of the game
running quickly, so you can walk around it and see how it feels.

Start o� by creating a source �le for your game, and including the base de�nition �les:

#include <adv.t>

#include <std.t>

Now, for each room in your game, make an entry that gives the room's name (sdesc, or short
description) and long description (ldesc), and the other rooms that are connected to this room.
Here's how to implement the �rst few rooms from the sample map above. For the time being, we
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won't worry too much about making the long descriptions complete; we can always esh those out
later.

terminal: room

sdesc = "Terminal"

ldesc = "You are in the airport's main terminal. To the east,

you see some ticket counters; to the north is the main concourse."

east = ticketCounter

north = securityGate

;

ticketCounter: room

sdesc = "Ticket Counter"

ldesc = "You are in the ticket counter area. Ticket counters

line the north wall; so many people are waiting in line that

you're sure you'll never manage to get to an agent. The main

terminal is back to the west."

west = terminal

;

securityGate: room

sdesc = "Security Gate"

ldesc = "You are at the security gate leading into the main

concourse and boarding gate areas. The concourse lies

to the north, through a metal detector. The terminal is

back to the south."

north = concourse

south = terminal

;

concourse: room

sdesc = "Concourse"

ldesc = "You are in a long hallway connecting the terminal

buliding (which lies to the south) to the boarding gates (which

are to the north). To the east is a snack bar, and a door leads

west. Next to the door on the west in a small slot that looks

like it accepts magnetic ID cards to operate the door lock."

north = gateArea

south = securityGate

east = snackBar

west = securityArea

;

The other rooms are implemented in the same manner. For now, we're not worrying about the items
contained in the rooms, or the other people around, or even the locked doors. We'll just implement
all the rooms so we can walk through the map and try it out.
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Implementing the items

The next step is to implement the basic objects that make up the game. As with the rooms, don't
worry about the complex behavior of some of the objects at this point; just go through and write
basic object de�nitions for the main items in the game.

Items have di�erent properties than rooms. The basic properties of an item are its name (sdesc),
long description (ldesc), vocabulary words (noun and possibly adjective), and container (loca-
tion, which may be either a room or another item). If the item can be carried by the player, the
object will be of class item; if not, it will be of class fixeditem. Some items may be of di�erent
classes; for example, if you want to make an object that can contain other objects (such as the pail),
make it a container. If you want to be able to put objects on top of another object, use a surface

object. You can make something both a container or surface and a fixeditem if you want.

Here are some of the basic object de�nitions for our sample game.

counter: fixeditem, surface

location = ticketCounter

noun = 'counter'

adjective = 'ticket'

sdesc = "ticket counter"

;

IDcard: item

location = counter

noun = 'card'

adjective = 'id' 'identification'

sdesc = "ID card"

adesc = "an ID card"

;

newspaper: readable

location = snackBar

noun = 'newspaper' 'paper'

adjective = 'news'

sdesc = "newspaper"

ldesc = "It's today's copy of USA YESTERDAY."

readdesc = "You read a few articles, and promptly become

depressed. The federal deficit just went up by another

twenty billion dollars, but it's all \"off budget,\"

so it doesn't really count. There's another White House scandal

involving illegal arms sales, money laundering through Italian banks,

Congressional Pages; several high-ranking federal arts critics have

already resigned in disgrace. The economy had yet another downturn,

but the President says he's confident that the recovery is \"just
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around the corner and picking up steam.\""

;

cardslot: fixeditem

location = concourse

noun = 'slot'

adjective = 'card'

sdesc = "card slot"

ldesc = "The slot appears to accept special ID cards with

magnetic encoding. If you had an appropriate ID card, you could

put it in the slot to open the door."

;

suitcase: openable

isopen = nil

location = pilotsLounge

noun = 'suitcase'

sdesc = "suitcase"

;

uniform: clothingItem

location = suitcase

noun = 'uniform'

adjective = 'pilot' 'pilot\'s'

sdesc = "pilot's uniform"

ldesc = "It's a uniform for an Untied Airlines pilot. It's

a little large for you, but you could probably wear it."

;

The rest of the objects are implemented in much the same way. In implementing the basic objects,
the main properties you need to �ll in are location, so the object appears somewhere in the game;
noun, so the player can refer to the object; and sdesc, so the system knows what to call the object
when it mentions the object in messages. It's also important to choose the appropriate class for each
item, so that you can get the correct basic behavior of the object without any additional work. At
some point, you should go through adv.t and familiarize yourself with the classes de�ned there, so
you know what you can get from adv.t classes without any work. See Appendix A for full details
on adv.t.

Implementing Special Behavior

The next step is to implement all of the special behavior that really makes the game work. For
example, let's implement the simple mechanism that lets the player �nd the airline ticket upon
picking up the newspaper. To do this, all we need to do is add a doTake method to the newspaper
object (we'll just show the new doTake method below; the rest of the object is the same as shown
above):
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doTake(actor) =

{

if (not self.foundTicket)

{

"As you pick up the paper, an airline ticket that was

inside falls to the floor.";

ticket.moveInto(actor.location);

self.foundTicket := true;

}

pass doTake;

}

This method runs whenever the player takes the newspaper. The �rst thing we do is check to make
sure that the airline ticket hasn't already been found; if not, we display a message that it's been
found, move the ticket into the game, and note that it's been found. Finally, we continue with
the default doTake action that the newspaper object inherited from its superclass (in this case,
readable) by using the pass statement.

Note that the airline ticket itself should be de�ned with no location, because it's not anywhere at
all when the game �rst starts:

ticket: item

noun = 'ticket'

adjective = 'airline'

sdesc = "airline ticket"

ldesc = "It's a one-way ticket to New York, in class C

(the \"C\" probably stands for \"Cattle\")."

;

As another example, let's implement the puzzle the keeps the player out of the security area until
the ID card is used to unlock the door. First, we must prevent movement from the concourse into
the security area. For this, we'll change the concourse room de�nition, and add a door object.

concourse: room

sdesc = "Concourse"

ldesc = "You are in a long hallway connecting the terminal

building (which lies to the south) to the boarding gates (which

are to the north). To the east is a snack bar, and a door leads

west. Next to the door on the west is a small slot that looks

like it accepts magnetic ID cards to operate the door lock."

north = gateArea

south = securityGate

east = snackBar

west =

{

if (securityDoor.isopen) return(securityArea);
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else

{

"The door is closed and locked.";

return(nil);

}

}

;

securityDoor: fixeditem

location = concourse

noun = 'door'

sdesc = "door"

isopen = nil

ldesc =

{

"The door has a label reading SECURITY AREA--AUTHORIZED

PERSONNEL ONLY. ";

if (self.isopen) "The door is open, which isn't very secure.";

else "The door is securely closed.";

}

verDoOpen(actor) =

{

"The door is securely locked.";

}

verDoUnlock(actor) =

{

"You should examine the slot if you want to unlock the door.";

}

;

The door is really just a decoration item; the various methods we implement are just to inform the
user that the door can't be operated directly. The real work is done by the card slot; we'll add some
new behavior to that object now.

cardslot: fixeditem

location = concourse

noun = 'slot'

adjective = 'card'

sdesc = "card slot"

ldesc = "The slot appears to accept special ID cards with

magnetic encoding. If you had an appropriate ID card, you could

put it in the slot to open the door."

verIoPutIn(actor) =

{

}
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ioPutIn(actor, dobj) =

{

if (dobj = IDcard)

{

if (securityDoor.isopen)

"You put the card in the slot; nothing happens,

so you remove it.";

else

{

"You put the card in the slot. There's a click, and

the security door pops open! You remove the card.";

securityDoor.isopen := true;

}

}

else

"That doesn't seem to fit in the slot.";

}

;

The new behavior is that the player can put the ID card in the slot. When this is done, the ioPutIn
method runs, with the ID card as the direct object (the dobj parameter). This method opens the
door, if it's not already open.

Most of the remaining puzzles in this sample game are implemented in a similar fashion. You'll need
to implement a couple of actors: one for the ight attendant, and one for the guard at the metal
detector. In addition, you'll need a few more locked doors and special items.

We won't go any further into the other puzzles, because the next chapter describes in much greater
detail how to implement these and much more.

Where to go from here

Before expanding this sample game by adding more areas, you could esh out the game by adding
lots of detail to what we've implemented so far. Most of the added material would probably be
irrelevant to the plot, but it could make the game more interesting and more fun to play. Keep in
mind that you're writing a game, not a real-world simulator; try to concentrate on things that make
the game more fun to play.

Some items that would enhance the airport: Add lots of incredibly overpriced and extremely dubious
snack items at the snack bar. Generate random messages over the public address system once in a
while, asking various people to pick up the white courtesy telephone and warning travellers not to
park in the red zone. Implement other e�ects for other power switches in the maintenance room:
what happens when you turn o� power to the snack bar, or the ticket counter, or the PA system, or
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the automatic doors? Add lots of strange people milling about in the airport; make some of them
actively bother the player, such as various fringe religious and political groups trying to hand out
literature (you'll want to write some wacky literature for them to distribute).

Alternatively, you could expand this game by providing some place to y to. The player could go
on to crash the plane into a remote mountain or desert island, and explore that. Or, you could take
the plane to several other cities and explore.

Of course, you'll probably have the most fun if you start with your own ideas and write a whole new
game. The hard part is always �nding the right idea; once you have the premise for your game, you
will probably be surprised at how quickly you can build a map and start implementing. Refer to the
examples in this chapter to help you get started. As your game starts to take shape, and you want
to add more ambitious features, the examples of advanced TADS programming techniques shown in
the next chapter should be helpful.

In creating, the only hard thing's to begin; a grass-blade's

no easier to make than an oak.

| JAMES RUSSELL LOWELL, A Fable for Critics (1848)
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Chapter Seven

Advanced TADS Techniques

So far, we've concentrated on the basic aspects of writing a game with TADS. Once you get started
on a game, you will probably have lots of ideas for plot elements in your game. Many parts of an
adventure game can be implemented very easily with TADS, simply by piecing together the basic
classes from adv.t and �lling in descriptions, locations, and so forth. However, some of the things
you will want to implement won't be that easy, and you will need to do some programming.

This chapter is intended to help you realize your more complex ideas by showing how to implement
a number of sophisticated plot elements. We've tried to show examples of the most common di�cult
game features, so there's a good chance that you'll �nd an example in this chapter that's very similar
to what you're trying to do. Even if you don't �nd a close match to the feature you have in mind,
reading this chapter will show you many of the more subtle points of TADS programming, which
should give you a better idea of how to implement your ideas.

Creating your own Verbs

It's always best to try to limit the number of verbs a player needs to use to complete your game,
because it helps prevent your adventure from becoming a game of \guess the verb." Choosing the
right sentence to express an idea for a command should never be a challenge|if it is, your game
will quickly become uninteresting.

However, that being said, you will sometimes want to include situations in your games that call
for verbs that aren't in the set de�ned in adv.t. In addition, there's nothing wrong with making
your game understand obscure verbs and phrasings that are alternatives to one of the more common
verbs in adv.t. Furthermore, some games include \magic words" that are e�ectively special verbs;
since the player learns these within the game, obscurity is not a problem.

The way you add a verb depends on how the verb is used. The simplest kind of verb is used by
itself|the player doesn't include any objects in a command with the verb. For example, \north"
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is a verb that doesn't take any objects; magic words generally fall into this category as well. To
implement a verb with no objects, all you have to do is create a deepverb object that includes a
verb vocabulary property, an sdesc property, and an action(actor)method. (The deepverb class
is de�ned in adv.t; see Appendix A for details.) The action method is called when the verb is used
with no objects. As an example, let's implement a verb for a magic word; when the magic word is
used, the player will be magically transported from the cave to the shack, or the shack to the cave.

magicVerb: deepverb

verb = 'xyzzy'

sdesc = "xyzzy"

action(actor) =

{

if (actor.location = cave)

{

"Out of nowhere, a huge cloud of orange smoke

fills the cave. When it clears, you suddenly

realize that you're in the shack!";

actor.moveInto(shack);

}

else if (actor.location = shack)

{

"You suddenly feel very disoriented, and the

room seems to be spinning all around you. As you

gradually regain your balance, you realize that

you're now in the cave!";

actor.moveInto(cave);

}

else

"Nothing happens.";

}

;

For a verb that takes a direct object, the verb object itself is fairly simple; all you need to do is
de�ne verb and sdesc properties, plus the special property doAction. The doAction property
de�nes a string that the system uses to form the names of two new properties. As an example, we'll
implement the verb \smell," which takes as its direct object the item to be smelled.

smellVerb: deepverb

verb = 'smell'

sdesc = "smell"

doAction = 'Smell'

;

When the system sees this de�nition, it creates two new properties: verDoSmell and doSmell.
Now, for any object that the player can smell, you add the verDoSmell and doSmell methods. For
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example, we'll implement a ower (notice that we deftly bypass the opportunity for a cheap joke
here at the expense of good taste by choosing an object with a non-o�ensive odor):

flower: item

noun = 'flower' 'rose'

adjective = 'red'

sdesc = "red rose"

ldesc = "It's a red rose."

verDoSmell(actor) =

{

}

doSmell(actor) =

{

"A rose by any other name...";

}

;

If the verDoSmell method isn't de�ned for an object, trying to smell it will cause the system to
display the message \I don't know how to smell the object." Since \smell" is a verb that you may
want to allow for every object in your game, you may want to modify the de�nition of thing in
adv.t to provide a better default message for this verb. You could add these lines to the de�nition
of thing in adv.t:

verDoSmell(actor) =

{

}

doSmell(actor) =

{

"It smells like any other <<self.sdesc>>.";

}

If you do this, all you need to do is override the doSmell method for any object with a non-default
odor.

Adding a verb that takes two objects (a direct object plus an indirect object) is similar. Rather
than de�ning a doAction property, you de�ne an ioAction(preposition) property. For example,
suppose you want to implement a verb \pry direct-object with indirect-object":

pryVerb: deepverb

verb = 'pry'

sdesc = "pry"

ioAction(withPrep) = 'PryWith'

prepDefault = withPrep

;

This causes the system to create the properties verIoPryWith, verDoPryWith, and ioPryWith,
which the system will call in that order (verDoPryWith is called for the direct object, and the other
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two are called for the indirect object.) Note that we've also de�ned a default preposition; while this
isn't required, it allows the system to be smarter by guessing what the player meant when some
words are left out. For example, if the only object present that can be used as an indirect object in
the \pry" command is a crow bar, the system can provide the \with the crow bar" phrase by default
when the player simply types \pry the door."

Whether or not you add verbs to the basic set in adv.t, it's a good idea to document your verbs.
In the instructions for your game, you should provide a list of all of the verbs that are needed to
complete the game. If players gets stuck, this list can be helpful in convincing them that they're not
�ghting the parser.

Complex Room Interconnections

The basic travel routines used by adv.t make it easy to implement a basic map: all you have to do
in your de�nitions is to provide properties with names like north and south, and set them to point
to rooms, simply by naming the room:

kitchen: room

north = hallway

east = porch

;

This is �ne for most situations, but frequently you'll want something to happen during travel that's
more complicated than simply moving the player to the given room. For example, if you have a very
long hallway, you may want a special message to be displayed when travelling to indicate that the
walk was especially long. Or, you may want to set o� a trap when the player takes a certain exit.
Or, you may want to prevent travel in a particular direction until a door has been opened or some
other obstacle has been removed.

The basic trick to implementing special travel e�ects like these is to realize that the direction
properties of a room aren't limited to simple room pointers|you can write a method instead. As
long as you follow a few simple rules, you can do whatever you want in this method. Basically, if you
want normal travel to occur after the method is �nished, the method should return a room object
which indicates the destination of the travel. If you don't want anything more to happen after the
method is �nished, the method should return nil. The following sections show how to use direction
methods to implement a variety of special travel e�ects.

Display a Message During Travel

One of the simplest special e�ects is displaying a message during travel. For example, suppose you
have a stairway leading down, but the stairs collapse while the player is descending them, dropping
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the player unceremoniously into the room below (with no harm done). All you really want to do
here is to display a message about the stairs collapsing, then complete the travel as normal.

livingRoom: room

sdesc = "Living Room"

ldesc = "You're in the living room. A dark stairway leads

down."

down =

{

"You start down the stairs, which creak and moan and

wobble uncertainly beneath you. You stop for a moment

to steady yourself, then continue down, when the entire

stairway suddenly breaks away from the wall and crashes

to the floor below. You land in a heap of splintered

wood. After a few moments, everything settles, and you

manage to get up and brush yourself off, apparently

uninjured.\b";

return(cellar);

}

;

The \\b" is at the end of the message to separate the message about the stairway's collapse from
the descriptive text that accompanies normal travel into a new room. Since the method just returns
a room object, travel will proceed as normal after the message has been displayed.

Simple Obstacles

The collapsing stairway of the previous example will need some additional special consideration at
the other end, because the player clearly can't go back up the stairs once they've collapsed. The
simplest case is to disallow travel altogether, which is simple: just make an up method that displays
an appropriate message, then returns nil to indicate that no travel is possible in this direction.

cellar: room

sdesc = "Cellar"

ldesc = "You're in the cellar. A huge pile of broken pieces of

wood that was once a stairway fills half the room. "

up =

{

"The stairway is in no condition to be climbed. ";

return(nil);

}

;

Since the method returns nil, no further travel processing takes place after the message is displayed.
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Note that we should add an object for the broken stairway, just for completeness, so that the player
can mention the stairs in a command. We'll make it a fixeditem since it can't be moved or otherwise
manipulated.

brokenStairs: fixeditem

location = cellar

noun = 'stairs' 'stairway' 'pile' 'wood'

adjective = 'broken'

sdesc = "pile of wood"

ldesc = "It's a huge pile of wood that used to be a stairway.

You won't have much luck trying to climb it. "

;

Adaptive Room Descriptions

The stairway examples shown above could be enhanced to make it possible to enter the cellar by
some other passage, which would mean that the stairway could be seen before it collapses. If this
were done, it would be necessary for the cellar's room description, as well as the up method, to be
sensitive to whether the stairway had collapsed yet.

Making a room description that adapts to the state of the room is done by turning ldesc into a
method. Just as special travel e�ects can be achieved by making a direction property into a method,
special room descriptions can be programmed by making ldesc a method.

Since the stairway can be seen before it's collapsed, we'll introduce a new object for the working
stairs. Note that this object should be climbable, so we'll de�ne verDoClimb and doClimb methods
for it. Note that the method actor.travelTo(location) is the exact same method that is called
when the player travels normally by typing a direction command (such as \up"). Also note that the
location property of the brokenStairs object should initially not be set (which will make it nil),
since the broken stairway is not part of the game initially in the new con�guration.

workingStairs: fixeditem

location = cellar

noun = 'stairs' 'stairway'

sdesc = "stairs"

ldesc = "The stairway leads up. It looks extremely

rickety. "

verDoClimb(actor) = {}

doClimb(actor) =

{

actor.travelTo(livingRoom);

}

;
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Now we'll change the cellar object's up method, as well as its ldesc property, to reect the current
status of the stairs. We'll detect whether the stairs have collapsed yet by checking the location of
the workingStairs object: if it's in the cellar, we'll know the stairs haven't collapsed yet, and if
it's not anywhere (that is, if it's location is nil), we'll know that the stairs have collapsed. (This
object switch will be implemented below, in the livingRoom object's down method.) We'll use
this detection technique to make both the ldesc and the up method sensitive to the status of the
stairway.

cellar: room

sdesc = "Cellar"

ldesc =

{

"You're in the cellar. ";

if (workingStairs.location = nil)

"A huge pile of broken pieces of wood that was

once a stairway fills half the room. ";

else

"A suspicious-looking stairway leads up. ";

}

up =

{

if (workingStairs.location = nil)

{

"The stairway is in no condition to be climbed. ";

return(nil);

}

else

{

"The stairs creak and moan and sway, but you

somehow manage to climb them safely.\b";

return(livingRoom);

}

}

;

We'll also have to make a small change to the down method in the livingRoom object, to replace
the workingStairs object with the brokenStairs object. Here's the new down method, which will
remove the workingStairs object from the game by moving it to nil, and put the brokenStairs
object in its place.

livingRoom: room

sdesc = "Living Room"

ldesc = "You're in the living room. A dark stairway leads

down."

down =

Chapter Seven Advanced TADS Techniques 127



{

if (workingStairs.location = nil)

{

"You quickly notice that the stairs have

collapsed, so there's no way down. ";

return(nil);

}

else

{

"You start down the stairs, which creak and moan and

wobble uncertainly beneath you. You stop for a moment

to steady yourself, then continue down, when the entire

stairway suddenly breaks away from the wall and crashes

to the floor below. You land in a heap of splintered

wood. After a few moments, everything settles, and you

manage to get up and brush yourself off, apparently

uninjured.\b";

workingStairs.moveInto(nil); /* replace workingStairs... */

brokenStairs.moveInto(cellar); /* ... with brokenStairs */

return(cellar);

}

}

;

Doors

One common type of obstacle is a door. Doors can be implemented using exactly the same mecha-
nisms shown above for the stairway: in the directional properties for the rooms involving the door,
check the status of the door object (generally the isopen property), and either return a room object
if the door is open, or display a message and return nil if the door is closed. This type of mechanism
is used in DITCH.T for its doors.

However, adv.t provides a set of classes that makes it easier to implement doors. The classes are
based on a general class called obstacle (which you may wish to extend into your own specialized
classes to implement di�erent types of obstacles). The basic class is doorway, and an additional
class called lockableDoorway makes it easy to implement a door that can be locked and unlocked
with a particular key object.

By using the doorway and lockedDoorway classes, you can implement doors with no programming,
because the basic travel routines will do the necessary work based on properties de�ned in your
doorway objects.
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The �rst thing to note about doors is that they have an unusual property: a door exists in two
rooms, because it connects the two rooms. Unfortunately, TADS doesn't have any good way of
putting a single object in multiple locations. To work around this problem, you should make two
objects for each actual door in your game: one for each side. Fortunately, the doorway class makes
it easy to keep the states of the two objects synchronized: for example, when you open one side of
the door, the other side is automatically opened.

Start by implementing the two sides of the door. Make a doorway object for each, �lling in the
normal properties for any object (location, sdesc, noun). Put one doorway object in each room
to be connected. Now add the special properties for a doorway. Set otherside to the other door
object making up the pair of doors; this is how the door's internal routines know what other door to
keep synchronized. Set doordest to the room object that's reached by travelling through the door.

Then, all you need to do for the rooms containing the doors is to set the direction properties to the
doors themselves, rather than the rooms reached through the doors. Here's an example, showing
the two room objects and the two door objects.

porch: room

sdesc = "Porch"

ldesc = "You're on a porch outside a huge run-down wooden house

that was probably painted white in the distant past,

but which is gray and faded now. A door (which is

<< porchDoor.isopen ? "open" : "closed" >>) leads west."

west = porchDoor /* use door for the direction */

;

frontHall: room

sdesc = "Front Hall"

ldesc = "You're in the spacious front hallway of the old house.

The paint on the walls is all peeling, and a thick veil

of spiderwebs hangs down from the ceiling. A door

(which is <<hallDoor.isopen ? "open" : "closed">>)

leads east."

east = hallDoor

;

porchDoor: doorway

location = porch

noun = 'door'

sdesc = "door"

otherside = hallDoor

doordest = frontHall

;

hallDoor: doorway
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location = frontHall

noun = 'door'

sdesc = "door"

otherside = porchDoor

doordest = porch

;

Note that there's no need to de�ne ldesc for a doorway, unless you want to. The default ldesc
de�ned in the doorway object displays a message saying simply \It's open" or \It's closed" or \It's
closed and locked," depending on the door's state. If you want to override ldesc, you can use the
isopen and islocked properties to determine the state of the door to be displayed in your custom
message.

Some more properties of the doorway class are worth mentioning. If the door is not locked, the door
will be opened automatically when the player tries to travel through it (such as by going west from
the porch in the example above). This makes the game more convenient, because it's not necessary
to type \open the door" when that's the obvious thing to do. However, in cases where you don't
want a door to be automatically opened, you can simply add noAutoOpen = true to the doorway

object's properties; this requires the player to explicitly open the door, even when it's not locked.

If you want to require a key to lock and unlock the door, use the lockableDoorway class instead
of doorway. Then, add the mykey property, setting it to the object which serves as the key (this
object should be of class keyItem). If you don't set the mykey property, the door can be locked and
unlocked without any key; that is, the player simply types \lock door" and \unlock door" to lock
and unlock it.

Note that there's no requirement that the two sides of a door be identical. You can take advantage
of this in certain situations. For example, if you want to have a door that needs a key from the
outside, but doesn't need any key from the inside (like most doors you'd �nd in a house), make both
sides lockableDoorway objects, but only set the mykey property in the object that serves as the
outer side of the door.

Vehicles

Vehicles are rooms that move. Basically, a vehicle is an extension to the idea of complex room
interconnections; rather than having a room interconnection that merely displays a message, or
sometimes disallows travel, a vehicle has a room interconnection that moves around. Usually, a
vehicle will also have some other behavior, such as controls that operate the vehicle, or a viewscreen
that shows the area outside the vehicle.

The �rst type of vehicle we'll address is the fully-enclosed variety, such as a subway train or an
elevator. We'll address vehicles that are also objects in their own right, such as rubber rafts, in
a later section (\Nested Room Vehicles" below). A fully-enclosed vehicle really just amounts to a
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room that has a direction property that changes, depending on where the vehicle is supposed to
be. The vehicle doesn't have a location property, because it's just an ordinary room|it's not an
object in other rooms.

As an example, let's implement an elevator that travels between two oors. The elevator will have
\up" and \down" buttons to activate it, doors, and a display indicating which level it's on.

To make the elevator more realistic, we'll arrange for it to spend a couple of turns in transit as it
moves between oors. To do this, we'll use a \noti�er" function that's set when a button is used to
start the elevator on its way. We'll also use a ag to indicate when the elevator is in transit, so that
pushing the buttons while the elevator is moving will have no e�ect.

The doors will be simpler than normal doors, since the user can't directly manipulate them. They'll
open and close automatically.

elevDoors: fixeditem

location = elevRoom

noun = 'door' 'doors'

adjective = 'elevator' 'sliding'

sdesc = "elevator doors"

ldesc = "They're a standard pair of sliding elevator doors.

They're currently <<self.isopen ? "open" : "closed">>. "

isopen = true

verDoOpen(actor) =

{

"The doors are automatic; you can't open them yourself. ";

}

verDoClose(actor) =

{

"The doors are automatic; you can't close them yourself. ";

}

;

The buttons are fairly simple: they use the basic buttonitem class. We'll set a property indicating
the destination of the elevator when that button is pushed|the \up" button will take the elevator
to the upper oor, and the \down" button will take the elevator to the lower oor. The doPush

method checks to see if the elevator is already moving, and then to see if the elevator is already at
the destination of this button.

To make less work for ourselves, we'll de�ne a class for the two elevator buttons, then make two
objects based on the class.

class elevButton: buttonitem

location = elevRoom

doPush(actor) =

{

/* ignore if already in motion or already at destination */
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if (elevRoom.isActive or elevRoom.curfloor = self.destination)

"\"Click.\"";

else

{

"The doors close, and the elevator starts to move.";

elevRoom.isActive := true;

elevDoors.isopen := nil;

elevRoom.counter := 0;

elevRoom.curfloor := self.destination;

notify(elevRoom, &moveDaemon, 0);

}

}

;

elevUpButton: elevButton

sdesc = "up button"

adjective = 'up'

destination = floor2 /* where to go when button is pushed */

;

elevDownButton: elevButton

sdesc = "down button"

adjective = 'down'

destination = floor1

;

You'll recall that notify is a built-in function that sets up a \daemon," which is a routine that
you want the system to call after each turn. The call to notify in the example above tells the
TADS run-time system to call the method moveDaemon in the object elevRoom after every turn (the
third argument is 0, which means that the method should be called after each turn; if it had been
non-zero, it would have speci�ed a number of turns to wait before calling the method once).

The elevator object needs to be sensitive to its current location with its exit and north parameter.
It also needs to be sensitive to the state of the doors. The daemon (that is started with the notify
call in the buttons) controls the travel of the elevator.

elevRoom: room

sdesc = "Elevator"

ldesc = "You're inside a small elevator. Sliding doors (which are

currently <<elevDoors.isopen ? "open" : "closed">>) lead north."

out = (self.north)

north =

{

if (elevDoors.isopen) return(self.curfloor);

else
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{

"The doors are closed.";

return(nil);

}

}

curfloor = floor1 /* start off on lower floor */

moveDaemon =

{

self.counter++;

switch(self.counter)

{

case 1:

case 2:

case 3:

"\bThe elevator continues to travel slowly.";

break;

case 4:

"\bThe elevator stops, you hear a bell make a

\"ding\" sound, and the doors slide open. ";

elevDoors.isopen := true;

self.isActive := nil;

unnotify(elevRoom, &moveDaemon);

break;

}

}

;

The \\b" sequences before the messages in the moveDaemon method are there because the routine
runs as a daemon. This means it's hard to predict exactly what will have been displayed just prior to
the method's execution, so it's safest to put in a blank line to make sure that the daemon's messages
are set apart from the previous message. You should generally put in a blank line before the �rst
message displayed by any daemon.

Note that you'll have to do a small amount of extra work to �nish this example. First, you'll have to
de�ne the rooms floor1 and floor2. These are extremely simple if the only way to reach them is
through the elevator, because you don't have to worry about whether the elevator is present or not.
If you want to be more sophisticated, and make the oors reachable without taking the elevator (for
example, with a stairway), you'll have to do two things: �rst, you'll have to put some doors on each
oor, and make sure they're closed while the elevator isn't on that oor; and second, you'll probably
want to make some way to call the elevator to the current oor.

Here's a general class for making the doors on each oor. We'll make the door's isopen property
simply check to see if the inner doors are open, and if so, whether the elevator is on the current oor
(which is the door's location). We'll do the same thing for the verDoOpen and verDoClose methods
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that we did with the elevDoors object.

class outerElevDoor: fixeditem

sdesc = "elevator door"

ldesc = "They're <<self.isopen ? "open" : "closed">>. "

isopen = (elevDoors.isopen and elevRoom.curfloor = self.location)

noun = 'door' 'doors'

adjective = 'elevator'

verDoOpen(actor) =

{

"The doors are automatic; you can't open them yourself. ";

}

verDoClose(actor) =

{

"The doors are automatic; you can't close them yourself. ";

}

;

Now you just need to add an object of this class for each oor; the only thing you need to set in
each object is its location property. Then, on each oor, make the south property sensitive to the
state of the doors, in the same way as the north property in the elevRoom object is sensitive to the
state of the inner doors.

The other addition you'll want to make is to add a call button on each oor. This is probably
accomplished most easily by simply using the existing daemon that runs the elevator, and adding
new buttons on the oors, outside the elevator, that activate the elevator. Here's a basic class that
can be used to make these buttons.

class outerButton: buttonitem

sdesc = "elevator call button"

adjective = 'elevator' 'call'

doPush(actor) =

{

/* ignore if elevator is already here */

if (elevRoom.curfloor = self.location and elevDoors.isopen)

"Your incredible powers of observation suddenly inform

you that the elevator is already here. ";

else

{

"\"Click.\"";

if (not elevRoom.isActive) notify(elevRoom, &moveDaemon, 0);

elevRoom.isActive := true;

elevDoors.isopen := nil;

elevRoom.counter := 0;

elevRoom.curfloor := self.location;

}
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}

You'll notice if you try to run this example that there's a minor problem: the daemon that moves
the elevator around displays messages as though the player were on the elevator. By using the same
daemon to move the elevator around with the call buttons, we'll have to change the messages so
that they're sensitive to whether the player is on the elevator or not. For motion messages, the
player should only get the messages if the player is on the elevator. Messages concerning the doors
opening, on the other hand, should be seen if the player is either on the elevator or at the location
at which the elevator is arriving. The new moveDaemon method (for the elevRoom object) is shown
below (the rest of the elevRoom object stays the same).

moveDaemon =

{

self.counter++;

switch(self.counter)

{

case 1:

case 2:

case 3:

if (Me.location = self)

"\bThe elevator continues to travel slowly.";

break;

case 4:

if (Me.location = self)

"\bThe elevator stops, you hear a bell make a

\"ding\" sound, and the doors slide open. ";

else if (Me.location = self.curfloor)

"\bYou hear a bell make a \"ding\" sound,

and the elevator doors slide open. ";

elevDoors.isopen := true;

self.isActive := nil;

unnotify(elevRoom, &moveDaemon);

break;

}

}

There are many more enhancements that you could make to the elevator control daemon to make
the elevator more realistic. First, it would be fairly easy to add more oors, simply by adding
more buttons. Second, it would be nice to provide some sort of indication of where the elevator is
currently. In addition, real elevators use a somewhat di�erent control algorithm. A real elevator
usually has a current direction; it travels in that direction, stopping at each oor that's been selected
with a call button at the oor or with the matching button in the elevator. When it gets to the top
or bottom oor, all of the selected buttons inside the elevator are cleared (i.e., de-selected). The
elevator then reverses direction if necessary, servicing called oors. This type of algorithm would be
a little more work to implement, and is left as an exercise to the reader.
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Chairs and other Nested Rooms

A \nested room" is a room inside another room. In most cases, nested rooms are also objects in
their own right. The principal feature of a nested room is that it isn't enclosed. Typical examples
of nested rooms are chairs and beds: these are objects within a room, but they're also \rooms" in
the sense that the player can be located in them.

Implementing a nested room in TADS is fairly simple, because adv.t de�nes a class called nest-

edroom that does most of the work. Furthermore, the classes chairitem and beditem let you
implement the most common nested room objects with very little work.

One feature of nested rooms that is worth mentioning is that the player can not necessarily reach all of
the objects in the enclosing room from a nested room. By default, none of the objects in the enclosing
room are reachable from a nested room. However, you can easily make any objects reachable from
the nested room by setting its reachable property to a list containing all the reachable objects in
the enclosing room. If you want to set it to everything in the enclosing room, simply set it as follows:

reachable = (self.location.contents)

This says that everything contained in the enclosing room is reachable.

Nested Room Vehicles

Sometimes, you'll want to make a nested room that's also a vehicle. For example, you might want
to implement a rubber raft that the player can carry around, but also inate and use as a vehicle.
Fortunately, there's an adv.t class called vehicle that serves this function. The vehicle class is a
carryable object that can be boarded as a vehicle.

Let's implement an inatable rubber raft. The �rst thing we need to do is build a standard vehicle

object, but we'll customize it so that it can only be boarded when it's inated. We'll furthermore
make it so that it can only be inated when it's not being carried, and we'll make it impossible to
take when it's inated.

raft: vehicle

location = startroom

sdesc = "inflatable rubber raft"

noun = 'raft'

adjective = 'inflatable' 'rubber'

isinflated = nil

ldesc = "It's an inflatable rubber raft. Currently,

it's <<self.isinflated ? "inflated" : "not inflated">>. "

verDoTake(actor) =

{
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if (self.isinflated) "You'll have to deflate it first. ";

else pass doTake;

}

verDoInflateWith(actor, iobj) =

{

if (self.isinflated) "It's already inflated!";

}

doInflateWith(actor, iobj) =

{

if (self.isIn(actor)) "You'll have to drop it first. ";

else

{

"With some work, you manage to inflate the raft. ";

self.isinflated := true;

}

}

verDoDeflate(actor) =

{

if (not self.isinflated) "It's as deflated as it can get.";

}

doDeflate(actor) =

{

"You let the air out, and the raft collapses to a

compact pile of rubber.";

self.isinflated := nil;

}

doBoard(actor) =

{

if (self.isinflated) pass doBoard;

else "You'll have to inflate it first.";

}

;

Note that we'll have to de�ne a couple of verbs, and it would be convenient to add an object for the
pump as well.

inflateVerb: deepverb

sdesc = "inflate"

verb = 'inflate' 'blow up'

ioAction(withPrep) = 'InflateWith'

prepDefault = withPrep

;

deflateVerb: deepverb
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sdesc = "deflate"

verb = 'deflate'

doAction = 'Deflate'

;

pump: item

sdesc = "pump"

location = startroom

noun = 'pump'

verIoInflateWith(actor) = {}

ioInflateWith(actor, dobj) =

{

dobj.doInflateWith(actor, self);

}

;

Once all of this is done, making the raft move around is very similar to making a fully-enclosed
vehicle move around. The only real di�erence is that the raft will always have a location. As with
most vehicles of this type, you'll want to make it impossible for the player to get out of the raft while
it's in motion. To do this, you'll need to override the doUnboard and outmethods. For this example,
let's assume that the river (where the raft will travel) will be composed of a series of rooms, each of
which is of class riverRoom. So, whenever the raft is in a riverRoom, we'll prevent the player from
getting out. To do this, we'll add the methods below to the raft object. Note that these methods
will inherit the corresponding vehicle methods when the raft is not oating down the river.

doUnboard(actor) =

{

if (isclass(self.location, riverRoom))

"Please keep your hands and arms inside the raft

at all times while the raft is in motion.";

else pass doUnboard;

}

out =

{

if (isclass(self.location, riverRoom))

"You can't get out until you've landed the raft.";

return(nil);

else pass out;

}

The only thing left is to move the raft around. For this example, we'll set things up as follows:
each (non-river) room which borders on a river will have a property, toRiver, set to point to the
bordering river room. Each river room which has a landing will have a property, toLand, set to
point to the bordering non-river room. Each river room will also have a property, downRiver, set to
the next river room downstream from the current room. We'll introduce two new verbs: \launch"
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and \land." When the player is in the raft, \launch raft" will set the raft in motion down the river
(if it's on land), and \land raft" will land (if there's a landing nearby). The new verbs are below.

launchVerb: deepverb

sdesc = "launch"

verb = 'launch'

doAction = 'Lanuch'

;

landVerb: deepverb

sdesc = "land"

verb = 'land'

doAction = 'Land'

;

Now we'll add some more methods to the raft object: the verb handling methods for the new verbs,
and a daemon that causes the raft to drift downstream while it's in the river.

verDoLaunch(actor) = {}

doLaunch(actor) =

{

if (isclass(self.location, riverRoom))

"You're already afloat, if you didn't notice.";

else if (self.location.toRiver = nil)

"There doesn't appear to be a suitable waterway here.";

else if (Me.location != self)

"You'll have to get in the raft first.";

else

{

"The raft drifts gently out into the river.";

notify(self, &moveDaemon, 0);

self.counter := 0;

self.moveInto(self.location.toRiver);

}

}

verDoLand(actor) = {}

doLand(actor) =

{

if (not isclass(self.location, riverRoom))

"You're already fully landed.";

else if (self.location.toLand = nil)

"There's no suitable landing here.";

else

{

"You steer the raft up onto the shore.";
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unnotify(self, &moveDaemon);

self.moveInto(self.location.toLand);

}

}

moveDaemon =

{

"\bThe raft continues to float downstream.";

self.counter++;

if (self.counter > 1)

{

self.counter := 0;

if (self.location.downRiver = nil)

{

"The raft comes to the end of the river, and lands.";

self.moveInfo(self.location.toLand);

unnotify(self, &moveDaemon);

}

else

{

self.moveInto(self.location.downRiver);

self.location.riverDesc;

}

}

}

Note that we'll expect each river room to have a property, riverDesc, which displays a message
when the raft drifts into that room. The moveDaemon method will keep the raft in each river room
for two turns, then move the raft to the next river room, calling riverDesc to note the entry. When
the raft comes to the end of the river, the method will automatically land the raft; this means that
the last river room must have a non-nil toLand property. You could alternatively put in a waterfall
or other special e�ect when reaching the end of the river.

To build a river, all you have to do is de�ne a series of rooms of class riverRoom, and point the
downRiver property in each to the next room downriver. Landings are built by setting the toRiver
and toLand properties of the landing room and corresponding river room, respectively, to point to
each other.

Hiding Objects

Hiding objects is fairly simple, thanks to a set of classes de�ned in adv.t that make certain kinds
of hiding automatic.

The adv.t classes make it possible to hide objects under or behind other objects, and to set up an
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object so that its contents are found only when the object is searched. The basic hider classes are
underHider, behindHider, and searchHider. These classes are for the objects doing the hiding;
the hidden objects are hidden inside these objects. For the objects being hidden, instead of setting
their location properties, set the properties underLoc, behindLoc, or searchLoc to point to the
respective classes. All hidden objects must be of class hiddenItem.

For example, to hide a key under a bed, make the bed an underHider object, and set the underLoc
property of the key to point to the bed.

bed: beditem, underHider

noun = 'bed'

location = startroom

sdesc = "bed"

;

key: item, hiddenItem

noun = 'key'

sdesc = "key"

underLoc = bed

;

The behindHider and searchHider objects work the same way, but you should use the behindLoc
and searchLoc properties, respectively, instead of underLoc.

Note that the initSearch function, de�ned in adv.t, must be called during initialization (usually,
by your preinit function) to set up the hidden objects. This routine sets up special contents lists
for the various hider objects. This routine only considers hidden objects when they're of class
hiddenItem, which is why you must use this class for all of your hidden objects.

Note that the ease with which you can hide objects shouldn't be taken as a license to hide objects
with wild abandon. From a game design viewpoint, hidden objects are almost always poor puzzles.
If you do hide an object, make sure that you provide some sort of clue that something is hidden
there. Otherwise, the player must tediously look behind and under every object in the game. As
with most puzzles, it's easy to make a really hard game|it's harder to make a fun game.

Collections of Objects

Each item that a player can manipulate in a TADS game generally corresponds to an object de�ned
in the game program. To allow the player to refer to each object individually, your game program
must de�ne a unique set of vocabulary words for each object. For example, if you have two books in
your game, the books must have at least one distinct adjective each, so that the player can specify
in a command which book he wants to manipulate.
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This style of game construction, in which each object must have a unique set of vocabulary, imposes
certain limitations when you design your game. Sometimes you will �nd that you want to have a
large collection of similar objects that are not distinguished from one another. Fortunately, there
are a number of ways to implement object collections; the particular mechanism you choose will
vary, and depends on the type of situation you want to create. This section provides examples of
several di�erent e�ects you can create with collections of objects.

Object Collections as Decorations

Suppose you are creating a book store. You will want to stock the store with a large number of
books|but you won't want to create a huge number of individual book objects, not only because
it would take too much time and e�ort, but also because most of the books won't be relevant to the
game. There will usually be one or two important books, and many unimportant ones.

In this type of situation, one way to work within the limitations of TADS is to create a single object
representing the collection of unimportant books. Since most of the books are not important, they
can be grouped together into this single object, which is set up so that it tells the player about its
lack of importance whenever the player tries to manipulate it. Furthermore, it can serve as a pointer
to any important similar objects.

As an example, we'll implement a collection of books in a book store. A single object will represent
the collection of unimportant books. When the player looks at the collection of books, though, it
will point out the presence of a couple of important books.

manybooks: fixeditem

sdesc = "books"

adesc = "a number of books"

noun = 'book' 'books'

location = bookstore

ldesc =

{

"The bookstore has a huge stock of books, ranging from

scientific titles to the latest collection of

\"Wytcome and Wyse\" cartoons. ";

if (not self.isseen)

{

"One title in particular catches your attention:

\"Liquid Nitrogen: Our Frigid Friend\". ";

ln2book.moveInto(bookstore);

self.isseen := true;

}

}

verDoRead(actor) =

{

"Although you'd really like to sit down and start reading,
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you know from painful experience that the neo-fascist staff

have been cracking down on browsing lately. ";

}

verDoTake(actor) =

{

"Unfortunately, you know you could never afford all of these

books. ";

}

;

Note that we set the adesc property to a non-default value. This is because the default adesc, which
would display \a" followed by the object's sdesc, would result in the strange message \a books" in
this case.

To help the player avoid wasting a lot of time trying to manipulate the books, we put in some
special messages that let the player know that the books can't be manipulated. When you create a
decoration object, it's always a good idea to think of all of the things that the player might want to
do with it, and provide messages that make it clear that the object isn't important to the game. In
this case, we've made it clear that the collection of books can't be read or taken.

The most important de�nition, though, is the ldesc property. This property not only provides a
general description of the collection of books, but also points out the single important book to the
player when the collection of books is examined for the �rst time. (The isseen property is used to
determine if the ldesc has been displayed before. The �rst time the ldesc property is executed,
isseen is set to true.) In addition to displaying a message for the player about the special book, it
moves the special book into the bookstore.

Selecting from an Object Collection

One way you may wish to extend this basic idea is to provide a collection of books from which
the player can take a single book, seemingly at random. The �rst time a player takes a book from
the collection, he gets one book; the next time, he gets another book; and so forth. This is easy
to implement by overriding the doTake method of the collection of books: rather than moving the
collection itself into the player's inventory, the method will choose a book from a list of individual
book objects, and move that book into the player's inventory.

manybooks2: fixeditem

sdesc = "books"

adesc = "a number of books"

noun = 'book' 'books'

location = bookstore

ldesc =

{

"The bookstore has a huge stock of books, ranging from

scientific titles to the latest collection of
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\"Wytcome and Wyse\" cartoons. You

may want to just try picking up a book. ";

}

verDoTake(actor) =

{

if (length(self.booklist) = 0)

"You don't see anything else you're interested in. ";

}

doTake(actor) =

{

local selection;

selection = self.booklist[1];

self.booklist := cdr(self.booklist);

selection.moveInto(actor);

"You look through the books, and choose << selection.thedesc >>. ";

}

booklist = [ln2book chembook cartoonbook]

;

The property booklist contains a list of books that we have pre-de�ned. Each time the player
takes a book, the doTake method will take the �rst element out of the booklist property, and act
as though the player had picked up that object. This way, the player can just type \take book,"
and the game will seem to select a book for the player. The verDoTake property makes sure there's
something left in the list, and displays an appropriate message if not. Note that we've written the
ldesc message so that it's clear to the player that he should attempt to take a book.

Selecting from Indistinguishable Objects

Another variation on this theme involves a collection of indistinguishable objects. For example,
suppose we want to implement a matchbook which contains a number of matches. The player
should be able to take a match out of the matchbook in order to light it.

Since TADS requires every object to have unique vocabulary, though, we'll have to impose some
limits on what the player can do. In particular, we'll only allow the player to have a single match
at any given time|all of the other matches must be in the matchbook.

In terms of implementation, this means that we'll only need a single object to represent a match.
This object will have two possible states: existent or non-existent. We'll use the location property
to indicate the state; if the location is nil, the object is non-existent, otherwise it's in the game.
When the match is non-existent, the player can take a match out of the matchbook|which brings
the match into existence by moving it into the player's inventory. As long as the match is in the
game, the player cannot take another match out of the matchbook. Once the match is burned away,
though, it will be removed from the game, and the player can take another match.
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The matchbook will have a count of available matches. When the player attempts to take a match,
we'll �rst check to see if there are any matches left; if so, we'll check to make sure that the match
object doesn't already exist in the game.

matchbook: item

location = bookstore

noun = 'matchbook'

sdesc = "matchbook"

matchcount = 4 /* number of matches left in matchbook */

ldesc =

{

if (self.matchcount > 0)

"The matchbook contains << self.matchcount >> match<<

self.matchcount = 1 ? "." : "es. " >>";

else

"The matchbook is empty.";

}

;

match: item

noun = 'match'

adjective = 'single'

sdesc = "single match"

ldesc =

{

if (self.isBurning)

"It's currently lit.";

else

"It's an ordinary safety match.";

}

verDoLight(actor) =

{

if (self.isBurning) "It's already lit!";

}

burnFuse =

{

"\bThe match burns down. You drop it, and it disappears

in a cloud of ash.";

self.isBurning := nil;

self.moveInto(nil); /* match is now non-existent */

}

doLight(actor) =

{

"The match starts burning.";
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self.isBurning := true;

notify(self, &burnFuse, 2);

}

;

fakematch: fixeditem

noun = 'match'

adjective = 'bound'

sdesc = "bound match"

location = matchbook

verDoTake(actor) =

{

if (matchbook.matchcount = 0)

"The matchbook is empty.";

else if (match.location <> nil)

"You'll have to use the one you already took first.";

}

verDoLight(actor) =

{

"You'll have to remove it from the matchbook first.";

}

doTake(actor) =

{

"You tear a match out of the matchbook.";

match.moveInto(actor); /* move a match into inventory */

matchbook.matchcount--; /* one less match */

}

;

The fakematch object lets the player refer to the match in a command, even when the match object
doesn't exist in the game (i.e., its location is nil). The fakematch has verDoTake and doTake

methods that let the player take a match out of the matchbook.

Note one minor aw in this implementation: the player might not have the match, but still can't
take another until the �rst is destroyed. This could be confusing. For example, the player may take
a match, then later drop it because his hands are full, then move to a di�erent room. As far as
the player is concerned, no match is present|he left the match in another room, and may not even
remember where. However, he won't be able to take another match, because the �rst match is still
in the game. There's no easy way to �x this. You could arbitrarily move the match into the player's
inventory, even though it is in some other room; this might be less confusing for some players, but
it may be more confusing for others who are aware that there is a match in another room|this
\other" match would be gone after the single match object is moved into the player's inventory.
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Money

Money does not �t very naturally into a TADS game for a number of reasons. If you do want to use
money in your game, it can generally be implemented using techniques similar to those we used for
the matches in the matchbook. The only changes for money are that some new verbs will probably
be added, and you will probably want to be able to add more money to the player's holdings.

The necessary new verbs will depend on your game. For example, you may want \pay" and \buy"
verbs for purchasing items. The main reason you'll want to use these new verbs is that there's no
easy way for the player to refer to an amount of money. So, you'll have to arrange a protocol for
purchasing objects. For example, make a location that serves as a store, and make a shopkeeper
actor. To purchase an object, the player tells the shopkeeper to give him an object. The shopkeeper
responds by telling the player the price of the object. The player responds with \pay shopkeeper";
this deducts the price of the object, and gives the player the object.

If your game contains a non-obvious protocol like this, it is very important that you document it for
the player. You can provide an explanation in the instructions for your game, but since most people
will start playing your game immediately without reading any accompanying instructions, it would
be far better to put the explanation into the game itself. There are a number of ways you could do
this; you could, for example, simply display an explanation of the necessary commands when the
player �rst enters the shop. Alternatively, you could provide instructions as error messages; when
the player attempts to take an object in the shop, you could display a message: \Please direct your
inquiries to the shopkeeper; for example, type `shopkeeper, give me the axe.' "

An even better approach would be to avoid situations like this altogether. If you can't make it
�t easily and naturally into your game without resorting to special sequences of commands, you
should probably �nd another way to accomplish the same thing. Remember, absolute realism is not
important in a text adventure game|the only important thing is to make the game fun to play.

Non-Player Characters

One of the most e�ective techniques for giving a game depth and making it involving is to include non-
player characters. Early adventure games often seemed empty and static; the player just wandered
alone through a vast maze of caves. More modern games use non-player characters (which we'll refer
to as \actors" from now on), who move through the game, interacting with the player and doing
things on their own. When done well, actors add a whole new dimension to a game, and make the
setting seem alive and real.

Actors are one of the most complicated parts of a TADS game, because they operate on more levels
than other objects. First, there's player interaction: an actor normally can interact with the player,
by talking (the player can tell an actor to do things, and can ask an actor questions), and by direct
action (attacking, for example, or exchanging objects). There are a great many ways a player and
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an actor can interact, and TADS lets you implement as much or as little interactive capability into
an actor as you wish. Second, actors often do things on their own. Sometimes, this means that
the actor carries out a pre-scripted set of actions. Other times, the actor just reacts to the player;
for example, an actor might spend most of the game following the player around, making amusing
comments from time to time. Most actors, though, are combinations of these, reacting to the player
most of the time, and carrying out pre-scripted actions in response to certain events. Third, some
actors have a \memory," and have knowledge of various parts of the game. Certain things an actor
does may depend on what a player has done previously.

Fortunately, all of these basic elements of an actor are implemented pretty easily. You can write
the code for a simple actor without too much di�culty. Even better, once you have a simple actor
working, eshing out the actor is just a matter of adding to the basic framework of the actor.

To implement an actor, you need to write two main pieces of code that aren't associated with most
other types of objects. First is the actorAction method. This method handles most of the actor's
interaction with the player; it essentially de�nes the limits of the actor's ability to interact. Second
is the actor's \daemon." You'll recall from previous chapters that a daemon is a function or method
that's called after every turn (that is, the run-time system calls a daemon each time it �nishes
processing a player command). The actor daemon is what allows the actor to go about its business;
since it is called after each turn, the actor can perform an action of its own on each turn.

If you've played Ditch Day Drifter, you'll recall a couple of actors in that game of di�ering degrees
of interaction and activity. One fairly limited actor is the guard in front of the steam tunnels: the
guard does very little apart from blocking your way into the tunnel. The guard's interaction consists
mostly of accepting objects; you can attempt to bribe the guard with money, for example, or give
him something to drink. The guard's daemon also does very little; it just displays a randomly-chosen
message (from a set of several pre-determined messages) on each turn. A more versatile actor is
Lloyd, the insurance robot. Lloyd can accept objects (you can buy the insurance policy), and you
can also talk to him to a limited extent (you can ask about the policy). Like the guard, Lloyd
displays a randomly-chosen message on most turns. In addition, Lloyd follows the player from room
to room. Lloyd even reacts to certain events and places, and has a memory of sorts: once Lloyd has
paid out an insurance claim, he will remember not to pay out the claim again.

Let's look at an example of implementing an actor. We'll start with a simple \puzzle actor," similar
to the guard in Ditch. This is a very common element of adventure games: a person that is blocking
the way to some goal. In this case, we'll implement a receptionist who's blocking the way to an o�ce
you want to enter. As long as the receptionist is awake, you won't be allowed to enter the o�ce.

receptionist: Actor

noun = 'receptionist'

sdesc = "receptionist"

isawake = true

ldesc =

{

"The receptionist is a very, shall we say, sturdy-looking

woman, with a tall beehive hair-do and thick glasses. She

reminds you of your third-grade teacher, who was overly
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concerned with discipline.";

if (self.isawake)

"She eyes you impatiently as she goes through some papers.";

else

"She's slumped over the desk, fast asleep.";

}

location = lobby

actorDesc =

{

if (self.isawake)

"A receptionist is sitting at the desk next to the

door, watching you suspiciously.";

else

"A receptionist is slumped over the desk next to

the door.";

}

actorDaemon =

{

if (self.location <> Me.location or not self.isawake) return;

switch(rand(5))

{

case 1:

"The receptionist sharpens some pencils.";

break;

case 2:

"The receptionist goes through some personal mail, holding

each letter up to the light and attempting to read the

contents.";

break;

case 3:

"The receptionist looks through the personnel files.";

break;

case 4:

"The receptionist answers the phone and immediately

puts the caller on hold, cackling to herself fiendishly.";

break;

case 5:

"The receptionist shuffles some papers.";

break;

}

}

;
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lobby: room

enterRoom(actor) =

{

if (not self.isseen)

notify(receptionist, &actorDaemon, 0);

pass enterRoom;

}

sdesc = "Lobby"

ldesc = "You're in a large lobby, decorated with expensive-looking

abstract pastel oil paintings and lots of gleaming chrome.

A large receptionist's desk sits next to a door leading

into an office to the east. The exit is to the west."

west = outsideBuilding

out = outsideBuilding

east =

{

if (receptionist.isawake)

{

"You start to stroll past the receptionist nonchalantly,

trying to ignore her as though you actually belong here,

but she's wise to that trick: she leaps up, and with

surprising force throws you back from the doorway.

Satisfied that you're not going through, she sits back

down and returns to her work.";

return(nil);

}

else

return(office);

}

;

Notice that the implementation of this puzzle looks very much like that of a door, or any other
obstacle, except that the obstacle itself is somewhat more complicated. The actual work of preventing
the player from moving past the receptionist, though, is exactly the same as for any other obstacle:
in the direction method, we check to see if the receptionist is still awake, and if so, we refuse to let
the player past by returning nil (after displaying an appropriate message, of course).

The main features that are special for an actor are the actorDesc and actorDaemon methods. The
actorDesc is a special property that you should de�ne for any actor; this method is called by the
general room code that displays the long description of the room. After the description of the room
and its contents, the room long description routine will call the actorDesc method of each actor in
the room (except the player actor, Me). The actorDescmethod should simply display an appopriate
message to the e�ect that the actor is present; it's similar to the ldesc method for the actor, but
it usually contains less detail, since it's more to inform the player that the actor is present than to
provide a detailed desription of the actor. It should mention that the actor is present and what the
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actor is doing.

The actorDaemon is nothing special|you can call this method whatever you want. Most actors
will have something like the actorDaemon, though. This is the daemon that makes the actor seem
alive by doing something after every turn. For our simple receptionist actor, which doesn't really
do anything of its own accord, this method simply displays a random message each turn. Note that
the method returns immediately if the player (the Me object) is not present in the same room as the
receptionist; it clearly wouldn't make any sense to display a message about what the receptionist is
doing when the receptionist is not present.

Note that actorDaemon is not started automatically for an actor. Instead, you must explicitly
activate it. In this case, we've chosen to activate the actorDaemon routine by calling notify() the
�rst time the player enters the lobby. The enterRoom method of the lobby object checks to see if
the room has been entered before (by checking to see if the isseen property of the current room
has been set|this is always automatically set by the room code after the room has been seen for
the �rst time); if the room has never been entered, we call notify() to start actorDaemon running.
Note that enterRoom �nishes by using pass to run the enterRoom method that would normally be
inherited from the room class.

Following the Player

There are several main types of wandering actors. The �rst type follows the player around, like
Lloyd the insurance robot in Ditch Day Drifter. This �rst type is fairly simple, because all you have
to do is set up a daemon that checks to see if the actor and the player are in the same room, and if
not, move the actor to the player's location.

The big change between a stationary actor, such as the receptionist in the earlier example, and a
wandering actor is in the actor's daemon. Instead of just displaying a random message, as did the
receptionist, the actor daemon will actually move the actor around.

Here's a basic actorDaemon method that will make the actor follow the player.

actorDaemon =

{

if (self.location = Me.location)

{

switch(rand(5))

{

case 1:

"Lloyd hums one of his favorite insurance songs.";

break;

/* etc. with other random messages... */

}

}

else

{
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self.moveInto(Me.location);

"Lloyd rolls into the room, and checks to make sure

the area is safe.";

}

}

Note that this routine must be set up to run every turn with the notify() function, as explained
in the receptionist example.

This new version of the method still displays a random message if the actor is in the same room
with the player, but now it has some new code that is executed when the player is somewhere else.
The new code moves the actor to the player's location, and displays a message informing the player
that the actor has entered the room.

In a real game, you'll probably further extend this type of daemon to make the actor do special
things in certain locations. For example, in Ditch Day Drifter, there's some extra code that displays
special messages when Lloyd enters certain improbable locations, such as squeezing through the
north-south crawl or climbing the rope.

Moving on a \Track"

The second type of wandering actor moves around on a �xed path, or \track." This type of actor is
not much harder to implement than an actor which follows the player; rather than using the player's
location in the actor motion daemon, you make a list of locations that the actor visits in sequence,
and the actor motion daemon takes locations out of this list.

One new factor you'll have to keep in mind in implementing this type of motion daemon is that the
actor could be entering the actor's location, leaving the actor's location, or neither. The motion
message will have to check for each of these situations.

For an example, we'll show how to implement a robot similar to the vacuuming robot in Deep Space
Drifter that moves around between several rooms in a �xed pattern.

vacRobot: Actor

sdesc = "domestic robot"

noun = 'robot'

adjective = 'domestic'

location = stationMain

tracklist = ['southeast' bedroomEast 'west' bathroom 'west'

bedroomWest 'northeast' stationMain 'north'

stationKitchen 'south' stationMain]

trackpos = 1

moveCounter = 0

actorDaemon =

{

if (not self.isActive) return; /* do nothing if turned off */
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self.moveCounter++;

if (self.moveCounter = 3) /* move after 3 turns in one location */

{

self.moveCounter := 0;

if (self.location = Me.location)

"The robot moves off to the <<self.tracklist[self.trackpos]>>.";

self.moveInto(self.tracklist[self.trackpos + 1]);

if (self.location = Me.location)

"A domestic robot rolls into the room and starts noisily

moving around the room vacuuming and dusting.";

/* move to next position on track; loop back to start if necessary */

self.trackpos += 2;

if (self.trackpos > length(self.tracklist)) self.trackpos := 1;

}

else

{

/* we're not moving this turn, so display activity message */

if (self.location = Me.location)

"The domestic robot continues darting around the room

vacuuming.";

}

}

;

The list of rooms that the robot visits is speci�ed in the tracklist property. This is a strange-
looking list, because it contains both objects and (single-quoted) strings. The way this works is
that the list elements are always inspected in pairs: the �rst item in a pair is a string that will be
displayed to indicate the direction that the robot will leave the current room; the second item in
the pair is the room to be visited next after the current room. So, the �rst pair contains the string
'southeast' and the object bedroomEast: the robot will leave to the southeast, and move to the
east bedroom.

The actorDaemon still does all the work, but it's a little more complicated than in the previous
examples. First, it checks to see if the robot is active; if not, it doesn't go any further. Next, it
increments a counter that tracks how long the robot has been in the current room; when it gets to
three turns, it's time to move on, otherwise the robot stays where it is.

If the robot is moving, the daemon �rst resets the move counter to zero. Next, it checks to see if
the player is in the current location; if so, the daemon displays a message telling the player that
the robot is leaving, and indicates which direction (the direction is determined by looking at the
current element of the tracklist list, as described above). Next, the robot is actually moved to
the new location (again, determined by looking in the tracklist list). Next, if the player is in the
new location, the daemon displays a message saying that the robot has entered the room. Finally,
we increment the track position counter property trackpos (by 2, since the list entries are in pairs).
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If the position counter has moved beyond the end of the list, we reset it to 1.

If the robot is not moving during this turn, the daemon will check to see if the actor is in the same
location as the player, and display a message if so. Note that the single �xed message in the example
could easily be replaced by a randomly-chosen message, as we did with the earlier examples.

Random Wandering

The third type of wandering actor moves through the game at random. This type of actor wandering
is somewhat more complex than the earlier types.

The main trick in implementing a randomly-wandering actor is that we must avoid evaluating
direction properties when they don't contain a �xed object. This is because we could accidentally
display spurious messages, and possibly trigger side e�ects (such as killing the player or making other
changes to the game state) if we were to evaluate a direction property that was actually a method.
For example, think back to the earlier example with the stairway that collapses when used|you
probably wouldn't want to display the collapse message and destroy the stairs when one of your
wandering actors encountered the room.

The best way to avoid such unintended side e�ects is to avoid using any direction property that isn't
a simple object. TADS provides a special built-in function called proptype that lets you determine
the type of a property without actually evaluating it. The proptype function will tell you whether
a property is a simple object or a method.

Other than the mechanism for choosing a new room, randomly-wandering actors are essentially the
same as actors on a track. You generate messages in the same manner, checking to see if the actor
is leaving or entering a room occupied by the player.

actorDaemon =

{

local dir, dirnum;

local tries;

local newloc;

for (tries := 1 ; tries < 50 ; tries++)

{

dirnum := rand(6);

dir := [&north &south &east &west &up &down][dirnum];

if (proptype(self.location, dir) = 2 /* object */)

{

newloc := self.location.(dir);

if (not isclass(newloc, room)) continue;

if (self.location = Me.location)

"The robot leaves to the <<

['north' 'south' 'east' 'west' 'up' 'down'][dirnum]>>.";

self.moveInto(newloc);

if (self.location = Me.location)
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"A domestic robot enters the room and starts vacuuming

noisily.";

}

}

}

The line that sets the dir local variable probably needs a little explanation, because it's a tricky
bit of TADS coding. The �rst thing is a list of property addresses|these aren't properties of any
object, but rather just references to properties that you can later use to get an actual property of
an object. We take this list, which consists of six elements, then choose a single element at random
by indexing into the list with a randomly-chosen number from 1 to 6. This leaves the dir local
variable with a pointer to a property that we can use later. Note that you could include northeast,
southeast, northwest, and southwest in the list if you want; we left them out to make the example
a little bit easier to read.

Next, we use the proptype() built-in function to determine if the selected property (contained in
dir) of the actor's current location contains an object. If it does not, we continue looping.

If the selected property of the current location does in fact contain an object, we �rst get that
location into the local variable newloc. Then, we make one more check on the new location: we
ensure that newloc actually contains an object of class room. This is because it is possible for a
room direction connection property to contain an object of class obstacle, such as a door (see the
section on implementing doors earlier in this chapter). If it's a door or other obstacle, we want
to treat it the same as though the direction property didn't contain an object at all|so we'll just
continue with the loop, ignoring this choice of a direction.

Once we have an object of class room in newloc, we proceed to move the actor the same way we
moved the actor on a track. Note that we use the same indexing trick to display the direction that
the actor is exiting.

In case you're wondering why the example uses a \tries" counter and stops after 50 times through
the loop: this is simply a bit of bullet-proo�ng to keep the daemon from going into an in�nite loop.
It's quite possible, especially while you're developing your game, that the robot may encounter
some rooms from which there is no escape. Remember that the robot can only use exits which are
explicitly set to objects; if you create a room with nothing but exits that are methods, the robot
will be unable to �nd a suitable exit. If we didn't include the loop counter and give up after a while,
the loop would run forever in such rooms, leaving the game stuck.

In a real game, you may want to add some special-case code that allows a randomly-wandering
actor to use certain exits that would normally be o�-limits because they're methods. One way of
accomplishing this is to add a special check to the daemon to test if the actor is in such a special
location, and if so, to make it go to a particular destination. Another way is to put additional
properties in some rooms (such as robotEast) that specify directions accessible only to the robot;
in the daemon, you'd check for the presence of these special robot directions �rst, falling back on
the normal direction list only if the special directions are not present.

One modi�cation you may wish to make to this type of totally random wandering is to restrict the
actor to a particular set of rooms. There are a number of ways to accomplish this. The simplest

Chapter Seven Advanced TADS Techniques 155



is to create a class of rooms that the actor is allowed to occupy, and always check upon choosing a
new room that the room is a member of the class.

If you want to change the allowed rooms dynamically as the game runs, use a condition rather than
a class. Instead of checking to see if the room is a member of a class, check to see if the condition
is true. For example, if you want to create an actor that only enters dark rooms, you would check
upon choosing a room to make sure the room is not lit.

More Complex Actor Scripts

For some games, you may wish your actors to exhibit even more complex autonomous behavior
than we've shown so far. One type of common extension is to make the actor perform some action
when in a certain room or when a certain set of conditions is met. For example, you may wish to
implement a thief that steals any treasure left lying around in a maze room. To implement this,
we'd �rst need to create a class of rooms for mazes; let's call this new class mazeroom:

mazeroom: room

;

Similarly, we'll create a class for any object that counts as a treasure:

treasure: item

;

Note that the only purpose of these two classes is to serve as a ag, so we can determine if an object
is considered a treasure or if a room is part of a maze. These classes don't actually implement any
new behavior of their own.

Next, we'd add a check in the thief's daemon that looks for treasure objects when the thief is in
a room in a maze. We'll add this code to the end of the same daemon we used for the randomly
wandering actor above in the previous section; we won't reproduce that entire routine here. This
code is added after the for loop that comprised the bulk of that daemon.

if (isclass(self.location, mazeroom))

{

/* check contents of current room */

local cont := self.location.contents;

local len := length(cont);

local found := nil;

local i;

for (i := 1 ; i <= len ; ++i)

{

if (isclass(cont[i], treasure))

{

found := true;

cont[i].moveInto(self);
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}

}

if (found and Me.location = self.location)

"You notice the thief has helped himself to some items.";

}

This is a fairly complicated example of making your actors do something special when certain
conditions are met. A simpler example is Lloyd's attempt to sell insurance to the sleeping guard in
Ditch Day Drifter, which is simply a message that's displayed by Lloyd's movement daemon when
Lloyd enters the room with the guard.

You may want some actors to have very complicated scripts that do more than just move the actors
around. You may want to implement an actor which goes about his business, doing things in some of
the locations he visits. The best way to do this is probably by making your actor a \state machine."
One easy way to implement a state machine is to use a number to represent the current state; on
each turn, you increment the state number, and use a switch statement to take the appropriate
action depending on the new state.

For example, suppose you want to implement an actor that enters a building and walks to the study.
If someone else is in the study, he'll just wait impatiently for the other person to leave; once he's
alone in the study, he'll produce a key and open a safe, conveniently dropping the key near the safe.
He'll then take something out of the safe and leave the building.

We'll represent the set of states with numbers. State 1 will be outside the building; when in state 1,
we'll enter the building. State 2 will be inside the front hall, and we'll move to the study. In state
3 we'll check to see if we're alone; if not, we'll just stay in state 3 and act impatient. Once we're
alone, we'll produce the key and open the safe. In state 4, we'll take the object out of the safe and
exit the room, moving back to the front hall. In state 5, we'll leave the building.

The following methods can be used to accomplish this.

actorMessage(msg) =

{

if (Me.location = self.location)

{

"\b";

say(msg);

}

}

actorMove(newloc, todir, fromdir) =

{

if (Me.location = self.location)

"^<<self.thedesc>> leaves to the <<self.todir>>. ";

self.moveInto(newloc);

if (Me.location = self.location)

"^<<self.thedesc>> enters the room from the <<self.fromdir>>. ";

}
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actorState = 1

actorDaemon =

{

switch(self.actorState++)

{

case 1:

self.actorMove(frontHall, 'north', 'south');

break;

case 2:

self.actorMove(study, 'east', 'west');

break;

case 3:

if (self.location = Me.location and not Me.ishidden)

{

"Jack crosses his arms and looks at his watch.";

self.actorState := 3; /* remain in state 3 */

}

else

{

actorMessage('Jack looks around, and is satisfied that

he is alone. He searches his pockets, and produces a

key, which he inserts into the safe and opens it. He

nervously removes something from the safe; he doesn\'t

seem to notice when the key drops to the ground.');

safeKey.moveInto(self.location);

}

break;

case 4:

self.actorMove(frontHall, 'west', 'east');

break;

case 5:

self.actorMove(outsideBuilding, 'south', 'north');

break;

}

}

Note that the actorMove and actorMessage methods that we implemented provide a convenient
mechanism for displaying messages conditionally if the player is present.

Naturally, you'd want to extend the end of this script to give Jack something to do (or somewhere to
disappear to) at the end of his appearance. Using this basic technique, you can implement essentially
arbitrarily complicated actors. Note that it's easy to jump to a di�erent state rather than progress
to the next state|just assign the state variable (actorState in this case) to the new state you
want to enter on the next turn. This allows your actor to behave intelligently: rather than just
following a script without reference to what's going on in the game, the actor can take di�erent
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actions depending on the conditions around him. In our simple example above, the only sensitivity
to game conditions is that the actor waits to open the safe until he's alone (or thinks he is); you can
easily test for much more complex conditions, though.

In deciding how to implement your actors, you should consider the things you actor does most
frequently. If your actor mostly moves around on a track, and occasionally does something special
in a particular location or when a particular set of conditions is true, then implementing your actor
using the techniques for moving on a track is easiest; just check for your special conditions before
or after moving. On the other hand, if your actor does something special in many locations and on
most turns, using a state machine is easiest.

Talking to Actors

One of the main areas of interaction with actors in adventure games is asking the actors questions.
TADS is a bit limited when it comes to arti�cial intelligence; unfortunately, TADS doesn't make
it possible to ask actors general questions such as \what do you think about the role of the media
in the upcoming election?" or \why is the sky blue?" Instead, questions addressed to actors in a
TADS game are limited to asking about particular objects in the game. Furthermore, all the player
can do is ask about an object in general|the player can't ask \why is the fuse outside the tram?",
but is limited to \ask lloyd about the fuse."

Another type of interaction is to tell an actor something. As with questions, TADS is too limited
to allow a player to tell an actor anything very speci�c. All that a player can say is something like
\tell lloyd about the scroll."

As a game designer, these limitations make your job fairly straightforward. Implementing the \ask"
and \tell" routines is essentially the same as implementing any other verb method. Here's an example
of a doAskAbout method for an actor.

verDoAskAbout(actor, iobj) =

{

}

doAskAbout(actor, iobj) =

{

switch(iobj) /* indirect object is what is being asked about */

{

case insurancePolicy:

if (insurancePolicy.isbought)

"\"It's very complicated, but let me assure you,

it's a very good policy.\"";

else

"\"It's a great policy for only a dollar!\"";

break;

default:

"\"I don't know much about that.\"";

Chapter Seven Advanced TADS Techniques 159



}

}

You could add more cases as needed to add to Lloyd's knowledge.

Note one strange twist here: the actor parameter to the methods is the actor that asked the
question|that is, the player, or Me. The actor who's being asked is self, since the actor is the
direct object of the \ask" verb. Note also that we had to implement an empty verDoAskAbout

method so that the actor can be asked questions at all; by default, all objects inherit a generic error
message for verDoAskAbout.

You can implement behavior for telling an actor about an object in much the same way, by writing
verDoTellAbout and doTellAbout methods for the actor. Likewise, you can make it possible for
the player to give objects to the actor by implementing verIoGiveTo and ioGiveTo methods for the
actor. Note that the ioGiveTo method should move the direct object into the actor's inventory (by
executing dobj.moveInto(self)) if the object is accepted.

Taking Objects from Actors

By default, actors don't let the player take objects that the actor is carrying. This is because all of
the routines that try to move an object will call the verGrab(actor)method of all of the containers
of the object. By default, an actor's verGrabmethod will display a message indicating that the actor
won't give up the object so easily; since verGrab is called during the validation phase of parsing,
displaying a message is su�cient to prevent the command from proceeding.

If you want to allow the player to take objects from an actor, override the actor's verGrab method.
You could make the method do nothing at all, in which case the actor will allow any object to be
taken; or it can display a message only on certain objects, which will prevent only those objects
from being taken.

Commanding an Actor

The player can issue a command to an actor by typing something like \lloyd, go north." When
this happens, the TADS parser processes the command in almost exactly the same way as a normal
command, except that the actor of the command is changed from the default Me (the player's actor)
to the actor indicated in the command. (In fact, it really is exactly the same processing; when no
actor is typed, it's as though the player had typed \me, go north.")

Since most all processing occurs relative to the actor parameter to the verb-handling methods (such
as verDoTake(actor) and doDrop(actor)), you don't need to make very many special provisions
for commands directed to actors. This type of processing is done almost entirely automatically by
the system.

However, in most cases, you don't actually want the player to be able to boss your actors around.
Most of your actors will have a mind of their own, and many will even be presenting obstacles to
the player.
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To make it possible for you to control whether the player can control your actors, and to what extent,
the TADS parser will always call the actorAction method of the selected actor prior to allowing
any further processing to proceed. If this routine executes an exit statement, the command will
go no further, preventing the player from controlling your actor. Since the method receives all of
the information on the current command (the verb, direct object, preposition, and indirect object)
as parameters, it can choose to allow or disallow particular commands. For allowed commands,
do nothing; for disallowed commands, display an appropriate message and then execute an exit

statement.

At this very moment, we have the necessary techniques, both

material and psychological, to create a full and satisfying

life for everyone.

| BURRHUS FREDERIC SKINNER, Walden Two (1948)
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Appendix A

Adventure De�nitions

The TADS run-time system provides a great deal of support for text adventure games, but it doesn't
pre-de�ne very much speci�c to adventures. To make the game author's job easier, the �le adv.t

provides de�nitions for a great many basic objects and classes that underlie most adventure games.
These classes are very general, and most games will customize them further, but they vastly reduce
the amount of work required to write a game. This section describes these classes, what they do,
and how to use them to write a game.

Note that in addition to everything listed in the following pages, adv.t also de�nes the articles \a,"
\an," and \the."

These de�nitions become part of your game when you include the standard adventure de�nitions
�le adv.t in your source �le.

Objects, Classes, and Functions

This section lists the objects and functions de�ned in the standard adventure de�nitions �le adv.t.

The descriptions of the objects indicate the object's superclass or superclasses; for complete infor-
mation on an object, you need to refer to the description of its superclasses as well. The descriptions
also indicate the main properties de�ned in the object; in customizing the object, you will generally
need to override one or more of these properties. For example, most descendants of thing will
specify an sdesc to provide the object with a name.

The function descriptions provide information on how to call the functions, what they do, and what
they return.

For clarity, the objects are described in inheritance order; that is, the lower-level (parent) classes
are described �rst, then the descendants of those classes, then the descendants of those, and so on.
(This is the same order in which they appear in adv.t.) However, this can make it di�cult to �nd
the description of a particular object, thus the following index.
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Actor, 170

addbulk, 165

addweight, 165

basicMe, 171

basicNumObj, 174

basicStrObj, 174

beditem, 166

behindHider, 168

buttonitem, 172

chairitem, 166

clothingItem, 172

container, 173

darkroom, 170

decoration, 172

deepverb, 175

dialItem, 169

doorway, 172

fixeditem, 169

follower, 171

fooditem, 169

hiddenItem, 167

hider, 168

incscore, 166

initSearch, 166

itemcnt, 164

item, 167

keyedLockable, 174

keyItem, 174

lightsource, 167

listcontcont, 165

listcont, 165

listfixedcontcont, 165

lockableDoorway, 173

lockable, 174

movableActor, 171

nestedroom, 166

obstacle, 172

openable, 173

Prep, 175

qcontainer, 174

readable, 169

room, 170

searchHider, 169

surface, 173

switchItem, 170

thing, 167

transparentItem, 174

turncount, 165

underHider, 168

vehicle, 173

itemcnt

itemcnt: function(list ): Returns a count of the \listable" objects in list. An object is listable
(that is, it shows up in a room's description) if its isListed property is true. This function is useful
for determining how many objects (if any) will be listed in a room's description.
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listcont

listcont: function(obj ): This function displays the contents of an object, separated by commas.
The thedesc properties of the contents are used. It is up to the caller to provide the introduction to
the list (usually something to the e�ect of \The box contains" is displayed before calling listcont)
and �nishing the sentence (usually by displaying a period). An object is listed only if its isListed
property is true.

list�xedcontcont

listfixedcontcont: function(obj ): List the contents of the contents of any fixeditem objects
in the contents list of the object obj. This routine makes sure that all objects that can be taken are
listed somewhere in a room's description. This routine recurses down the contents tree, following
each branch until either something has been listed or the branch ends without anything being listable.
This routine displays a complete sentence, so no introductory or closing text is needed.

listcontcont

listcontcont: function(obj ): This function lists the contents of the contents of an object. It
displays full sentences, so no introductory or closing text is required. Any item in the contents list
of the object obj whose contentsVisible property is true has its contents listed. An Object whose
isqcontainer or isqsurface property is true will not have its contents listed.

turncount

turncount: function(parm ): This function can be used as a daemon (normally set up in the init
function) to update the turn counter after each turn. This routine increments global.turnsofar,
and then calls setscore to update the status line with the new turn count.

addweight

addweight: function(list ): Adds the weights of the objects in list and returns the sum. The
weight of an object is given by its weight property. This routine includes the weights of all of the
contents of each object, and the weights of their contents, and so forth.

addbulk

addbulk: function(list ): This function returns the sum of the bulks (given by the bulk property)
of each object in list. The value returned includes only the bulk of each object in the list, and not of
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the contents of the objects, as it is assumed that an object does not change in size when something is
put inside it. You can easily change this assumption for special objects (such as a bag that stretches
as things are put inside) by writing an appropriate bulk method for that object.

incscore

incscore: function(amount ): Adds amount to the total score, and updates the status line to
reect the new score. The total score is kept in global.score. Always use this routine rather than
changing global.score directly, since this routine ensures that the status line is updated with the
new value.

initSearch

initSearch: function. Initializes the containers of objects with a searchLoc, underLoc, and
behindLoc by setting up searchCont, underCont, and behindCont lists, respectively. You should
call this function once in your preinit (or init, if you prefer) function to ensure that the underable,
behindable, and searchable objects are set up correctly.

nestedroom

nestedroom: room. A special kind of room that is inside another room; chairs and some types of
vehicles, such as inatable rafts, fall into this category. Note that a room can be within another
room without being a nestedroom, simply by setting its location property to another room. The
nestedroom is di�erent from an ordinary room, though, in that it's an \open" room; that is, when
inside it, the actor is still really inside the enclosing room for purposes of descriptions. Hence, the
player sees \Laboratory, in the chair." In addition, a nestedroom is an object in its own right, visible
to the player; for example, a chair is an object in a room in addition to being a room itself.

chairitem

chairitem: fixeditem, nestedroom, surface. Acts like a chair: actors can sit on the object.
While sitting on the object, an actor can't go anywhere until standing up, and can only reach objects
that are on the chair and in the chair's reachable list. By default, nothing is in the reachable list.
Note that there is no real distinction made between chairs and beds, so you can sit or lie on either;
the only di�erence is the message displayed describing the situation.

beditem

beditem: chairitem. This object is the same as a chairitem, except that the player is described
as lying on, rather than sitting in, the object.
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thing

thing: object. The basic class for objects in a game. The property contents is a list that
speci�es what is in the object; this property is automatically set up by the system after the game
is compiled to contain a list of all objects that have this object as their location property. The
contents property is kept consistent with the location properties of referenced objects by the
moveInto method; always use moveInto rather than directly setting a location property for this
reason. The adesc method displays the name of the object with an inde�nite article; the default is
to display \a" followed by the sdesc, but objects that need a di�erent inde�nite article (such as \an"
or \some") should override this method. Likewise, thedesc displays the name with a de�nite article;
by default, thedesc displays \the" followed by the object's sdesc. The sdesc simply displays the
object's name (\short description") without any articles. The ldesc is the long description, normally
displayed when the object is examined by the player; by default, the ldesc displays \It looks like
an ordinary sdesc." The isIn(object) method returns true if the object's location is the speci�ed
object or the object's location is an object whose contentsVisible property is true and that
object's isIn(object) method is true. Note that if isIn is true, it doesn't necessarily mean the
object is reachable, because isIn is true if the object is merely visible within the location. The
thrudesc method displays a message for when the player looks through the object (objects such as
windows would use this property). The moveInto(object) method moves the object to be inside the
speci�ed object. To make an object disappear, move it into nil.

item

item: thing. A basic item which can be picked up by the player. It has no weight (0) and
minimal bulk (1). The weight property should be set to a non-zero value for heavy objects. The
bulk property should be set to a value greater than 1 for bulky objects, and to zero for objects that
are very small and take essentially no e�ort to hold|or, more precisely, don't detract at all from
the player's ability to hold other objects (for example, a piece of paper).

lightsource

lightsource: item. A portable lamp, candle, match, or other source of light. The light source
can be turned on and o� with the islit property. If islit is true, the object provides light,
otherwise it's just an ordinary object.

hiddenItem

hiddenItem: object. This is an object that is hidden with one of the hider classes. A hiddenItem

object doesn't have any special properties in its own right, but all objects hidden with one of the
hider classes must be of class hiddenItem so that initSearch can �nd them.
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hider

hider: item. This is a basic class of object that can hide other objects in various ways. The
underHider, behindHider, and searchHider classes are examples of hider subclasses. The class
de�nes the method searchObj(actor, list), which is given the list of hidden items contained in the
object (for example, this would be the underCont property, in the case of an underHider), and
\�nds" the object or objects. Its action is dependent upon a couple of other properties of the hider
object. The serialSearch property, if true, indicates that items in the list are to be found one
at a time; if nil (the default), the entire list is found on the �rst try. The autoTake property, if
true, indicates that the actor automatically takes the item or items found; if nil, the item or items
are moved to the actor's location. The searchObj method returns the list with the found object or
objects removed; the caller should assign this returned value back to the appropriate property (for
example, underHider will assign the return value to underCont).

Note that because the hider is hiding something, this class overrides the normal verDoSearch
method to display the message, \You'll have to be more speci�c about how you want to search
that." The reason is that the normal verDoSearch message (\You �nd nothing of interest") leads
players to believe that the object was exhaustively searched, and we want to avoid misleading the
player. On the other hand, we don't want a general search to be exhaustive for most hider objects.
So, we just display a message letting the player know that the search was not enough, but we don't
give away what they have to do instead.

The objects hidden with one of the hider classes must be of class hiddenItem.

underHider

underHider: hider. This is an object that can have other objects placed under it. The objects
placed under it can only be found by looking under the object; see the description of hider for
more information. You should set the underLoc property of each hidden object to point to the
underHider.

Note that an underHider doesn't allow the player to put anything under the object during the
game. Instead, it's to make it easy for the game writer to set up hidden objects while implementing
the game. All you need to do to place an object under another object is declare the top object as an
underHider, then declare the hidden object normally, except use underLoc rather than location

to specify the location of the hidden object. The behindHider and searchHider objects work
similarly.

The objects hidden with underHider must be of class hiddenItem.

behindHider

behindHider: hider. This is just like an underHider, except that objects are hidden behind this
object. Objects to be behind this object should have their behindLoc property set to point to this
object.
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The objects hidden with behindHider must be of class hiddenItem.

searchHider

searchHider: hider. This is just like an underHider, except that objects are hidden within this
object in such a way that the object must be looked in or searched. Objects to be hidden in this
object should have their searchLoc property set to point to this object. Note that this is di�erent
from a normal container, in that the objects hidden within this object will not show up until the
object is explicitly looked in or searched.

The items hidden with searchHider must be of class hiddenItem.

�xeditem

fixeditem: thing. An object that cannot be taken or otherwise moved from its location. Note
that a fixeditem is sometimes part of a movable object; this can be done to make one object part
of another, ensuring that they cannot be separated. By default, the functions that list a room's
contents do not automatically describe fixeditem objects (because the isListed property is set to
nil). Instead, the game author will generally describe the fixeditem objects separately as part of
the room's ldesc.

readable

readable: item. An item that can be read. The readdesc property is displayed when the item
is read. By default, the readdesc is the same as the ldesc, but the readdesc can be overridden to
give a di�erent message.

fooditem

fooditem: item. An object that can be eaten. When eaten, the object is removed from the game,
and global.lastMealTime is decremented by the foodvalue property. By default, the foodvalue
property is global.eatTime, which is the time between meals. So, the default fooditem will last
for one \nourishment interval."

dialItem

dialItem: fixeditem. This class is used for making \dials," which are controls in your game
that can be turned to a range of numbers. You must de�ne the property maxsetting as a number
specifying the highest number to which the dial can be turned; the lowest number on the dial is
always 1. The setting property is the dial's current setting, and can be changed by the player
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by typing the command \turn dial to number." By default, the ldesc method displays the current
setting.

switchItem

switchItem: fixeditem. This is a class for things that can be turned on and o� by the player.
The only special property is isActive, which is nil if the switch is turned o� and true when
turned on. The object accepts the commands \turn it on" and \turn it o�," as well as synonymous
constructions, and updates isActive accordingly.

room

room: thing. A location in the game. By default, the islit property is true, which means
that the room is lit (no light source is needed while in the room). You should create a darkroom

object rather than a room with islit set to nil if you want a dark room, because other methods
are a�ected as well. The isseen property records whether the player has entered the room before;
initially it's nil, and is set to true the �rst time the player enters. The roomAction(actor, verb,
directObject, preposition, indirectObject) method is activated for each player command; by default,
all it does is call the room's location's roomAction method if the room is inside another room.
The lookAround(verbosity)method displays the room's description for a given verbosity level; true
means a full description, nil means only the short description (just the room name plus a list of the
objects present). roomDrop(object) is called when an object is dropped within the room; normally,
it just moves the object to the room and displays \Dropped." The firstseen method is called
when isseen is about to be set true for the �rst time (i.e., when the player �rst sees the room); by
default, this routine does nothing, but it's a convenient place to put any special code you want to
execute when a room is �rst entered. The firstseen method is called after the room's description
is displayed.

darkroom

darkroom: room. A dark room. The player must have some object that can act as a light source
in order to move about and perform most operations while in this room. Note that the room's lights
can be turned on by setting the room's lightsOn property to true; do this instead of setting islit,
because islit is a method which checks for the presence of a light source.

Actor

Actor: fixeditem, movableActor. A character in the game. The maxweight property speci�es
the maximum weight that the character can carry, and the maxbulk property speci�es the maximum
bulk the character can carry. The actorAction(verb, directObject, preposition, indirectObject)
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method speci�es what happens when the actor is given a command by the player; by default, the
actor ignores the command and displays a message to this e�ect. The isCarrying(object) method
returns true if the object is being carried by the actor. The actorDesc method displays a message
when the actor is in the current room; this message is displayed along with a room's description when
the room is entered or examined. The verGrab(object) method is called when someone tries to take
an object the actor is carrying; by default, an actor won't let other characters take its possessions.

If you want the player to be able to follow the actor when it leaves the room, you should de�ne a
follower object to shadow the character, and set the actor's myfollower property to the follower
object. The follower is then automatically moved around just behind the actor by the actor's
moveInto method.

The isHim property should return true if the actor can be referred to by the player as \him," and
likewise isHer should be set to true if the actor can be referred to as \her." Note that both or
neither can be set; if neither is set, the actor can only be referred to as \it," and if both are set, any
of \him," \her," or \it" will be accepted.

movableActor

movableActor: qcontainer. Just like an Actor object, except that the player can manipulate the
actor like an ordinary item. Useful for certain types of actors, such as small animals.

follower

follower: Actor. This is a special object that can \shadow" the movements of a character as it
moves from room to room. The purpose of a follower is to allow the player to follow an actor as
it leaves a room by typing a \follow" command. Each actor that is to be followed must have its
own follower object. The follower object should de�ne all of the same vocabulary words (nouns
and adjectives) as the actual actor to which it refers. The follower must also de�ne the myactor

property to be the Actor object that the follower follows. The follower will always stay one room
behind the character it follows; no commands are e�ective with a follower except for \follow."

basicMe

basicMe: Actor. A default implementation of the Me object, which is the player character. adv.t
de�nes basicMe instead of Me to allow your game to override parts of the default implementation
while still using the rest, and without changing adv.t itself. To use basicMe unchanged as your
player character, include this in your game: \Me: basicMe;".

The basicMe object de�nes all of the methods and properties required for an actor, with appropriate
values for the player character. The nouns \me" and \myself" are de�ned (\I" is not de�ned, because
it conicts with the \inventory" command's minimal abbreviation of \i" in certain circumstances,
and is generally not compatible with the syntax of most player commands anyway). The sdesc is
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\you"; the thedesc and adesc are \yourself," which is appropriate for most contexts. The maxbulk
and maxweight properties are set to 10 each; a more sophisticated Me might include the player's
state of health in determining the maxweight and maxbulk properties.

decoration

decoration: fixeditem. An item that doesn't have any function in the game, apart from having
been mentioned in the room description. These items are immovable and can't be manipulated in
any way, but can be referred to and inspected. Liberal use of decoration items can improve a
game's playability by helping the parser recognize all the words the game uses in its descriptions of
rooms.

buttonitem

buttonitem: fixeditem. A button (the type you push). The individual button's action method
doPush(actor), which must be speci�ed in the button, carries out the function of the button. Note
that all buttons have the noun \button" de�ned.

clothingItem

clothingItem: item. Something that can be worn. By default, the only thing that happens when
the item is worn is that its isworn property is set to true. If you want more to happen, override the
doWear(actor) property. Note that, when a clothingItem is being worn, certain operations will
cause it to be removed (for example, dropping it causes it to be removed). If you want something
else to happen, override the checkDropmethod; if you want to disallow such actions while the object
is worn, use an exit statement in the checkDrop method.

obstacle

obstacle: object. An obstacle is used in place of a room for a direction property. The desti-
nation property speci�es the room that is reached if the obstacle is successfully negotiated; when
the obstacle is not successfully negotiated, destination should display an appropriate message and
return nil.

doorway

doorway: fixeditem, obstacle. A doorway is an obstacle that impedes progress when it is
closed. When the door is open (isopen is true), the user ends up in the room speci�ed in the
doordest property upon going through the door. Since a doorway is an obstacle, use the door
object for a direction property of the room containing the door.
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If noAutoOpen is not set to true, the door will automatically be opened when the player tries to
walk through the door, unless the door is locked (islocked = true). If the door is locked, it can be
unlocked simply by typing \unlock door", unless the mykey property is set, in which case the object
speci�ed in mykey must be used to unlock the door. Note that the door can only be relocked by the
player under the circumstances that allow unlocking, plus the property islockable must be set to
true. By default, the door is closed; set isopen to true if the door is to start out open (and be
sure to open the other side as well).

otherside speci�es the corresponding doorway object in the destination room (doordest), if any.
If otherside is speci�ed, its isopen and islocked properties will be kept in sync automatically.

lockableDoorway

lockableDoorway: doorway. This is just a normal doorway with the islockable and islocked

properties set to true. Fill in the other properties (otherside and doordest) as usual. If the door
has a key, set property mykey to the key object.

vehicle

vehicle: item, nestedroom. This is an object that an actor can board. An actor cannot go
anywhere while on board a vehicle (except where the vehicle goes); the actor must get out �rst.

surface

surface: item. Objects can be placed on a surface. Apart from using the preposition \on" rather
than \in" to refer to objects contained by the object, a surface is identical to a container. Note:
an object cannot be both a surface and a container, because there is no distinction between the
two internally.

container

container: item. This object can contain other objects. The iscontainer property is set to
true. The default ldesc displays a list of the objects inside the container, if any. The maxbulk

property speci�es the maximum amount of bulk the container can contain.

openable

openable: container. A container that can be opened and closed. The isopenable property
is set to true. The default ldesc displays the contents of the container if the container is open,
otherwise a message saying that the object is closed.
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qcontainer

qcontainer: container. A \quiet" container: its contents are not listed when it shows up in a
room description or inventory list. The isqcontainer property is set to true.

lockable

lockable: openable. A container that can be locked and unlocked. The islocked property
speci�es whether the object can be opened or not. The object can be locked and unlocked without
the need for any other object; if you want a key to be involved, use a keyedLockable.

keyedLockable

keyedLockable: lockable. This subclass of lockable allows you to create an object that can
only be locked and unlocked with a corresponding key. Set the property mykey to the keyItem

object that can lock and unlock the object.

keyItem

keyItem: item. This is an object that can be used as a key for a keyedLockable or lockable-
Doorway object. It otherwise behaves as an ordinary item.

transparentItem

transparentItem: item. An object whose contents are visible, even when the object is closed.
Whether the contents are reachable is decided in the normal fashion. This class is useful for items
such as glass bottles, whose contents can be seen when the bottle is closed but cannot be reached.

basicNumObj

basicNumObj: object. This object provides a default implementation for numObj. To use this
default unchanged in your game, include in your game this line: \numObj: basicNumObj".

basicStrObj

basicStrObj: object. This object provides a default implementation for strObj. To use this
default unchanged in your game, include in your game this line: \strObj: basicStrObj".
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deepverb

deepverb: object. A \verb object" that is referenced by the parser when the player uses an asso-
ciated vocabulary word. A deepverb contains both the vocabulary of the verb and a description of
available syntax. The verb property lists the verb vocabulary words; one word (such as 'take') or a
pair (such as 'pick up') can be used. In the latter case, the second word must be a preposition, and
may move to the end of the sentence in a player's command, as in \pick it up." The action(actor)
method speci�es what happens when the verb is used without any objects; its absence speci�es that
the verb cannot be used without an object. The doAction speci�es the root of the message names
(in single quotes) sent to the direct object when the verb is used with a direct object; its absence
means that a single object is not allowed. Likewise, the ioAction(preposition) speci�es the root of
the message name sent to the direct and indirect objects when the verb is used with both a direct
and indirect object; its absence means that this syntax is illegal. Several ioAction properties may
be present: one for each preposition that can be used with an indirect object with the verb.

The validDo(actor, object, seqno) method returns true if the indicated object is valid as a direct
object for this actor. The validIo(actor, object, seqno) method does likewise for indirect objects.
The seqno parameter is a \sequence number," starting with 1 for the �rst object tried for a given
verb, 2 for the second, and so forth; this parameter is normally ignored, but can be used for some
special purposes. For example, askVerb does not distinguish between objects matching vocabulary
words, and therefore accepts only the �rst from a set of ambiguous objects. These methods do not
normally need to be changed; by default, they return true if the object is accessible to the actor.

The doDefault(actor, prep, indirectObject) and ioDefault(actor, prep)methods return a list of the
default direct and indirect objects, respectively. These lists are used for determining which objects
are meant by \all" and which should be used when the player command is missing an object. These
normally return a list of all objects that are applicable to the current command.

Prep

Prep: object. A preposition. The preposition property speci�es the vocabulary word.

Verbs in the Adventure De�nitions File

In the list below, the alternative vocabulary words for the verb are listed with slashes (/) between
them; the alternate syntaxes are listed with commas between. When the verb takes objects, the
root of the message the parser generates in shown in parentheses following the syntax description;
these are prefaced with do, verDo, io, and verIo, as appropriate. See the section on the parser in
chatper 4 for details.
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againVerb: again/g

askVerb: ask direct-object about indirect-object (AskAbout)

attachVerb: attach direct-object to indirect-object (AttachTo)

attackVerb: attack/kill/hit direct-object with indirect-object (AttackWith)

boardVerb: get in/get into/board direct-object (Board)

centerVerb: center direct-object (Center)

cleanVerb: clean direct-object (Clean), clean direct-object with indirect-object (CleanWith)

climbVerb: climb direct-object (Climb)

closeVerb: close direct-object (Close)

digVerb: dig/dig in direct-object with indirect-object (DigWith)

drinkVerb: drink direct-object (Drink)

dropVerb: drop/put down direct-object (Drop), drop/put down direct-object on indirect-object (Pu-
tOn)

dVerb: down/d

eatVerb: eat direct-object (Eat)

eVerb: east/e

fastenVerb: fasten direct-object (Fasten)

getOutVerb: get out/get out of/get o�/get o� of direct-object (Unboard)

giveVerb: give/o�er direct-object to indirect-object (GiveTo)

helloVerb: hello/hi/greetings

inspectVerb: inspect/examine/look at/x direct-object (Inspect)

inVerb: in/go in/enter

iVerb: inventory/i

jumpVerb: jump, jump direct-object (Jump)

lieVerb: lie/lie on/lie in/lie down/lie down on/lie down in direct-object (Lieon)

lockVerb: lock direct-object (Lock), lock direct-object with indirect-object (LockWith)

lookBehindVerb: look behind direct-object (LookBehind)

lookInVerb: look in direct-object (Lookin)

lookThruVerb: look through/look thru direct-object (Lookthru)

lookUnderVerb: look under/look beneath direct-object (LookUnder)
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lookVerb: l/look/look around

moveNVerb: move north/move n/push north/push n direct-object (MoveN) Note: moveSVerb,
moveEVerb, moveWVerb, moveNEVerb, moveNWVerb, moveSEVerb, and moveSWVerb are de�ned
similarly.

moveVerb: move direct-object (Move), move direct-object to indirect-object (MoveTo), move direct-
object with indirect-object (MoveWith)

nVerb: north/n

neVerb: northeast/ne

nwVerb: northwest/nw

openVerb: open direct-object (Open)

outVerb: out/go out/exit

plugVerb: plug direct-object into indirect-object (PlugIn)

pokeVerb: poke direct-object (Poke)

pullVerb: pull direct-object (Pull)

pushVerb: push direct-object (Push)

putVerb: put/place direct-object in indirect-object (PutIn), put/place direct-object on indirect-object
(PutOn)

quitVerb: quit

readVerb: read direct-object (Read)

removeVerb: take o� direct-object (Unwear)

restartVerb: restart

restoreVerb: restore direct-object (Restore)

standOnVerb: stand on indirect-object (Standon)

standVerb: stand/stand up/get up

saveVerb: save direct-object (Save)

sayVerb: say direct-object (Say)

scoreVerb: score/status

scriptVerb: script direct-object (Script)

screwVerb: screw direct-object (Screw), screw direct-object with indirect-object (ScrewWith)

seVerb: southeast/se

showVerb: show direct-object to indirect-object (ShowTo)
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sitVerb: sit on/sit in/sit/sit down/sit down in/sit down on direct-object (Siton)

sleepVerb: sleep

sVerb: south/s

swVerb: southwest/sw

takeVerb: take/pick up/get/remove direct-object (Take), take/pick up/get/remove direct-object out
of indirect-object (TakeOut), take/pick up/get/remove direct-object o�/o� of indirect-object (Take-
O�)

tellVerb: tell direct-object about indirect-object (TellAbout)

terseVerb: terse

throwVerb: throw/toss direct-object at indirect-object (ThrowAt)

touchVerb: touch direct-object (Touch)

turnO�Verb: turn o�/deactivate/switch o� direct-object (Turno�)

turnOnVerb: activate/turn on/switch on direct-object (Turnon)

turnVerb: turn direct-object (Turn), turn direct-object with indirect-object (TurnWith), turn direct-
object to indirect-object (TurnTo)

typeVerb: type direct-object on indirect-object (TypeOn)

undoVerb: undo

unfastenVerb: unfasten/unbuckle direct-object (Unfasten)

unlockVerb: unlock direct-object (Unlock), unlock direct-object with indirect-object (UnlockWith)

unplugVerb: unplug direct-object (Unplug), unplug direct-object from indirect-object (UnplugFrom)

unscrewVerb: unscrew direct-object (Unscrew), unscrew direct-object with indirect-object (Un-
screwWith)

unscriptVerb: unscript

uVerb: up/u

verboseVerb: verbose

versionVerb: version

waitVerb: wait/z

wearVerb: wear direct-object (Wear)

wVerb: west/w

yellVerb: yell
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Prepositions in the Adventure De�nitions

Each preposition is shown with its object, and the list of vocabulary words associated with the
object, with slashes between equivalent words. Note that the two-word prepositions, such as \down
on," are actually written as one word, such as \downon," in the de�nition �le, because the parser
collapses two-word prepositions into a single word by removing the intervening space.

aboutPrep: about

aroundPrep: around

atPrep: at

behindPrep: behind

betweenPrep: between/in between

dirPrep: north/south/east/west/up/down/northe/ne/northw/nw/southe/se/southw/sw

inPrep: in/into/in to/down in

fromPrep: from

o�Prep: o�/o� of

onPrep: on/onto/on to/down on/upon

outPrep: out/out of

overPrep: over

thruPrep: through/thru

toPrep: to

withPrep: with

I hate de�nitions.

| BENJAMIN DISRAELI, Vivian Grey (1826)

Appendix A Adventure De�nitions 179



180 The TADS Author's Manual



Appendix B

Better Adventures

We now put aside the technical aspects of writing TADS programs, and turn to some musings on
the creative side of writing adventures. TADS makes it possible to write games that are technically
polished with little programming; it is up to the author, however, to provide the creativity and
storytelling skill needed to make the game fun to play. This section describes some of the stylistic
points of writing text adventures.

Style in Adventure Writing

The problem most adventure authors encounter immediately is the technical di�culty of writing a
parser and all the other nasty bits of code that underlie an adventure. Most authors don't get very
far into writing that code; those that do more often than not get lost in the never-ending quest for
new features in their parsers, and never get around to writing a fun game, and those that don't end
up with simple parsers, which most players �nd an inconvenience that hurts playability, and imposes
severe limits on the range of actions the game can carry out.

TADS frees authors of the need to become adept programmers before they can write a good adventure
game. By providing a ready-made parser, a huge chunk of the technical side of writing a game is
done before the game is even started. TADS not only gives you a �ne parser, but it also provides
facilities for saving and restoring games, creating transcripts (a log of all the text in a game), dealing
with the operating system, managing memory, initializing data structures, and virtually everything
else that's generic to all adventure games. TADS will satisfy both authors who are not interested in
the technical details of the parser and other low-level software, and players and authors who want a
sophisticated parser.

But even with all of this, writing a good text adventure is not easy; surmounting the technical
di�culties is only half the battle. Now it's necessary to design a good plot, challenging puzzles,
interesting characters, and a satisfying conclusion. In this section I will o�er some ideas about what
makes a good game.
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Problems with Adventures

Adventure games all have a major problem: they pretend to be what they're not. The degree to
which you address this problem in your games is, in large part, the measure of how good your games
are.

Adventures are simulations. Unfortunately, most adventures claim to be simulations of the real
world; usually, this claim is implicit in the fact that many objects in the game act, super�cially,
at least, like their physical counterparts. The reason this is unfortunate is that no adventure game
written so far has adequately simulated the real world. Although game objects resemble physical
objects in some ways, the game objects are extremely limited in most other ways.

Adventures also pretend to be more intelligent than they are. Text adventures give the player a
prompt which says, e�ectively, \Type anything you want, and I'll do as you ask." This is totally
unrealistic. The prompt should really say, \Type one of the few commands I understand, using
exactly the correct syntax that I expect, and I may just possibly be able to apply the command as
a special case I've been programmed to accept." The TADS parser is about as smart as adventure
game parsers come, but it will quickly disappoint anyone other than experienced text adventure
players (who already know how limited these games tend to be).

Unfortunately, with the present level of computer hardware and software, it is simply not feasible to
write a perfect and complete simulation of the real world, nor to design a parser that can understand
every valid sentence (or, for that matter, even any reasonable subset of valid sentences) in a human
language. These limitations are not immediately escapable. However, authors can work within these
limitations to improve on the traditional text adventure.

The key is to choose a small universe that you can model completely. Don't try to simulate the
real world; it's too complex. Instead, design a small imaginary world, which has relatively few
possible operations on objects, and few relationships between objects. Make these operations and
relationships clear to the player (in documentation, for example). If you choose a small enough set,
you may be able to make your simulation robust and complete; the operations and relationships
should be general enough that they are applicable to most if not all objects in the game.

You may think that this would make a game uninteresting, but this need not be the case. In fact,
it makes adventures much harder to design, but, when done correctly, much more intuitive and
satisfying to the player.

One trick that can help you do this is to avoid the use of verbs outside of a very small set. A certain
number of verbs will work on pretty much any object in any adventure game; for example: take,
drop, open, close, examine, put an object in (or on) another object, give an object to a character.
All games have these verbs. Now, imagine writing a game with only these verbs, plus one more
special verb: \use." This last verb invokes the \characteristic behavior" of an object. For example,
\use button" means to push the button; \use knob" means to turn the knob; \use sandwich" means
to eat the sandwich.

It may appear that limiting your verbs in this manner makes puzzles too obvious, since the player
doesn't have to think of the actual thing to do with an object, but can just \use" it and have the
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game �gure out what to do. In fact, it encourages you, the designer, to choose objects that have
exactly one very obvious use; doing so means that the \use" verb detracts nothing from the puzzle,
since it's obvious to everyone that you push a button and turn a knob, and that you'd do nothing else
with them. Hence, this forces you to avoid obscure verbs that apply to just one object as you choose
your puzzles. In particular, it prevents you from using obscure relationships between objects that
occur only one place in your game; if you can't support the relationship in general, don't support it
at all.

This method of puzzle design has another advantage: it usually results in your puzzles being more
logical and subtle. The reason is that you must construct interesting situations totally within the
context of the very simple verbs in your system and the obvious uses of objects.

Of course, you should use the verb \use" for all of these activities only in the design phase, to force
you to avoid vocabulary puzzles and puzzles based on unusual relationships that don't apply to
objects in general in your game. When you actually write the game, you should go ahead and use
the verbs that describe the characteristic behaviors of your objects. Thus, when the player actually
plays the game, he'll type \push button" and \turn knob."

Writing a Game

Every adventure has a plot. In the Original Adventure and many games like it, the plot consisted of
nothing more than exploring and gathering treasure. Most recent games, on the other hand, are more
like novels whose evolution the player chooses. Most people prefer games with more plot. However,
players also like freedom of choice; so, your plot should not impose a particular path through the
game, but should instead serve as a backdrop, a context for the events within the game. You must
try to balance the story you are telling with a player's desire to choose his own path through the
story.

The basis for your plot is as unlimited as your imagination. Adventures have been written in
such diverse genres as science �ction, fantasy, mystery, international intrigue, horror, and romance.
Adventures cover as wide a spectrum as literature.

The main plot elements of adventures are exploration and problem-solving. While providing an
interesting area to explore can stimulate the imagination, most players prefer being able to interact
with their environment to simply wandering around it. This is where problem-solving comes in.

In designing puzzles, you should be careful to motivate the solutions; never withhold clues that are
needed to solve a puzzle. Disguise the clues, certainly, but be sure the clues are present.

My basic principle of designing puzzles is that the player should always know what he's trying to
accomplish. Metaphorically, a player should always be able to �nd a locked door before he �nds the
key. This way, he knows his goals. The most frustrating feeling while playing an adventure is that
you don't know what you're supposed to do next. If you �nd a locked door, you know that you have
to �nd some way to open it; you know what to do, so the trick is to �gure out how to do it. Hence, I
like to design games so that a set of short-term goals is clearly visible from the outset, so the player
knows where work is to begin.
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A well-designed adventure is a self-consistent world, not necessarily the real world, in which a player
can conduct experiments to learn how objects and characters behave; he solves puzzles by learning
the behavior of an object or character, and turning that to his advantage. This is probably why
science �ction and fantasy adventures are so popular; these genres o�er limitless possibilities for
creating objects that behave in novel ways.

Since the core of problem solving should be experimentation and observation, objects that behave in
special ways shouldn't be labelled as such. Instead, they should have physical characteristics which
invite experimentation, and should respond to experiments with useful feedback. It is especially bad
to provide an object that behaves in a novel way, but force the player simply to think to try the
one special thing that it does; something should invite him to �nd its special characteristics, and its
behavior should be consistent.

For example, you might design a machine, described as \a small metal box with a button, a short
plastic hose on one side, and a large metal pipe on the other side." When the button is pushed, \a
loud hissing comes from the plastic hose for a moment, then a large drop of clear liquid drops out of
the pipe, which hits the oor and quickly evaporates into a white cloud of vapor." If the player puts
the plastic hose in a glass of water and the button is pushed, \the water is sucked into the plastic
tube, and few moments later a block of ice is dropped out of the pipe." This allows the player to
learn by experimentation what the machine does, which is more fun for the player than if you had
labelled the machine \a freezer" or some such.

Another type of puzzle that makes for good games is the kind that uses ordinary objects in an unusual
but logical manner. For example, you could use a ladder to cross a chasm, or an incandescent bulb
for its heat rather than its light. It's important that the use be logical; you don't want the player to
have to guess a completely unmotivated use of an object. You want the player to think, \I need a
heat source, but all I've got is this light bulb," and then realize that the light bulb is a heat source.
It's also important that the properties of an object be consistent; if the player tries to take the light
bulb while it's lit, he should get burned.

Another common type of puzzle involves hidden objects. When objects are hidden, the player should
be able to �nd them without resorting to looking behind and under everything in every room. For
example, if you hide a crystal statuette under a seat cushion, someone sitting on the seat may hear
a sound like breaking glass coming from under the cushion; looking under the cushion reveals a
smashed statuette. (Providing a clue that doesn't require starting the game over would be nice, too,
though.)

A feature that is di�cult for a designer to implement, but makes the game more realistic, is an object
that is used for several purposes. In many adventures, the player �gures out what each object is
for, and, once used, feels free to discard it. You can set up subtle logical puzzles simply by using
an object for more than one of its properties, since players might assume that the obvious useful
property of the object is the only one and not bother looking for other uses of the object.

Most players prefer games in which they can work on several puzzles at once, since each player will
be able to solve di�erent puzzles more easily. This is why I generally structure my games overall
with an introduction, then the body of the game, and �nally an end-game. The introduction and
end-game tend to be fairly linear; that is, each event leads to the next event in a �xed order. In the
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linear portions of the game, then, the player can only work on one puzzle at a time, and must solve
it before he moves on to the next. The body of the game, though, consists of many parallel puzzles;
though these might have some interdependencies, I generally try to make it possible to solve them
in any order. I try to keep the linear portions of the game as short as possible, leaving the course of
events in most of the game up to the player.

Designing games is a subtle and complex art. Just as most good authors are well-read, you will
probably become a better adventure game author if you play a few good adventure games. And
nothing is a substitute for experience; your games will improve with each new one you write. TADS
gives you an excellent tool for creating games; the rest is up to you.

In this �nal chapter, we approach style in its broader meaning:

style in the sense of what is dinstinguished and distinguishing.

Here we leave solid ground. Who can con�dently say what ignites

a certain combination of words, causing them to explode in the mind?

| E. B. White, The Elements of Style (Third Edition, 1979)
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Appendix C

The Compiler

This chapter describes how to use the TADS Compiler, and explains the options and parameters
that the compiler accepts.

The TADS Compiler

The TADS Compiler is the program that reads your adventure source �le, checks it for correct syntax,
and converts it to a binary representation that can be executed by the TADS run-time system.
Generally, the binary version of your game is considerably smaller than the source; the symbolic
TADS code is converted to a byte-code similar to machine language, the strings are compressed
using a variable byte length encoding (which also makes it di�cult for players to cheat by looking
at your program's strings), and the objects are converted to compact data structures.

This section describes the options and parameters that you use to control the TADS Compiler.
Note that the format of the commands shown in this section is general, and some operating systems
may have slightly di�erent conventions; consult your system-speci�c release notes for information
on using the Compiler on your computer. Note also that you may have to perform some minor
con�guration on your computer (for example, setting the command path so that your command
interpreter can �nd the Compiler program �le) before you can run the Compiler.

Note that on Macintosh systems, the compiler does not have a command line at all; instead, it uses
a dialog box and pull-down menus to specify compiler options. All of the options described in this
appendix are accessible in the Macintosh version; it should be easy to identify the menu selections
and dialog entries corresponding to the options described below.

Running the Compiler

You can run the TADS Compiler simply by typing its name, tc, followed by the name of the �le
you want to compile. For example:
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tc sample

This invokes the TADS Compiler, and tells it to compile the �le sample.t (using the appropriate
local conventions to add the extension .t to the given �lename), and to write the binary version of
the game to the �le sample.gam.

If any errors occur during compilation, the Compiler provides an explanatory message and tells
you the �le and line number where the error occurred. If errors (other than warnings) occur, the
binary �le is not created, since the game would not be playable. (On Macintosh systems, due to the
inability of some text editors to go directly to a line by number, the compiler also displays the text
of lines at which errors are detected.)

Compiler Options

The TADS Compiler accepts several options as part of its command to control its operation. All
of the options consist of a dash, followed by one or more option letters, possibly followed by a
parameter. The options are speci�ed before the name of the source �le:

tc options �le

For example, to compile sample.t and generate source-level debugging information, you would type
this command:

tc -ds sample

Note that with options that take a parameter, you can either run the option and its parameter
together without a space, or you can put a space between them; it makes no di�erence. For example,
the following two commands are equivalent:

tc -ic:\tads -od:sample sample

tc -i c:\tads -o d:sample sample

Note, however, that the memory options require the memory type letter immediately after the -m

option; the size, however, can be separated by a space. Hence, the following two commands are
valid:

tc -mh5000 sample

tc -mh 5000 sample

Following is the complete list of Compiler options. For a brief list of the options, just type tc without
any parameters; the Compiler will display a list of the options it accepts and what they do.

-ds Generate source-level debugging information. This option causes
the compiler to include information in the binary game �le that
the TADS Debugger uses to trace execution of the program and
correlate the generated code to the source �les. You must use this
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option if you wish to use the Debugger with your game. Using
this option increases the size of the game �le, so you will normally
compile without the -ds option once you have �nished debugging
your game.

-ipath Adds path to the include path. When you use the #include direc-
tive to include a �le, and enclose the �le in angle brackets (< and
>), the list of directories speci�ed with -i options is searched, in
the order given, for the �le. Note that previous versions of TADS
required you to end the path speci�cation with your operating sys-
tem's path separator character; this is no longer required, but a
trailing path separator character is harmless if present.

-l�le Load a pre-compiled �le prior to compiling the source program.
The �le must have been previously created with the -w option. This
option allows you to speed up the compile process by compiling the
include �les that you commonly use separately from your program,
then loading their binary forms when you compile your program.
Loading a binary �le is much faster than compiling the source �le
it came from.

Note that only one �le can be loaded with the -l option. However,
you can easily pre-compile several include �les simply by making
a short �le that contains only #include directives listing the �les
you want to gather together into a single pre-compiled binary.

Note also that �les can be included only once; if you attempt to
include a �le twice, the compiler will ignore the second directive.
This makes it convenient to use pre-compiled �les, because you
do not need to change your source �les|simply leave the normal
#include directives in your program. If you use the -l option
to load pre-compiled versions of these source �les, the #include

directives in your program will be ignored; if you do not use -l,
the �les will be included as normal. This way, you do not need to
change your source �le when you wish to use the -l option.

-mitem size Set memory size for a given item to size. The compiler will attempt
to pre-allocate a certain amount of space for several types of objects
when it initializes itself; if you do not have enough memory in your
computer, you must lower one of these sizes. Alternatively, if your
program exceeds one of the pre-de�ned sizes, you must increase the
size. The item speci�ers are:

g goto label table size
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h heap size

l local symbol table size

p parse node pool size

s stack size

To determine the default sizes on your computer, run the Compiler
with the option \-m?"; this will display the memory options and
their default values.

With no second option letter, the -m option speci�es the size of
the virtual object cache; this is the memory area that the compiler
uses to contain the compiled representation of game objects and
functions. Since the compiler has a virtual memory system, the
cache size can be smaller than the actual memory needs of your
game. Normally, you will not need to set the cache size, since the
compiler automatically allocates additional memory for the cache
as needed. However, since the compiler also allocates non-cache
memory during compilation, the cache can grow so large that, in
low-memory situations, your computer runs out of space for non-
cache memory. If this happens, the compiler will exit and issue
an error message telling you how big the cache was when the com-
piler ran out of non-cache memory; you should re-run the compiler
specifying a smaller size with the -m parameter. For example, if
the compiler runs out of memory and tells you that the cache is
256,000 bytes, you could try re-running with -m 200000 to specify
that the cache should grow no larger than 200,000 bytes.

-o�le Set output �lename to �le. If the �lename does not have an ex-
tension, the default extension .gam will be appended to the name
(following the conventions of your operating system).

-p Pause before terminating the compiler. This option is useful for
operating systems that operate from a \desktop"; on these systems,
the information displayed by the compiler is usually cleared o�
the screen as soon as the program terminates, which doesn't leave
enough time to see the messages the compiler produces. When the
Compiler pauses, it prompts you to strike a key; when you do so,
it continues. (Note that this option is not necessary on Macintosh
systems, because the compiler does not exit after compilation until
you explicitly select the \Quit" item from the \File" menu, or hit
the \Quit" button.)
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-s Enables statistics. After the game has been compiled, a set of
statistics on memory usage will be displayed.

-tf �le Use �le to hold swapping information. By default, the �le TADSS-
WAP.DAT in the current directory is used. If you are using a RAM
disk, you may wish to place the swap �le on the RAM disk to
improve performance.

-ts size Limit the swap �le to size bytes. You may wish to use this option
if you have limited space on the disk containing the swap �le.

-t- Turn o� swapping. This forces the compiler to keep the entire
game in memory. Note that, even when swapping is enabled, the
compiler won't swap until necessary|that is, until the cache is full
and no more space can be allocated for the cache.

-w�le Writes the pre-compiled version of the source to �le. No default
extension is applied. When you use this option, any -o option that
you have speci�ed is ignored, since a game �le is not produced.
Files written with -w are intended to be loaded with the -l option;
see the description of -l for more information on how to use pre-
compiled �les.

-Za Suppress generation of argument-checking code. Whenever a func-
tion is called, TADS version 2 will check to make sure that the
function received the same number of arguments that it was ex-
pecting. Since TADS version 1 did not do this, some games have a
mismatch between actual and formal parameters for some functions
and methods; with TADS 2, this will cause a run-time error. You
can use the -Za option to suppress these run-time errors, which in
many cases are harmless.

-1 Enable all version 1 compatibility options.

-1a Same as -Za: disable run-time argument checking.

-1e Ignore semicolons between a closing brace and an else keyword.
TADS version 1 allowed this construction, even though it is not
actually allowed by the TADS language's grammar. Version 2, by
default, does not allow semicolons between a closing brace and an
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else keyword; using the -1e option will allow your old code to
compile if it contains this construction.

-1k Disable the new TADS version 2 keywords: for, do, switch, case,
default, and goto. When you specify -1k, all of these words can
be used as identi�ers. Some older TADS programs use one or more
of these words as identi�ers (in particular, do for a direct object
argument), which will cause errors when compiled with TADS ver-
sion 2. Specifying the -1k option will remove these words from
the keyword table, making them available for use as identi�ers. Of
course, specifying -1k will make it impossible to use any of these
new language constructs in your game, so it should only be speci�ed
with old code that you haven't updated for version 2 yet.

-1dkeyword Changes the do keyword (used in the do-while construct) to a
new keyword of your choosing. If you have a game written for
TADS version 1 that used \do" as an identi�er (such as the name
of a local variable or a parameter to a method or function), but you
still want to use the new language features in TADS version 2 (such
as switch and for), you can use the -1d option to change the do
keyword, so that it doesn't interfere with your game. For example,
if you specify \-1d DO", you will be able to use \do" as a variable
name, and you can write do-while loops using the keyword DO

instead of do. If you use this option instead of -1k, you can still
use switch, for, and the other new version 2 language constructs.

Con�guration Files

On some operating systems, the TADS compiler allows you to place a set of command line options
into a \con�guration �le" that is read each time the compiler is run. This �le is named CONFIG.TC.
TADS looks for this �le �rst in the current directory, and if it fails to �nd it, in the same directory
as your TADS Compiler executable. This allows you to have multiple con�gurations: one default
con�guration, stored in the CONFIG.TC �le in your TADS compiler directory; and then special per-
game con�gurations, stored in the CONFIG.TC �les in your game source directories. If the �le does
not exist in either the current directory or in the TADS compiler directory, no con�guration �le is
used.

The con�guration �le simply contains compiler options. The �le is a standard text �le; each line
within the �le can have as many options as you want, and the �le can have as many lines as you
want. Any blank lines within the �le are ignored.

If you want to create a con�guration �le that speci�es that the virtual object cache is to be limited
to 128,000 bytes, that the swap �le is to be named SWAP.DAT on the D: disk, and that the directory
c:\tads\include is to be searched for header �les, you could make a con�guration �le like this:
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-m 128000 -tf d:\swap.dat

-I c:\tads\include

Note that options speci�ed on the command line always override options in the con�guration �le.
The con�guration �le is simply a convenient way to store default options that you often use. Suppose
you are using the above con�guration �le, and you type this command:

tc -m 256000 -I c:\myinc mygame.t

The -m 256000 option overrides the con�guration �le's -m 128000 option, so the con�guration �le's
version is ignored. Include directory options are a little di�erent, in that they're additive: the
command line's -I c:\myinc is added to the include path. However, since the command line takes
precedence over the con�guration �le, the command line include path is added before the path in
the con�guration �le.

You are not required to use a con�guration �le, and no error is generated if a con�guration �le is
not found. The con�guration �le is simply a convenient way to store options that you frequently
use, so you don't have to type them every time you run the compiler.

We must learn to explore all the options and possibilities

that confront us in a complex and rapidly changing world.

| JAMES WILLIAM FULLBRIGHT, Speech in the Senate (1964)
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Appendix D

The Run-Time System

This section describes the TADS Run-Time system that players use to run your adventure. The
run-time system is very simple, so players can learn to run your games very easily.

The TADS Run-Time System

After you have compiled your game with the TADS Compiler, and you have tested the resulting
program thoroughly, you are ready to give it to players. They are, after all, the reason you wrote
the game.

Fortunately, to play the game, a player doesn't need to learn nearly as much as you did to write it.
A simple run-time module is used to execute your game, called tr for TADS Run-time.

This program, when run without parameters, looks for a �le called tads.gam in the current directory;
if it �nds it, the game is loaded and executed. Hence, players need only install two �les on their
computer in order to play your game: the tr program �le, and the tads.gam data �le.

On systems with a command line, you can specify the name of a game to run. For example, to
execute sample.gam, you would type:

tr sample

However, in �nished games, many authors may wish to create \self-loading" game �les for distri-
bution. A self-loading �le contains the game data �le (in this case, sample.gam) in the same �le
with the run-time executable, so only one �le is needed to play the game. The process of building
a self-loading game �le is described later in this chapter.

Portability

By using TADS, your game is immediately portable to every system on which the TADS Compiler
has been implemented. You do not need to change your source �le at all. In addition, since the
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TADS version 2 binary game �le is fully portable, you can simply transfer your binary �les to other
computer systems and run them without recompilation.

Run-Time System Features

The TADS run-time system o�ers players many sophisticated features, many of which are not at all
typical of text adventures. By using TADS, your game automatically supports all of these features
without any work on your part. In addition, your game is immediately portable to every system on
which the TADS Compiler has been implemented.

� Sophisticated command-line parsing, allowing multiple commands on a line, multi-
ple direct objects, use of \all" and \except," and full support for adjectives, prepo-
sitions, nouns, and verbs. The parser can also automatically prompt for more infor-
mation when needed, saving the player the trouble of retyping an entire command
when something was left out.

� Operating-system speci�c �le dialogs, simplifying the task of selecting �les for saving
and restoring games, and making the game consistent with the operating system's
look and feel.

� On many systems, command line editing and recall is supported. Command line
editing allows a player to edit the current command with arrow keys and other
editing keys such as \delete," \home," and \end," making it easy to correct errors.
Command line recall saves the most recent commands, and allows the player to recall
them using editing keys (generally, several thousand characters of past commands
can be saved, so practically an entire game can be recalled). Once recalled, a
command can be edited and entered again. This is often a time-saving feature, and
one that will be appreciated by regular computer users who are accustomed to such
features in their operating system command shell.

� On many systems, TADS saves text that has scrolled o� the screen, and allows the
player to recall the text by using \review mode." After pressing a special key, the
player can use arrow and paging keys to look through the most recent screens of
text. Generally, dozens of pages of text are saved, allowing the player to review well
back into the game.

Run-Time Options

The run-time system has several options, although they will generally not be needed by people who
play your game.

First, the run-time has a set of memory size options. The -m size option speci�es a maximum size
(in bytes) for the virtual object cache at run-time; this works exactly the same as the compiler's -m
size switch. This will generally not be necessary at run-time, because the run-time system does not
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usually need to allocate memory outside of the cache while the game is being played. However, if
you run into a low-memory problem during game play, you can use -m to limit the cache size.

Two other memory options specify the size of run-time memory areas. The -mh size option speci�es
the size (in bytes) of the run-time heap, and the -ms size option speci�es the size (in stack elements)
of the run-time stack. Under normal circumstances, it won't be necessary to specify either of these
parameters; however, if your game encounters run-time errors related to these two sizes, you can use
these options to increase the limits.

The -u size option speci�es the size (in bytes) of the undo log, which is a memory area that records
the information necessary to undo player actions. The default size for this memory area is large
enough to hold information to undo about a hundred turns in a typical game.

The -tf �le option speci�es the location of the swap �le, in the same manner as the compiler's -tf
option, and the -ts size option limits the size of the swap �le, in the same way as the compiler's
-ts option.

The remaining options are related to game testing, and are described in the next section.

Testing Your Game

The TADS run-time provides a facility that allows you to test your game to make sure it runs the
same way after a change. First, you write a \script" �le, which is simply a list of commands for
your game|exactly the same as commands that a user would type while playing the game. Next,
you use a special option that tells the run-time system to read commands from this script �le rather
than from the keyboard. Then, you use another special option that captures all of the output of
your game into a �le rather than sending it to the screen.

The run-time has a special option that makes it easy to create a script �le. Run your game with
the -o �le option: this will run the game as normal, with input coming from the keyboard and
output going to the screen, but will also write every command you type to the �le you speci�ed.
Play through your game as normal, typing the set of commands you want to be able to test later.
When you're done, quit the game. The �le you speci�ed with the -o option now contains an input
script consisting of all of the commands you typed while playing.

Next, you can generate a \reference log." This is a �le that contains all of the output from your
game using the input script. Use the -i �le option to tell the run-time system to read commands
from your script �le, specifying the name of the script �le you generated with the -o option above.
Also specify the -l log�le option; this will redirect all output from your game to the log �le. Save
this log �le; this is your reference log, which is the output of the game that you consider to be
correct. For example:

tr -i walkthru.in -l walkthru.log mygame

In the future, when you make changes to your game, you can check that you haven't done anything
to change the game in unexpected ways. Run your game just as above, but use a di�erent �le for
the new log �le:
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tr -i walkthru.in -l new.log mygame

Now, using a \di�" utililty (a program that compares two text �les and displays di�erences), you
can easily �nd changes you have made to your game's behavior:

diff walkthru.log new.log

(The \di�" utility is not something that is provided with TADS, but good public-domain �le di�er-
ence utilities are available for most systems. In addition, many commercial programming language
systems provide some sort of di� utility, and some of the better programmer's text editors have this
capability built-in.) Inspect the di�erences between the new and old logs, and make sure that all of
the changes are desirable. Once you're satis�ed that the new log is correct, you can simply delete
the original reference log, and rename the new log as the new reference log.

Incidentally, we use this facility to test TADS itself. Using a number of games, such as Deep Space
Drifter, we run a series of input scripts through each new version of TADS, verifying that we haven't
done anything to TADS that changes its behavior with existing games.

Making a Self-Loading Game

When your game is completely �nished, and you want to distribute it to friends (or even make it
widely available through computer networks), you may wish to package your game as a \self-loading"
executable. This means that you combine your .GAM �le (the binary compiled version of your game
program) and the TADS Run-Time module into a single executable �le.

Making your game into a self-loading executable has some advantages and some disadvantages. The
disadvantages are that your game will be larger and less portable if you package it as an executable.
If you distribute only the .GAM �le, you save about 160,000 bytes, which could be important if you'll
be uploading your game to BBS's or commercial on-line systems; you can simply tell users that the
TADS run-time module is necessary to run your game, and provide directions on where they can
�nd TADS. If players of your game play other TADS games as well, they'll only need to download
the TADS run-time once, rather than along with every game. In addition, since the .GAM �le is
portable between operating systems, you only need to make one version of your .GAM �le available,
and anyone with TADS on any system can play your game.

On the other hand, combining the TADS run-time and your .GAM �le into a single executable makes
your game much simpler to install and play, and gives it a more professional appearance. A self-
loading executable game is much easier for players, since only a single �le is needed, and players won't
need to look for TADS (or even know anything about it) before playing your game. In addition, the
command to play your game is simply the name of your game.

If you do choose to create a self-loading game, the actual process varies by operating system. You
need the TADS run-time itself, plus a special program called MAKETRX that combines the run-time
and your binary game program. On most command-line systems, such as MS-DOS, you build your
game with a command like this:
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maketrx tr.exe mygame.gam mygame.exe

In this command, you tell MAKETRX three things. First, tr.exe speci�es the name and location of the
TADS run-time executable. Second, mygame.gam is your compiled game. Both of these �les must
already exist; if they're on a di�erent disk, or in a di�erent directory, simply specify their locations
with normal �le syntax. Finally, mygame.exe is the name of the self-loading version of your game
that you wish to create. The MAKETRX program combines tr.exe and mygame.gam, creating a self-
loading executable game in mygame.exe. To run your game, you simply type \mygame" at the DOS
prompt.

On Macintosh systems, the process is very similar, except that you use the standard �le selectors to
select the three �les. In addition, you must specify an \owner ID," which is a special code that the
operating system uses to associate your executable game with saved games that it creates. You can
choose just about any four-letter sequence for the owner ID; it's supposed to be unique among all
applications (that is, you should choose a four-letter code that no other application uses as its owner
ID), although there is no way to be sure that some other application somewhere isn't using the same
ID. Once you create your self-loading game, simply double-click on its icon (from the Finder) to
play your game.

Mind in its purest play is like some bat

That beats about in caverns all alone.

Contriving by a kind of senseless wit

Not to conclude against a wall of stone.

| RICHARD PURDY WILBUR, Mind (1956)
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Appendix E

Errors

This chapter describes how the compiler and run-time system handle errors. A list of errors is
provided.

Errors and Error Recovery

When the TADS Compiler detects a syntax or other error in your source �le, it attempts to skip
ahead to the end of the o�ending program section. Unfortunately, because the program has a
problem, TADS sometimes becomes confused and issues several spurious error messages that are all
really due to the original error.

When compiling code, such as inside a method, TADS will try to skip the statement that caused
the error; it simply looks for the semicolon that ends the statement. This strategy is most likely to
back�re when the error was due to a missing semicolon in the �rst place.

When compiling an object de�nition outside of code, TADS will skip the entire object that caused
the error. Again, it skips ahead to the next semicolon. If program code intervenes, this often results
in more errors; these errors are generally of the form \Expected object or function de�nition." You
can normally ignore such errors when several of them occur consecutively, and look only at the �rst
error which started the trouble, since the subsequent errors may be part of the compiler's attempts
to recover from the original error. Once an object or function de�nition does show up, TADS will
normally stop complaining.

Classes of Errors

TADS has four classes of errors. TADS recovers from errors based on their class.

A fatal error is one from which the compiler is totally unable to recover; these are generally due to
missing �les or lack of memory. TADS cannot continue operating after a fatal error, so it terminates.
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A compile-time error results when the compiler detects a problem with your source code, such
as a syntax error, or an unde�ned symbol. TADS attempts to recover from these errors by skipping
the section of code that had the error. When a compile-time error is found in your source code, even
though the compiler will continue to process your game, you won't be able to run the game until
you have �xed the error.

A warning is generated when the compiler detects a questionable construct and wishes to bring
it to your attention. Warnings do not otherwise a�ect compilation; they are produced purely for
your information. You should carefully check each warning message to ensure that it's not justi�ed
before choosing to ignore it.

A run-time error is produced when your program, while it's running, does something illegal, such
as adding two objects together; these errors cannot be detected during compilation, because they
depend on the state of your program as it runs. If you have compiled your program with source-level
debugging information, TADS will automatically produce a symbolic trace showing the function or
method that was executing when the error occurred, as well as the function or method that called
it, and so forth. When debugging information is not present, TADS will only be able to show the
error message, and won't be able to provide any information on where it occurred. After a run-time
error has occurred, TADS will attempt to continue executing your game by dropping what it was
doing when the error occurred and returning to the player command line.

Error Listing

This section lists the errors that TADS generates. In addition, we explain the conditions that give
rise to the errors, and what steps to take to �x them.

To make it easier for you to �nd information on an error in this book, all TADS errors and warning
messages are numbered. When TADS displays an error, it will preface the message with a code such
as \TADS-382"; you can use the number in this error code to �nd the description of the error in the
numerically sorted listing in this section.

TADS-1: out of memory
The program has run out of memory. Even though TADS uses a virtual memory
subsystem that allows your game to exceed available memory by swapping portions
of memory to a disk �le, TADS allocates a certain amount of memory that cannot
be swapped to disk. As TADS executes, it extends the size of the virtual object
cache, and also allocates �xed (unswapped) memory. It is possible for the cache to
grow so large that additional �xed memory cannot be allocated; when this happens,
TADS runs out of memory and can't continue. When this error occurs, the TADS
compiler will display a message indicating the size of the virtual object cache; you
should re-run the compiler with a smaller setting for the -m (cache size limit) option.
See appendix C of this manual for details.
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TADS-2: error seeking in �le
An operating system error occurred seeking in a �le. This usually indicates an
internal problem with TADS.

TADS-3: error reading from �le
An operating system error occurred reading from a �le. This usually indicates an
internal problem with TADS.

TADS-4: no more page slots
The virtual memory subsystem does not have any more space for allocating internal
tables to track virtual memory objects. The internal limits are high enough that
this error should never occur.

TADS-5: attempting to reallocate a locked object
This error indicates an internal problem with TADS.

TADS-6: swap�le limit reached - out of virtual memory
The limit you speci�ed with the -ts option for the size of the swap �le has been
reached. You should raise or remove this limit.

TADS-7: error writing �le
An operating system error has occurred writing a �le. This usually indicates that
the disk is full. You should try to make more space available by deleting �les if
possible, or by using another disk with more space available.

TADS-8: exceeded swap page table limit
The compiler has reached its internal limit for memory to track objects swapped
out to disk. This limit is high enough that this error should never occur.

TADS-9: requested client object number already in use
This error indicates an internal problem with TADS.

TADS-10: client mapping table is full
The compiler has reached an internal limit. This limit is high enough that this error
should never occur.

TADS-11: no memory, even after swapping/garbage collection
The virtual object cache is full or too fragmented to allocate needed memory. The
most likely problem is that the cache is too small; increasing the size of the cache
(speci�ed with the -m compiler and run-time options) should alleviate this problem.

TADS-12: no memory to resize (expand) an object
The virtual object cache is full. See error 11 above.

TADS-13: unable to open swap �le
The swap �le cannot be created. This could mean that the �lename is invalid, or
the indicated device (volume) or directory does not exist, or that the disk is full or
write-protected.
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TADS-14: can't get a new object header
The virtual memory subsystem has run out of memory. See error 11 above.

TADS-15: mcm cannot �nd object to load (internal error)
This error indicates an internal problem with TADS.

TADS-16: attempting to free a locked object (internal error)
This error indicates an internal problem with TADS.

TADS-100: invalid token
Your source �le contains a character that TADS does not recognize.

TADS-101: end of �le while scanning string
Your source �le ends within a quoted string. This usually indicates that you left
out the closing quote of a string somewhere in the �le.

TADS-102: symbol too long - truncated to \xxx"
The indicated symbol is too long. Processing can continue, but TADS will only pay
attention to the truncated version.

TADS-103: no space in local symbol table
The local symbol table is full. You can increase the amount of space available for
local symbols with the -ml compiler option; see appendix C.

TADS-104: invalid preprocessor (#) directive
You have speci�ed an invalid preprocessor directive. When a pound sign (#) occurs
in the �rst column of your source �le, the compiler expects a valid preprocessing
directive (such as include) to follow.

TADS-105: no �lename in #include directive
You have speci�ed a #include directive with no �lename. The �lename must occur
on the same line as the #include directive, and must be enclosed in double quotes
or angle brackets.

TADS-106: invalid #include syntax
The #include directive must be followed on the same line by a �lename enclosed
in double quotes or angle brackets.

TADS-107: can't �nd included �le \xxx"
The compiler could not open the speci�ed include �le. Check to make sure that the
�le is in one of the directories speci�ed with the -i compiler options (see appendix
C).

TADS-108: no matching delimiter in #include �lename
The �lename of a #include directive was not properly terminated with a double
quote or right angle bracket.

TADS-109: out of space for symbol table expansion
The symbol table is too large. Since the symbol table is stored in the virtual object
cache, this generally indicates that the compiler is out of cache memory.
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TADS-110: input line is too long
Your input �le contains a line that is too long. The compiler can handle extremely
long lines (up to about 16,000 characters). Break the long line into two or more
lines.

TADS-111: warning: �le \xxx" already included; #include ignored
The speci�ed �le has already been included and will not be included again. This
warning is most often issued when using pre-compiled header �les (see appendix
C), and is almost always harmless.

TADS-200: operation is too big for undo log
A single run-time operation has exceeded the size of the undo log. The undo log
will be discarded, since it can no longer be used to roll back game state.

TADS-201: no more undo information
No more undo information is available in the undo log. This means that you have
applied all undo information, and cannot undo any more turns.

TADS-202: incomplete undo (no previous savepoint)
While attempting to roll back to a savepoint, the undo log ran out of information.
This means that a turn may be partially undone.

TADS-300: expected token
The compiler requires the speci�ed token. Insert the required token.

TADS-301: expected a symbol
The compiler requires a symbol in this context, and found something else.

TADS-302: expected a property name
The compiler requires a property name in this context, and found something else.

TADS-303: expected an operand
The compiler requires an operand in an expression, and found something else.

TADS-304: expected a comma or closing paren (in arg list)
Your program has a syntax error in an argument list; variables must be separated
by commas, and the argument list must be terminated with a right parenthesis.

TADS-305: no space for new parse node
The compiler is out of space parsing an expression. This can sometimes happen
with very long strings, especially those that contain embedded expressions. Use
the compiler's -mp switch to increase the amount of space available for expression
parsing.

TADS-306: expected object name
The compiler requires an object name in this context.

TADS-307: rede�ning symbol as external function
You have declared a symbol as an external function when it already has been de-
clared as another type.
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TADS-308: rede�ning symbol as function
You have declared a symbol as a function when it already has been declared as
another type.

TADS-309: can't use \class" with function/external function
You have speci�ed the class keyword in a function or external function declaration,
which is not allowed (because it makes no sense).

TADS-310: unary operator required
Your expression requires a unary operator (that is, an operator which takes a single
operand, such as - or not).

TADS-311: binary operator required
Your expression requires a binary operator (that is, an operator which takes two
operands, such as * or and).

TADS-312: invalid binary operator
You have speci�ed an invalid binary operator.

TADS-313: invalid assignment
You have used an invalid expression on the left hand side of an assignment operator
(:=). You can only assign values to local variables, properties, and list elements. It
is invalid, for example, to assign a value to an expression such as (1+1).

TADS-314: variable name required
The compiler requires a variable name in this context.

TADS-315: comma or semicolon required in local list
Variables declared in a local statement must be separated by commas, and the list
must be terminated by a semicolon.

TADS-316: right brace required (eof before end of group)
Your source �le is missing the right brace to close a statement block.

TADS-317: `break' without `while'
The break statement can only occur within a while, for, do, or case statement.
Your source �le contains a break statement that is not associated with one of these
statements.

TADS-318: `continue' without `while'
The continue statement can only occur within a while, for, or do statement.
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TADS-319: `else' without `if '
Your source �le contains an else that is not associated with an if statement.
Note that TADS version 1 ignored a semicolon between a closing brace and an else

keyword; in version 2, the semicolon is considered a null statement which terminates
the if statement. If your program compiled correctly with TADS version 1 but
encounteres error 319 with TADS version 2, you should specify the -1e compiler
option, which will cause the compiler to adopt the behavior of version 1 with respect
to this construct. See appendix C for details.

TADS-320: warning: possible use of `=' where `:=' intended
The compiler has detected a statement which it suspects is an assignment that has
been accidentally miscoded with \=" (which is the relational equality comparison
operator) instead of \:=" (the assignment operator). The compiler is almost always
right in these situations; you should check the statement to ensure that you coded
what you really meant.

TADS-321: unexpected end of �le
The compiler has encountered the end of your source �le when it thought it had
more work to do. This could mean that you have left o� the semicolon terminating
an object de�nition, or a right brace terminating a function.

TADS-322: general syntax error
The compiler has detected an ill-formed statement.

TADS-323: invalid operand type
One of the operands in an expression is not suitable for the operator. This usually
means that a constant in the expression is of the wrong type.

TADS-324: can't expand local symbol table
The compiler cannot allocate space for a new local symbol table. You should specify
a larger value with the compiler's -ml option (see appendix C).

TADS-325: can't expand argument symbol table
The compiler cannot allocate space for a new argument symbol table. You should
specify a larger value with the compiler's -ml option (see appendix C).

TADS-326: rede�ning a function which is already de�ned
You are attempting to de�ne a function twice.

TADS-327: `case' or `default' not in switch block
You have coded a case or default label outside of a switch statement.

TADS-328: constant required in switch case value
The values in case labels must be constants. You have speci�ed a non-constant
expression as a case label.

TADS-329: label required for `goto'
You have omitted the label of a goto statement, or the symbol speci�ed is something
other than a label.
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TADS-330: `goto' label never de�ned
A label used in a goto statement is not de�ned within the function or method in
which the goto statement occurred. The goto statement can only be used with
labels within the same function or method as the goto statement itself.

TADS-331: too many superclasses for object
You have speci�ed too many superclasses in an object de�nition.

TADS-332: rede�ning symbol as object
You are attempting to de�ne a symbol as an object, but you have already de�ned
the symbol as something else.

TADS-333: property being rede�ned in object
You are attempting to de�ne a symbol as an object, but the symbol has already
been used as a property.

TADS-334: invalid property value
The value speci�ed for a property's initial value in an object de�nition is not valid.

TADS-335: invalid vocabulary property value
The value speci�ed for a vocabulary property is invalid. You can only use single-
quoted strings for vocabulary properties.

TADS-336: invalid template property value (need string)
The value speci�ed for a template is invalid. You can only use a single-quoted string
for a template property.

TADS-337: template base property name too long
The base name of a template property value is too long. Since these values must
be appended to the strings do, verDo, io, and verIo, the resulting symbols will be
up to �ve characters longer than the property value itself.

TADS-338: too many templates (internal compiler limit)
You have de�ned an object with too many templates.

TADS-339: invalid value for compound word (string required)
You have speci�ed something other than a single-quoted string in a compoundWord

de�nition.

TADS-340: invalid value for format string (string required)
You have speci�ed something other than a single-quoted string in a formatString

de�nition.

TADS-341: invalid value for synonym (string required)
You have speci�ed something other than a single-quoted string in a synonym de�-
nition.

TADS-342: unde�ned symbol
You have referenced a symbol which has not been de�ned.
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TADS-343: invalid value for specialWords list (string required)
You have speci�ed something other than a single-quoted string in a specialWords

list.

TADS-400: object cannot grow any bigger - code too big
The object is too large. This is unlikely to occur, since the limit on the size of an
object is very high; however, if it does, you can break the object up into two or
more objects, with the �rst object inheriting from the second.

TADS-401: no more temporary labels/�xups (internal compiler limit)
The compiler has run out of space during code generation. You should reduce the
complexity of your code (for example, reduce the nesting of loops and conditional
statements).

TADS-402: (internal error) label never set
This error indicates an internal problem with TADS.

TADS-403: invalid datatype for list element
A list element is of an invalid type.

TADS-404: too many debugger source line records (internal limit)
Your source program has generated too many debugger source line records. This is
an internal TADS limit; the limit is high enough that this error should never occur.

TADS-450: vocabulary being rede�ned for object
You have de�ned a vocabulary word more than once for a particular object.

TADS-500: location of object \xxx" is not an object
This is a warning. In most cases, you want an object's location property to refer
directly to another object, since this allows the compiler to generate a matching
contents property automatically. Under certain conditions, you may intentionally
use a method for a location value. When you have intentionally coded something
other than an object for a location value, you can add the property locationOK

= true to the object, which will suppress this warning message.

TADS-501: contents of object \xxx" is not list
You should almost never code a contents property for an object, since the compiler
automatically sets up these properties.

TADS-502: overow trying to build contents list
A contents property list has grown too long. This is an internal limit; move some
of the contents of the object somewhere else.

TADS-503: required object \xxx" not found
The speci�ed object has not been de�ned in your game, but the TADS compiler
requires you to de�ne it.
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TADS-504: warning - object \xxx" not found
The speci�ed object has not been de�ned by your game. This is not an error,
because the object is not required by TADS; however, TADS generates this warning
in case you thought you had declared this object.

TADS-505: too many built-in functions (internal error)
This indicates an internal problem with TADS.

TADS-600: unable to open game for writing
The game binary �le could not be created. This could mean that the name is
invalid, or the device (volume) or directory is invalid or does not exist, or that the
disk is full or write-protected.

TADS-601: error writing to game �le
An operating system error occurred writing to the game �le. This usually means
that the disk is full.

TADS-602: too many sc's for writing in �owrt
This indicates an internal problem with TADS.

TADS-603: unde�ned function \xxx"
The speci�ed function was called or declared, but never de�ned.

TADS-604: unde�ned object \xxx"
The speci�ed object was referenced, but never de�ned.

TADS-605: unde�ned symbols found
One or more unde�ned symbols was found in your program.

TADS-606: unable to open game for reading
The game binary �le couldn't be opened. This could mean that the �le does not
exist, or that the �lename is invalid, or that the device (volume) or directory is
invalid or does not exist.

TADS-607: error reading game �le
An operating system error has occurred reading the game �le. This could mean
that the �le has been corrupted.

TADS-608: �le has invalid header - not a TADS game �le
The speci�ed binary game �le is not a TADS game �le. This could mean that you
have speci�ed the incorrect �le, or that the �le has become corrupted.

TADS-609: unknown resource type in .gam �le
The game �le contains invalid data. This could mean that the �le has become
corrupted.

TADS-610: unknown object type in OBJ resource
The game �le contains invalid data. This could mean that the �le has become
corrupted.
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TADS-611: �le saved by di�erent (incompatible) version
The game �le or save �le was created by an incompatible version of TADS or of
the game. You should either use the version of the TADS run-time that matches
the version used to compile the game, or you should recompile the game with a
compiler that matches your run-time.

TADS-612: error loading object on demand
An object could not be loaded. This could mean that the game �le is corrupted,
or that the disk �le has become unavailable (for example, you have removed the
oppy on which the game �le was stored from the disk drive).

TADS-613: object too big for load region (internal error)
This indicates an internal problem with TADS.

TADS-614: did not expect external function
This indicates an internal problem with TADS.

TADS-990: user requested cancel of current operation
You have cancelled compilation of your game, such as by hitting the \cancel" button
on the Macintosh compiler.

TADS-1001: stack overow
Run-time stack space has been exceeded. This usually means that your program
has gone into in�nite recursion|that is, a function is calling itself repeatedly. If the
program appears to be behaving correctly, you can increase the size of the run-time
stack with the -ms run-time parameter (see appendix D).

TADS-1002: heap overow
Run-time heap space has been exceeded. You can increase the size of the run-time
heap with the -mh option (see appendix D).

TADS-1003: numeric value required
A run-time operation that requires a numeric value was invoked with some other
type of value.

TADS-1004: stack underow
Too many elements have been removed from the run-time stack. This usually
indicates that you have called a function with an invalid number of arguments.

TADS-1005: logical value required
A run-time operation that requires a logical value true or nil was invoked with
some other type of value.

TADS-1006: invalid datatypes for magnitude comparison
A magnitude comparision operator (>, <, >=, or <=) was called with something other
than a number or string.
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TADS-1007: string value required
A run-time operation that requires a string value was invoked with some other type
of value.

TADS-1008: invalid datatypes for binary `+' operator
The binary \+" operator works only on strings, lists, and numbers.

TADS-1009: invalid datatypes for binary `-' operator
The binary \-" operator works only on lists and numbers.

TADS-1010: object value required
A run-time operation that requires an object value was invoked with some other
type of value.

TADS-1011: function pointer required
A run-time operation that requires a function pointer value was invoked with some
other type of value.

TADS-1012: property pointer value required
A run-time operation that requires a property pointer value was invoked with some
other type of value.

TADS-1013: `exit' statement executed
If this error occurs, it indicates an internal problem with TADS.

TADS-1014: `abort' statement executed
If this error occurs, it indicates an internal problem with TADS.

TADS-1015: `askdo' statement executed
If this error occurs, it indicates an internal problem with TADS.

TADS-1016: `askio' executed; preposition is object #n
If this error occurs, it indicates an internal problem with TADS.

TADS-1017: `quit' executed
If this error occurs, it indicates an internal problem with TADS.

TADS-1018: `reset' executed
If this error occurs, it indicates an internal problem with TADS.

TADS-1020: list value required
A run-time operation that requires a list value was invoked with some other type
of value.

TADS-1021: index value too low (must be >= 1)
The value of a list index operation was below 1.

TADS-1022: index value too high (must be <= length(list))
The value of a list index operation was higher than the number of elements in the
list.
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TADS-1023: invalid type for built-in function
Your program called a built-in function with the incorrect type of arguments.

TADS-1024: invalid value for built-in function \xxx"
Your program called a built-in function with the incorrect type of arguments.

TADS-1025: wrong number of arguments to built-in
Your program called a built-in function with the incorrect number of arguments.

TADS-1026: wrong number of arguments to user function
Your program called one of its own functions or methods with the incorrect number
of arguments.

TADS-1027: string/list not allowed for fuse/daemon arg
The parameter to a fuse or daemon (speci�ed in a setdaemon() or setfuse() call)
cannot be a string or a list.

TADS-1028: internal error in setfuse/setdaemon/notify
This indicates an internal problem with TADS.

TADS-1029: too many fuses
You have attempted to register too many fuses simultaneously.

TADS-1030: too many daemons
You have attempted to register too many daemons simultaneously.

TADS-1031: too many noti�ers
You have attempted to register too many noti�ers simultaneously.

TADS-1032: fuse not found in remfuse
You have tried to remove a fuse that is not active.

TADS-1033: daemon not found in remdaemon
You have tried to remove a daemon that is not active.

TADS-1034: noti�er not found in unnotify
You have tried to remove a noti�er that is not active.

TADS-1035: internal error in remfuse/remdaemon/unnotify
This indicates an internal problem with TADS.

TADS-1036: load-on-demand loop: property not being set (internal)
This indicates an internal problem with TADS.

TADS-1037: unde�ned object in vocabulary tree
This indicates that a superclass object has not been de�ned.

TADS-1038: c-string conversion overows bu�er (internal limit)
This indicates an internal problem with TADS.

TADS-1039: invalid opcode (internal error)
This indicates an internal problem with TADS, or a corrupted game �le.
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TADS-1040: property evaluated for non-existent object
You have attempted to take a property of an object which has not been de�ned.
This probably means that you are attempting to execute a game with compiler
errors.

TADS-1041: unable to load external function \xxx"
The speci�ed external function (user exit) is not available, because it has not been
added to the game with the proper resource compiler (or other appropriate operating
system-dependent mechanism). See appendix F for information on writing external
functions.

TADS-1042: error executing external function \xxx"
The speci�ed external function cannot be executed. See appendix F for information
on writing external functions.

TADS-1043: circular synonym
You have declared a synonym which refers to another synonym which refers to the
original synonym.

TADS-1500: invalid command-line usage
You have speci�ed invalid command line arguments. This error will always be
accompanied with an informational message describing the proper command line
arguments.

TADS-1501: error opening input �le
The debugger could not open the speci�ed input �le.

TADS-1502: game not compiled for debugging - use -ds option
You must use the -ds option when compiling your game if you wish to use it with
the debugger.

TADS-2000: error setting breakpoint: unknown symbol
You have attempted to set a breakpoint on a non-existent symbol.

TADS-2001: I'm afraid I can't do that, Dave
The pod bay doors could not be opened. Check the AE-35 unit for a possible
malfunction.

TADS-2002: error setting breakpoint: symbol is not a property
The speci�ed symbol is not a property.

TADS-2003: error setting breakpoint: symbol is not a function
The speci�ed symbol is not a function.

TADS-2004: error setting breakpoint: property not de�ned in object
The speci�ed property is not de�ned in the speci�ed object.

TADS-2005: error setting breakpoint: property is not code
The speci�ed property is not code, but some other type of value. Breakpoints can
only be set in executable code.
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TADS-2006: error: breakpoint is already set at this location
You have attempted to set more than one breakpoint at the same location.

TADS-2007: error setting breakpoint: breakpoint not at line
You have attempted to set a breakpoint somewhere other than at a code location
associated with a source line.

TADS-2008: too many breakpoints
The debugger cannot set any more breakpoints. You must remove one or more
breakpoints before additional breakpoints can be set.

TADS-2009: breakpoint was not set
The breakpoint could not be set as requested.

TADS-2010: too many symbols in eval expression (internal limit)
You have speci�ed an excessively complex expression. Simplify the expression.

TADS-2011: unable to �nd source �le \xxx"
The speci�ed source �le cannot be opened.

TADS-2012: assignment to local is illegal in watch expression
You cannot make an assignment to a local variable within a watch expression.

TADS-2013: inactive frame (expression value not available)
The speci�ed frame can not be accessed because it is no longer active. The value
of the expression can not be obtained.

TADS-2014: too many watch expressions
You must remove one or more watch expressions before setting additional watch
expressions.

TADS-2015: watch expression not set
The requested watch expression could not be set.

TADS-2016: extraneous text after end of command
Your command has extra text past the end that the debugger did not understand.

TADS-2017: error setting breakpoint: symbol is not an object
The speci�ed symbol is not an object.

A book may be very amusing with numerous errors,

or it may be very dull without a single absurdity.

| OLIVER GOLDSMITH, The Vicar of Wake�eld (1766)
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Appendix F

External Functions

TADS has a facility that allows you to call a function written in another language, such as C or
Assembler, from within your TADS game program. We refer to these routines written in other
languages as \external functions" or \user exits." This appendix describes how to write and invoke
external functions.

You may wish to be able to invoke a function written in another language, such as C or Assembler,
from within your game program. For example, you may want to write a function that reads some
information from a disk �le, or you may want to program the sound hardware on your computer.
TADS allows you to do this through a mechanism known as \user exits" or \external functions."

Before going further, we should warn you that writing a user exit is somewhat complicated. We've
tried to make it as easy as possible to write an external function, but you will have to learn a
number of subtle details in order to use this mechanism. Furthermore, we don't have the space in
this appendix (or the pedagogical facility) to provide any information about programming in C or
Assembler or any other language, or about using your compiler or linker or other programming tools.
So, we'll assume that you already know how to program in C, and that you're already familiar with
your programming tools.

Declaring and Invoking a User Exit

As far as your TADS program is concerned, an external function is nearly the same as a built-in
function. The only di�erence is that you must tell the TADS compiler that the function is a user
exit; you do this by using the special external function declaration. This declaration is similar
to a forward declaration for a normal function; for example, if you wish to de�ne a user exit named
myfunc, you would include a declaration like this in your TADS program:

myfunc: external function;

Once you've declared myfunc as an external function, you can call it just as you would call any
built-in or user-de�ned function. For example, you could include code like this in your TADS
program:
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x := myfunc(10, 'hello');

The Sample User Exit

Invoking a user exit is easy; writing a user exit is a little more complicated. The rest of this appendix
describes how to write a user exit. Note that the TADS software contains a sample user exit written
in C, as well as a small TADS game program that invokes it; you will probably �nd it helpful to
look at the example to get a better idea of how the external function mechanism works. The user
exit itself is contained in the �le TESTUX.C; the TADS game program that invokes the user exit is in
the �le TESTUX.T. You may also want to consult TADSEXIT.H, which is a �le that you should include
in your C user exits; this �le de�nes the interface between TADS and your external function with
easy-to-use macros.

Note that the process of compiling and linking an external function varies by operating system. You
should refer to TESTUX.C, which contains information about compiling and linking a user exit for
each operating system. Note that you can write user exits in any language that will support a C-style
interface; you may wish to use assembly language in particular if your user exit must access your
computer's hardware. However, we only provide the TADSEXIT.H de�nitions �le for the C language,
and the instructions in TESTUX.C are speci�c to C. If you want to use another language, you'll have
to be familiar enough with your compiler and operating system to be able to apply the instructions
we've provided to your language.

Writing the External Function

In general, you write your TADS user exit as a regular C function. You must not use any static or
global variables, but you can use variables on the stack. You can't call any of the C run-time library
functions (such as printf) that may use global variables. If your function or any function it calls
uses global variables, the results will be unpredictable, and you may crash the machine.

(Note that the prohibition of static and global variables is a simpli�cation. In actuality, you can
use globals on most systems under speci�c conditions. On MS-DOS, Atari ST, and Macintosh,
you can use global variables as long as they are PC-relative|that is, they must be contained in
the same program section as the object code of your user exit and must be addressed using the
program counter. If you are familiar enough with your compiler to know how to generate PC-
relative static variables, which most compilers on these systems can do when presented with the
correct combination of secret options, you should be able to use static variables without any harm.
Exactly how you go about doing this with your compiler is, obviously, beyond the scope of this
appendix.)

The �rst thing in the C program that contains your user exit should be a #include directive like
this:

#include <tadsexit.h>
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This inserts the header �le tadsexit.h (which is part of the TADS software) into the current
compilation unit. This �le de�nes the interface between TADS and your user exit program with a
set of easy-to-use macros. Using these macros, you don't need to be aware of the strange details of
the data structures and calling sequences that TADS uses to call your user exit and vice versa.

Whatever you call your user exit with the external function declaration in your TADS program,
the user exit in your C program is called main. You declare it like this:

int main(ctx)

tadsuxdef far *ctx;

{

You may have two worries at this point. First, if the C program calls the function main, how does
TADS know to call it when you call myexit from your game program? Second, if you want to call
more than one user exit from your game program, how can they both be named main?

The answer to both questions is that TADS learns the name of your user exit not from the C compiler
(which only knows the function as main), but from a \resource editor." On MS-DOS and Atari ST
systems, this resource editor is called TADSRSC, and is provided with the TADS software; refer to
the documentation in the �le TESTUX.C for information on how to use TADSRSC. On Macintosh
systems, you should use a standard resource editor, such as ResEdit, which should be packaged with
your C programming tools.

In any case, each user exit is compiled separately, which means that you can have as many as
you want|all named main|without your C compiler or TADS becoming confused about all the
identical names. Using the resource editor, you add each separately compiled user exit to your game
program, assigning the resource the name that you use in your external function declaration.
The important thing is that the resource name de�ned with the resource editor matches the name
declared in the external function statement.

The argument to the function main is not the argument that you provided in the invocation of the
user exit in your TADS program. Instead, it is a \context," which you use for communications with
TADS. You use this context argument to obtain the actual arguments to your user exit function.

All of your arguments are on a \stack," which means that you can get to them one at a time. First,
you call the function tads tostyp(ctx) to learn the type of the �rst argument. This returns one
of these values (de�ned in TADSEXIT.H): TADS NUMBER, indicating the argument is a long integer;
TADS STRING, indicating the argument is a (single-quoted) string; TADS NIL or TADS TRUE, indicating
one of the truth values. You cannot pass other types of values to user exits, because the user exits
wouldn't know what to do with other types.

Next, you retrieve the �rst argument from the stack by calling the function appropriate to its type:
tads popnum(ctx) for numbers, tads popstr(ctx) for strings, or just tads pop(ctx) for truth
values. This last function has no return value, because all you need to know is the type (true or
nil), but you still must call it to remove the argument from the stack; the other two functions return
either a long integer or a string descriptor, respectively.

The return value of the tads popstr(ctx) function is a \string descriptor," which is not a string
pointer in the usual C sense. Instead, it is a special data structure that contains the length of the
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string and the text of the string. TADS version 2 does not use C-style null-terminated strings, but
rather keeps the length of each string along with its text value. You can't use the string descriptor
directly, but two functions are provided that allow you to decompose it into values you can use. Call
tads strlen(ctx, str), where str is the descriptor value returned by tads popstr(), to get the
length of the string; this function returns an integer giving the number of bytes in the string. Call
tads strptr(ctx, str) to get the text of the string; this function returns a character pointer giving
the address of the �rst byte of the string's text. Note that the string's text is not null-terminated|
you must use the value from tads strlen() to determine the length of the text bu�er. Be careful
not to use any of the C functions that require a null-terminated string with the text bu�er, because
the bu�er does not have a terminating null byte.

You should use the special type tads strdesc to hold the return value of the tads strpop() func-
tion. This type is de�ned in TADSEXIT.H along with the TADS interface functions.

Never write into a text bu�er obtained with tads strptr(). TADS assumes that you will leave
these text bu�ers unchanged; modifying an argument string's text bu�er will have unpredictable
results.

After you have retrieved the �rst argument, you proceed with other arguments in the same manner.
You must retrieve all arguments from the stack with one of the tads popxxx(ctx) functions, and
you must not retrieve any more than you received. You can �nd out how many arguments your
function actually received by calling the function tads argc(ctx); this function returns an integer
telling you the actual number of arguments. (This function returns the actual number of arguments
regardless of whether you have retrieved any arguments; it does not change as you pop arguments
o� the stack.)

If your user exit returns a value, you use one of the tads pushxxx(ctx, value) functions. To return a
number, call tads pushnum(ctx, value), where value is a long integer. To return a truth value, call
tads pushtrue(ctx) or tads pushnil(ctx). To return a C-style string (that is, a null-terminated
string that you built on the C stack, using a local character array variable), use tads pushcstr(ctx,

pointer), where pointer is the address of the �rst byte of the string.

You can also ask TADS to allocate space for a string, and build your return value using this space.
Call tads stralo(ctx, len), where len is an integer specifying the number of bytes in the string
you wish to return. This function returns a pointer to the �rst byte of the allocated space. Write
your string into this space. The string must not be null-terminated; instead, use exactly the number
of bytes that you allocated. Once you have �nished building your string, call tads pushastr(ctx,

pointer) to push the return value, where pointer is the value originally returned by tads stralo().
TADS remembers the length of bu�er you allocated, so there is no need to specify the length when
returning the string.
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Skilled in the works of both languages.

| HORACE, Satires (23 B. C.)
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Appendix G

TADS Debugger

TADS features a source-level debugger that can be helpful in making your game work properly. The
debugger makes it possible to watch your game program's execution line by line, and examine the
state of variables and properties. This chapter describes the debugger, and how to use it to get your
game working.

What is a Debugger?

The term \debugger" isn't exactly accurate for this type of program, because it doesn't actually
describe what the program is so much as what you normally use it for. Unfortunately, a debugger
doesn't actually �nd and remove problems from your program, as the name suggests; instead, it
provides a set of tools that makes it easier for you, the programmer, to �nd and remove the bugs in
your program. A better term would be \debugging tool"; you're the real debugger.

What the debugger actually does is to let you examine your game program in detail while it executes.
Using the debugger, you can step through your game line by line, which allows you to see exactly
what your program does as it runs. You can also set \breakpoints," which cause the game's execution
to be suspended at certain lines of code that you specify; you can use breakpoints to determine when
and why certain lines of code are executed (or not executed). You can also examine the state of
your game, by displaying the value of a variable or property. You can even change the value of a
variable or property.

If you're just learning TADS, you may �nd that the debugger can help you understand how the
system works. Using TDB, you can step through your game line by line, so you can see how the
parser calls routines in your program, how inheritance works, how the functions and objects in adv.t

work, and other details that can be confusing at �rst.
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Using the Debugger

The rest of this chapter describes how to use the debugger. Note that some of the information in this
chapter depends on the type of computer you are using, because the user interface to the debugger
is di�erent on each computer. So, the mechanism for invoking a debugger feature is di�erent on
some computers than described here; for example, a breakpoint may be set by typing a command
on some computers, by pressing a function key on other machines, and by selecting an item from a
menu on other systems.

Getting Ready for Debugging

Before you start using the debugger, you must �rst compile your game program with the special
option that enables the generation of source-level debugging information in the binary (.GAM) �le
that the compiler produces. On most systems, this means that you must include the -ds option on
the compiler command line, along with any other options that you normally use.

Other than including the -ds option on the compiler command line, compiling with debugging
information is exactly the same as compiling without the extra information. The compiler still
produces a .GAM �le as usual, and you can still use this .GAM �le with the TADS run-time to play
the game. However, the .GAM �le will be somewhat larger when you use the -ds option, because the
compiler includes extra information that the debugger uses to identify the source code and variables
within your game. (The fact that the .GAM �le is larger when you include debugging information
is the only reason not to use the -ds option at all times. When you're ready to give your game to
other people, you probably will want to recompile without the -ds option so that the .GAM �le is
smaller.)

Starting the Debugger

On most systems, you start the debugger by typing the tdb command. This command is very similar
to the tr command that you use to run your game normally. In fact, most of the same options can
be used with the debugger, in addition to a couple of special debugger options. With the exception
of the -i, -o, and -l options, which are all used for the run-time's script processing feature, the
debugger accepts all run-time options.

In addition, the debugger accepts the -mp size option, which has the same meaning as with the
compiler: set the parse node pool to size bytes. The reason that this option is used by the debugger
as well as the compiler is that the debugger uses the same subsystem as the compiler to parse
expressions. This means that you can use the same types of expressions that you use in your source
code when typing certain commands to the debugger.

The debugger accepts another special option: -i path. This option is very similar to the -i path
option accepted by the compiler. With the debugger, this option indicates a directory that should
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be searched for source code. The only di�erence between the -i option of the debugger and that of
the compiler is that the debugger will search each directory speci�ed with a -i option for the main
source �le as well as header (#include) �les. Normally, you will use the same set of -i options with
the debugger that you use with the compiler.

Here's an example debugger command line. This command starts the debugger and loads the binary
game �le MYGAME.GAM. The debugger will search the directory c:\tads for source �les that it doesn't
�nd in the current directory.

tdb -i c:\tads mygame

Note that the debugger looks for a con�guration �le named CONFIG.TDB, in the same way that the
compiler uses CONFIG.TC. Refer to Appendix C, which describes the TADS Compiler, for information
about using con�guration �les. The debugger uses the same method as the compiler to �nd and
interpret the con�guration �le.

Once you're running the debugger, you can get help at any time by typing \?" or \help". On
MS-DOS, you can also press the function key F1. The debugger will display a brief list of commands
(and function keys, if appropriate for your operating system) in the source window.

Screen Layout

The screen layout used by the debugger varies by system, but each system shows roughly the
same information. On some machines (such as MS-DOS PC's), the debugger actually uses two
di�erent \screens" to display information. These aren't actually two physical monitors, but two
virtual monitors that you can switch between; the debugger will normally display the active virtual
monitor, and you can switch to the other screen by pressing a certain function key or typing a
command. On other systems, the debugger uses windows to display the di�erent areas.

On two-screen systems, the �rst screen is the normal run-time system screen, showing the status
line, the output of your game, and the player's commands. The second screen is the debugger screen,
which shows source code, variable values, a debugger status line that indicates the current state of
execution of your game (such as which source code line will be executed next), and the debugger
command and display area. On windowing systems, these areas will be displayed in di�erent windows
all on one screen, and you can use your mouse as usual to bring di�erent windows to the foreground.

Controlling Execution

The debugger gives you control over your game's execution. When the debugger �rst starts, it will
load your game and wait for a command. Nothing in your game will have been executed at this
point, so the debugger source code area will show your preinit() function; the �rst line of this
function will be highlighted, which indicates that it is the next line to be executed.

At this point, your game is \suspended." This means that the debugger has control, not your
game. Execution of your game can be suspended in a number of ways: after stepping by one line,
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after hitting a breakpoint, immediately after entering the debugger, or after your game calls the
debugTrace() built-in function. When your game is suspended, you can type debugger commands,
and you can return control to your game at any time.

To start your game running when it's suspended, you can use the g (for \go") command. This
command resumes execution of your game. After typing g, your game will execute until something
causes it to be suspended, such as a breakpoint or a call to the debugTrace() function.

You can also step through a single line of your game's source code by using the t (for \trace")
command. This command simply executes the current line and then suspends execution again; if
the current line calls another method or function, the debugger will step into that function, and
suspend your game before executing any lines in the new function.

You can also step a single line using the p (for \procedure trace") command. This command is
similar to the t command, in that it executes a single line of code; however, unlike the t command,
the p command steps over, rather than into, functions and methods that are called by the current
line of code. That is, if a function or method is called, the debugger will execute the entire called
function (and any functions and methods it calls) without stopping. After the p command, execution
is suspended at the next line of source after the current line.

Breakpoints

You can arrange for execution to be suspended at a particular point in your program by setting a
\breakpoint." To set a breakpoint, use the bp (for \break point") command: type bp followed by
the name of a function, or object.property, where you want execution to be suspended.

You can set many breakpoints. Use the bl (\breakpoint list") command to list the breakpoints that
are currently active. Each breakpoint in the list is given a number; you use this number to refer to
the breakpoints you have previously set.

To remove a breakpoint, use the bc (\breakpoint clear") command. Type bc followed by the number
(from the bl command's output) of the breakpoint you wish to remove. You can also temporarily
disable a breakpoint without removing it entirely by using the bd (\breakpoint disable") command.
When a breakpoint is disabled, the debugger remembers the breakpoint, but doesn't do anything
about it; that is, when the breakpoint is hit, execution continues anyway as though no breakpoint
were set there. You can re-enable a disabled breakpoint with the be (\breakpoint enable") command.

You can also set a breakpoint at a particular line of source code by pointing at the line of code and
using a function key or menu selection. On MS-DOS PC's, use the arrow keys to position the cursor
at the line where you wish to set a breakpoint, and press the F2 function key; this will highlight the
line with a special color to indicate that a breakpoint is set there.

You can also set breakpoints that only suspend execution when a speci�c condition is met. You do
this by adding the keyword when followed by an expression to a normal bp command; the breakpoint
only stops execution when the particular line of source is executed and the expression is true. For
example, to set a breakpoint when the sleepDaemon() function is called, but only when the player
is in the room kitchen, you would specify this:
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bp sleepDaemon when Me.location = kitchen

You can also set a \global breakpoint"; this is a breakpoint that stops execution when an expression
becomes true, regardless of which line in your game is being executed. To set a global breakpoint,
simply omit the location; for example, to stop execution when the player moves into the kitchen:

bp when Me.location = kitchen

Note that the debugger automatically disables a global breakpoint when it is hit. This is because,
once the condition becomes true, it will generally remain true for a while; if the breakpoint remained
enabled, g would be the same as t, since the breakpoint would be hit on every line as long as the
condition is true. You can re-enable the breakpoint with the be command.

Where Am I?

When your game is suspended, you can determine what line in your game is about to be executed,
and how you got there, using the k (\stacK") command. This command displays the function or
method that is currently executing, followed by the function or method that called the current
function, followed by the function or method that called it, and so forth. The run-time system's
player command parser is always the last thing in this chain (although the debugger doesn't display
\player command parser" anywhere, since it's not part of your game program, but part of the
run-time system).

Examining Variables

Any time your game is suspended, you can examine the value of any variable or property in your
program. Use the e (\evaluate") command to examine a value: type e followed by an expression.
The expression is exactly the same as you would use in a source program. For example, to check
the player's current location:

e Me.location

You can use a local variable in an expression, but only if that local variable is currently active.
Naturally, you can't use a local variable from a function that isn't currently executing.

You can look at the value of a local variable from the current function, or even from a caller of the
current function (see the k command above). Use the u (\up") and d (\down") commands to select
the active function. Whenever your program is suspended, the debugger sets the active function to
the current function, so you can look at variables in the current function. To look at a variable in
the caller of the current function, use the u command to set the active function to the caller of the
current function. Use the u command to set the active function to the caller of that function. Use
the d command to go back down the stack chain.

Note that the k command displays an asterisk next to the active function. You can use the k

command if you forget how many times you've typed u and d. Note also that the u and d commands
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don't have any e�ect on your program's execution; they simply tell the debugger which function's
variables you want to use in expressions.

If you want to change the value of a variable, you can simply evaluate an expression that involves
an assignment. For example, to change the value of the local variable cnt to 3, you would type this:

e cnt := 3

You should use assignments with extreme care, because you could accidentally introduce an incon-
sistentency that confuses your game.

If you evaluate an expression that displays double-quoted text strings, or calls the say() built-in
function, the text will be displayed in the game window. This may cause confusing displays, because
the text will simply be added to whatever was already in the game window. Note that, on MS-DOS,
you'll have to use the F5 key (or the \ command) to switch to the game screen to see the results of
any double-quoted strings displayed by the e command.

In addition, since the run-time system formats text displayed in the game window, you may some-
times �nd that double-quoted text isn't immediately displayed. This is because the run-time system
saves up text until it has enough to �ll an entire line, then displays the text all at once. If this
happens, you can force the debugger to display the text by evaluating a double-quoted string that
contains a newline. For example:

e "\n"

This will force the debugger to display any text that it has been saving.

Watch Expressions

You will often want to see the value of a variable, property, or other expression as it changes while
you're stepping through code. You could repeatedly use the e command to evaluate the expression,
but the debugger makes this more convenient by allowing you to enter \watch expressions." Once
you create a watch expression, the debugger will display the current value of the expression in a
special area on the screen. The current value will be updated on the screen whenever the expression's
value changes. This means that you can monitor a set of expressions without having to type the e
command repeatedly.

To set a watch expression, use the ws (\watch set") command. Type ws followed by an expression.
The debugger will add the expression to the watch area.

To delete a watch expression, use the wd (\watch delete") command. Type wd followed by the watch
expression number (which is displayed next to the watch expression in the watch window).

Note that watch expressions do not display any double-quoted string text, or any text displayed
with the say() built-in function. If any double-quoted text is displayed in the course of evaluating
a watch expression, the text is discarded. In general, it's not a good idea to evaluate expressions
with side e�ects (such as assignments) in watch expressions, because the expressions are evaluated
repeatedly, and at times that you can't directly control.

228 The TADS Author's Manual



If you set a watch expression that involves a local variable, the expression will only be meaningful
when the local variable is active|that is, when the block that contains the local variable is being
executed. When execution moves outside of the block that contains the local variable, TDB will not
be able to evaluate the expression, and will simply display an error message in place of a value for
that watch expression. When execution returns to the block that contains the local variable, TDB
will once again be able to display a value for the expression.

Source Window Commands

The debugger provides a couple of commands for displaying other source �les in the source window,
and for repositioning the source window display.

To list the source �les that make up your game, use the fl (\�le list") command. This command
displays a list of the source �les in your game, giving each �le a number. You can use this number
as a shortcut with the fv command.

To display a di�erent �le in the source window, use the fv (\�le view") command. Type fv followed
by either a �lename or a �le number (this number comes from the output of the fl command). The
source window will show the newly selected �le.

You can search for text within the current source �le using the / command. Type / followed
immediately (without any spaces) by the string you want to �nd. The debugger will position the
cursor at the �rst occurrence of the text within the �le, if it was found, or at the end of the �le if
not. To search again for the same text, type / without anything following it. Note that the cursor
will be moved to the source window after searching for text.

Miscellaneous Commands

To quit the debugger, use the quit command.

You can get help with the debugger's commands and function keys by using the ? command; the
help command is equivalent. The debugger will display in the source window a �le with a brief
description of TDB's commands and function keys.

TDB on MS-DOS

On MS-DOS, the Debugger makes use of screen switching. This means that your monitor is com-
pletely �lled with either your game's output, or with the debugger screen. While your game is active,
it takes up the entire screen; it looks exactly like it does when you run with the normal TADS run-
time. When the debugger has control (after a breakpoint has been encountered, for example), the
debugger takes up the entire screen.
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You can switch the display back to the game screen by pressing F5, or by using the \\" command.
This will display the game screen; press any key to return to the debugger screen. Note that you
can't type any commands into the game, since it's suspended.

The debugger's screen is separated into three windows. The top window is the source window;
this window displays the current source �le (although you can also display other source �les from
your game, or any other text �le, in this window; see the fv command above). The bottom of the
source window is a status line that shows you the function or method where execution is currently
suspended, and the name of the �le that contains that code.

The bottom window is the command window. You type commands to TDB and see the results in
this window. When the debugger is ready for a command, it will show you this prompt:

tdb>

The cursor will be positioned after the prompt. You can now type a command to the debugger
(terminated with the Return or Enter key), and the results will be displayed in the command
window.

The middle window is the watch expression window. This window is only displayed when one or more
watch expressions are active, so it is not shown when you �rst enter the debugger. The debugger
automatically adjusts the size of this window to make room for the watch expressions you have
entered. See the discussion of watch expressions earlier in this chapter for information on creating
watch expressions.

Function Keys on MS-DOS

This section lists the special function keys used in the MS-DOS version of the TADS Debugger.
Note that some of these keys can be used only in the source window; to move the cursor to the
source window from the command window, press the Tab key. Note also that most of the functions
performed by these keys can be obtained with a command typed in the command window; however,
the function key equivalent is often more convenient.

F2: (Used only when the cursor is in the source window.) Sets or clears the breakpoint at the
current line (the line at which the cursor is positioned). This is similar to the bp command, except
that it allows you to set a break point at any executable line of code, rather than just at the start
of a function or method.

Shift-F2: (Used only when the cursor is in the source window.) Sets a breakpoint at the current
line, with a conditional expression. The debugger will prompt you for a conditional expression; type
an expression and hit the Enter key. This is similar to the bp command using the when keyword,
but allows you to set a conditional breakpoint at any executable line of code.

F5: Show the game screen. When the game is suspended, the game output is replaced on your
monitor by the debugger screen; hitting F5 switches back to the game screen. Hit any key to return
to the debugger screen. This is the same as the \ command.

F7: Same as t: trace a line of code, stepping into functions and method calls.
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F8: Same as p: trace a line of code, stepping over function and method calls.

TAB: Switch windows. When the cursor is in the command area, it moves to the source window;
when in the source window, it moves back into the command area.

Up and Down arrows: When the cursor is in the command area, these keys scroll the source display
up and down one line. When in the source window, they move the cursor up and down one line.

PgUp and PgDn keys: Scrolls text in the source window up or down one page (i.e., the number of
lines of text displayed in the window).

Ctrl-PgUp and ctrl-PgDn: Moves text in the source window to the top or bottom (respectively) of
the source �le.

Ctrl-Home: Shows current line of source in the source window. If you have switched to another �le
with the fv command, the source �le containing the current line will replace the other �le in the
source window.

TDB on Macintosh

When you start the Macintosh version of TDB, a dialog will let you select the game you want to
debug and any additional information you need to specify. The information that you specify with
command line options on other operating systems is entered through this dialog on the Macintosh.
Once you have entered all of the necessary information, press the \OK" button to start the debugging
session.

The debugger has a window for your game's output, and a separate window for entering debugger
commands and viewing debugger output. An additional window displays the current source �le
(although you can use this window to view another �le using the fv command, described earlier in
this chapter). In addition, a separate window displays watch expressions.

Menu Commands

You can access most debugger commands directly from the menu bar. A command selected from the
menu bar uses a dialog to ask you for any additional information required for the command. Note
that many of the menu items have associated Command keys, so you can select these items with a
single keystroke. For example, you can press Command-G to resume execution (the g command),
or Command-T to step one line (the t command).

Source Window

You can set breakpoints using the mouse in the source window. To set a breakpoint at a particular
line, simply move the mouse over that line in the source window, and click the mouse. A small
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diamond mark will appear in the left margin of that line, indicating that a breakpoint is set at that
line. (Note that breakpoints that you set using the bp command will also show up in the source
window with a diamond mark.) To remove the breakpoint, click on the line again, and the diamond
mark will disappear.

If you hold down the Option key when you click the mouse on a line in the source window, the
debugger will allow you to set a conditional breakpoint on that line. A dialog box will appear; type
an expression in the dialog box and select the \OK" button to set a breakpoint with a condition.

Whenever the debugger gets control, it will update the source window to display the next line to be
executed (which is referred to as the current line), with a small arrow to the left of the line. When
your game is running, the debugger does not keep the current line display up-to-date; the current
line arrow is only meaningful when the debugger has control.

Watch Window

The watch window is displayed whenever one or more watch expressions are active; it is removed
from the screen when no watch expressions are set.

You can delete a watch expression directly from the watch window. Click the mouse on a watch
expression; it will be highlighted to show that it has been selected. Now you can use either the
delete key or the \Clear" item in the \Edit" menu to delete the watch expression.

Note that watch expressions are kept up-to-date while the game is running, even when the debugger
doesn't have control.

Who has control?

On MS-DOS, it's always obvious whether the debugger or the game has control, because the entire
screen displays one or the other. On the Macintosh, however, all of the windows are always on the
screen, so it may sometimes not be entirely obvious whether your game is running or suspended.
The way to tell is that you can only enter commands in either the game window or the debugger
window. When your game is active, you can only enter commands into the game window; when your
game is suspended (so the debugger has control), you can only enter commands in the debugger
command window. You can also tell by looking at the debugger menus: all of the debugger menu
items are disabled while your game is running, except for the \Stop" item under the \Execution"
menu. While the debugger has control, everything except the \Stop" item is enabled.
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Give us the tools, and we will �nish the job.

| WINSTON CHURCHILL, Radio broadcast (1941)
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Index

In addition to checking for entries in this Index, readers are encouraged to check the several reference
sections of this manual for information on particular items.

� Descriptions of the built-in functions appear in an alphabetical listing in Chapter
5, \Language Reference."

� The classes de�ned in adv.t are described in a listing in Appendix A, \Adventure
De�nitions"; an alphabetical index to the listing appears at the beginning of that
appendix. In addition, the appendix includes a list of the verbs and a list of the
prepositions de�ned in adv.t.

� The built-in property names are described in an alphabetical listing in Chapter 4.
This chapter also contains an alphabetical list of the objects and functions that
game programs are required to de�ne.

� Appendix E contains a listing of all of the system error messages, arranged by error
number.

/* : : : */ (comment delimiters), 61.
// (comment starter), 61.
* operator, 73.
*= operator, 75.
+ operator, 73.
++ operator, 72.
+= operator, 75.
, operator, 75.
- operator, 73, 74.

- - operator, 73.
-1 option, 191.
-= operator, 75.
. operator, 72.
/ operator, 73.
/= operator, 75.
:= operator, 75, 76.
< operator, 74.
<= operator, 74.
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<> operator, 74.
= operator, 74.
> operator, 74.
>= operator, 74.
? : operator, 75.
[ ] operator, 72.
# operator, 72.
& operator, 72, 90, 97, 102.
-1a option, 191.
-1d option, 192.
-1e option, 191, 207.
-1k option, 192.
-ds option, 188, 214, 224.
-i option, 189, 197, 204, 224.
-l option, 189, 197.
-m option, 189, 196, 202, 203.
-mh option, 197, 211.
-ml option, 204, 207.
-mp option, 205.
-ms option, 197, 211.
-o option, 190, 197.
-p option, 190.
-s option, 191.
-t- option, 191.
-tf option, 191, 197.
-ts option, 191, 197, 203.
-u option, 197.
-w option, 191.
-Za option, 191.
#include directive, 8, 60.
..., 69.

abort, 85, 86.
action, 38, 41, 42.
actor, 31, 34, 36, 48.
actorAction, 37, 38, 43.
actors, 108, 147.
add and assign operator, 75.
addition operator, 73.
adesc, 36.
adjective, 10, 32, 43.
adv.t, 8, 17.
Adventure, 1.
againVerb, 48.

alerts, 52.
\all," 33, 41, 44.
ambiguity, 35.
ambiguous objects, 32.
\and," 33, 74.
angle brackets, 60, 65, 189.
argcount, 69, 88, 92.
argument, 20, 24, 61, 68, 69, 77, 85.
article, 10, 30, 35, 36, 163.
ASCII, 7, 60.
askdo, 86.
askfile, 88.
asking questions (of actors), 159.
askio, 86.
assignment operator, 75, 76.

blank line, 21.
braces, 68, 80.
break, 81, 83.
breakpoints, 226.
built-in functions, 88.
built-in property, 42.
buttons, 131.

C language, 10, 15, 19, 20, 218.
cache, 190.
cantReach, 43.
caps, 88.
car, 23, 89.
case, 81.
cdr, 23, 89.
characters (non-player), 108, 147.
classes, 10, 16, 25, 62.
collections of object, 141.
command line editing, 196.
command line recall, 196.
commanding actors, 159.
comma, 33.
comments, 61.
comparison operators, 74.
compile-time error, 202.
compiler, 7, 59.
compoundWord, 31.
concatenating lists, 73.
concatenating strings, 73.
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conditional, 75.
CONFIG.TC, 192.
CONFIG.TDB, 225.
con�guration �le, 192, 225.
conjunction, 75.
contents, 43.
continue, 84.
curly braces, 19.
cvtnum, 89.
cvtstr, 89.

daemon, 39, 52, 92, 95.
datatype, 22, 70, 90, 96, 97.
debugger, 188, 223.
decrement operator, 73.
default sizes, 190.
defined, 90.
designing a game, 105, 181.
direct object, 30, 34, 36, 41, 86, 122.
disambiguation, 39.
divide and assign operator, 75.
division operator, 73.
do-while, 82.
doAction, 38, 43, 123.
doDefault, 41, 44.
doors, 128.
double quotes, 10, 24, 60, 63.
doVerb, 38.

ellipsis, 69.
else, 80.
embedded expressions, 65.
error, 201.
\everything," 33.
exclamation marks, 33.
exit, 37, 85.
expression, 67, 72.
external functions, 217.

fatal error, 201.
find, 90.
firstobj, 91, 95.
for, 76, 82, 84.
format strings, 54.
formatString, 54.

formatter, 53.
forward declaration, 70, 99.
function, 19, 24, 68, 77.
function call, 77.
function pointer, 77.
fuse, 39, 52, 92, 95, 98.

game design, 105, 181.
getarg, 69, 92.
goal (of a game), 107.
goto, 84.

HAL 9000, 214.
\her," 33.
hexadecimal, 63.
\him," 33.

identi�ers, 61.
if, 20, 79.
including �les, 189.
include path, 60, 189.
increment operator, 72.
incturn, 92.
indirect function calls, 77.
indirect method calls, 77.
indirect object, 31, 34, 36, 86, 123.
inheritance, 11, 16, 25.
inherited, 62, 87.
init, 48, 52.
input, 93.
ioAction, 39, 44, 123.
ioDefault, 41, 44.
ioVerb, 38.
isclass, 93.
isHer, 33, 44.
isHim, 33, 44.
isVisible, 45.
\it," 33, 100.
items, 114.

keys, 130.

label, 84.
ldesc, 8.
length, 22, 89, 94.
line breaks, 53.
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list, 22, 66, 89, 91.
list indexing, 22, 72, 89.
local, 20, 61, 68, 71.
location, 10, 26, 45.
locationOK, 45.
locked doors, 130.
logging, 94.
logical negation, 73.
lower, 94.

MAKETRX, 198.
map, 107, 124.
Me, 37, 48.
memory size, 189.
memory usage, 191.
method, 10, 16, 23, 62, 68, 85.
multiple direct objects, 32.
multiple inclusions of a �le, 60.
multiple inheritance, 26.
multiplication operator, 73.
multiply and assign operator, 75.

nested room, 136.
newline, 21, 64.
nextobj, 91, 94.
nil, 23, 34, 67, 73, 89, 98.
non-player characters, 108, 147.
not, 73.
notify, 39, 85, 95, 102.
noun, 10, 45.
number, 32, 33, 63.
numObj, 48, 49.

object, 15, 62, 72, 86.
object collections, 141.
object-oriented programming, 15, 23.
objects, 20.
obstacles, 125.
octal numbers, 63.
\of," 32.
options, 188.
or, 74.
order of evaluation, 76.
overriding methods, 11, 16, 62.

pardon, 49.

parseError, 49.
Pascal language, 10, 15, 19, 20.
pass, 85.
pause, 190.
periods, 33.
player command parser, 29, 59.
player's command, 85.
plot, 107, 183.
plural, 32, 45.
portability (of TADS games), 195.
pre-compiled headers, 60, 189.
preinit, 48, 52.
preparse, 29, 52.
prepDefault, 41, 46.
preposition, 10, 31, 35.
property, 9, 21, 72, 86.
property pointer, 78.
proptype, 96.
puzzles, 107, 183.

question marks, 33.
questions (for actors), 159.
quit, 97.
quoted strings, 33.

rand, 97.
randomize, 97.
remdaemon, 97.
remfuse, 98.
resource editor, 219.
restart, 98.
restore, 98, 99.
return, 79.
review mode, 196.
roomAction, 38, 46.
roomCheck, 37, 46.
rooms, 112, 124.
run-time error, 202.
run-time system, 8, 59, 195.

save, 98.
say, 99.
screen layout (debugger), 225.
sdesc, 8, 35.
self, 86.
self-loading game, 198.
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semicolon, 33, 63.
setdaemon, 98, 99.
setfuse, 98, 99.
setit, 100.
setscore, 47, 100.
setting (of a game), 108.
setversion, 101.
single-quoted strings, 10, 34, 66.
specialWords, 55.
square brackets, 22, 35, 66.
statements, 70.
statistics, 191.
status line, 47, 100.
statusLine, 46.
std.t, 8.
string, 91, 94.
strObj, 48, 53.
substr, 101.
subtract and assign operator, 75.
subtraction operator, 74.
superclass, 25, 62, 86, 163.
switch, 80, 84.

tab characters, 64.
tads.gam, 195.
TADSEXIT.H, 218.
TADSRSC, 219.
takeVerb, 38, 53.
talking (to actors), 159.
tc, 188.
tdb, 224.

TESTUX.C, 218.
TESTUX.T, 218.
thedesc, 36, 47.
\them," 33.
\then," 33.
tr, 195.
travel, 124.
true, 67, 73, 89.
typographical conventions, 59.

undo, 101.
unnotify, 102.
upper, 102.
user exits, 217.

validDo, 37, 39, 47.
validIo, 37, 39, 47.
value, 48, 53.
varargs functions, 69, 90.
variable argument lists, 69, 90.
vehicles, 130, 136.
verb, 10, 30.
verDoVerb, 38, 39, 41.
verIoVerb, 39.
vocabulary, 10, 26, 34, 66, 175.
vocabulary properties, 35.

warning, 202.
watch expressions, 228.
while, 20, 23, 82.
whitespace, 60, 63.

yorn, 102.

The author prefers not to generate indexes automatically;

he likes to reread his books as he checks the cross-references,

thereby having the opportunity to rethink everything and to

catch miscellaneous errors before it is too late. As a result, his

books tend to be delayed, but the indexes tend to be pretty good.

| DONALD E. KNUTH, The TEXbook (1984)
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